
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/2771712

Implementation of Graphing Tools by Direct GUI Composition

Article · April 1998

Source: CiteSeer

CITATIONS

0
READS

38

3 authors, including:

Some of the authors of this publication are also working on these related projects:

First International Conference on Urban Physics View project

WISDOM View project

Daniel G. Aliaga

Purdue University

164 PUBLICATIONS 3,484 CITATIONS

SEE PROFILE

Matthias Schneider

Technische Universität München

56 PUBLICATIONS 554 CITATIONS

SEE PROFILE

All content following this page was uploaded by Matthias Schneider on 15 July 2013.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/2771712_Implementation_of_Graphing_Tools_by_Direct_GUI_Composition?enrichId=rgreq-31ec598eb46c0c536eb88a04935712c5-XXX&enrichSource=Y292ZXJQYWdlOzI3NzE3MTI7QVM6MTAzNzg2NjUxNTg2NTcxQDE0MDE3NTYwNzQ0MDM%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/2771712_Implementation_of_Graphing_Tools_by_Direct_GUI_Composition?enrichId=rgreq-31ec598eb46c0c536eb88a04935712c5-XXX&enrichSource=Y292ZXJQYWdlOzI3NzE3MTI7QVM6MTAzNzg2NjUxNTg2NTcxQDE0MDE3NTYwNzQ0MDM%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/First-International-Conference-on-Urban-Physics?enrichId=rgreq-31ec598eb46c0c536eb88a04935712c5-XXX&enrichSource=Y292ZXJQYWdlOzI3NzE3MTI7QVM6MTAzNzg2NjUxNTg2NTcxQDE0MDE3NTYwNzQ0MDM%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/WISDOM-10?enrichId=rgreq-31ec598eb46c0c536eb88a04935712c5-XXX&enrichSource=Y292ZXJQYWdlOzI3NzE3MTI7QVM6MTAzNzg2NjUxNTg2NTcxQDE0MDE3NTYwNzQ0MDM%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-31ec598eb46c0c536eb88a04935712c5-XXX&enrichSource=Y292ZXJQYWdlOzI3NzE3MTI7QVM6MTAzNzg2NjUxNTg2NTcxQDE0MDE3NTYwNzQ0MDM%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Daniel_Aliaga2?enrichId=rgreq-31ec598eb46c0c536eb88a04935712c5-XXX&enrichSource=Y292ZXJQYWdlOzI3NzE3MTI7QVM6MTAzNzg2NjUxNTg2NTcxQDE0MDE3NTYwNzQ0MDM%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Daniel_Aliaga2?enrichId=rgreq-31ec598eb46c0c536eb88a04935712c5-XXX&enrichSource=Y292ZXJQYWdlOzI3NzE3MTI7QVM6MTAzNzg2NjUxNTg2NTcxQDE0MDE3NTYwNzQ0MDM%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Purdue_University?enrichId=rgreq-31ec598eb46c0c536eb88a04935712c5-XXX&enrichSource=Y292ZXJQYWdlOzI3NzE3MTI7QVM6MTAzNzg2NjUxNTg2NTcxQDE0MDE3NTYwNzQ0MDM%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Daniel_Aliaga2?enrichId=rgreq-31ec598eb46c0c536eb88a04935712c5-XXX&enrichSource=Y292ZXJQYWdlOzI3NzE3MTI7QVM6MTAzNzg2NjUxNTg2NTcxQDE0MDE3NTYwNzQ0MDM%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Matthias_Schneider5?enrichId=rgreq-31ec598eb46c0c536eb88a04935712c5-XXX&enrichSource=Y292ZXJQYWdlOzI3NzE3MTI7QVM6MTAzNzg2NjUxNTg2NTcxQDE0MDE3NTYwNzQ0MDM%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Matthias_Schneider5?enrichId=rgreq-31ec598eb46c0c536eb88a04935712c5-XXX&enrichSource=Y292ZXJQYWdlOzI3NzE3MTI7QVM6MTAzNzg2NjUxNTg2NTcxQDE0MDE3NTYwNzQ0MDM%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Technische_Universitaet_Muenchen?enrichId=rgreq-31ec598eb46c0c536eb88a04935712c5-XXX&enrichSource=Y292ZXJQYWdlOzI3NzE3MTI7QVM6MTAzNzg2NjUxNTg2NTcxQDE0MDE3NTYwNzQ0MDM%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Matthias_Schneider5?enrichId=rgreq-31ec598eb46c0c536eb88a04935712c5-XXX&enrichSource=Y292ZXJQYWdlOzI3NzE3MTI7QVM6MTAzNzg2NjUxNTg2NTcxQDE0MDE3NTYwNzQ0MDM%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Matthias_Schneider5?enrichId=rgreq-31ec598eb46c0c536eb88a04935712c5-XXX&enrichSource=Y292ZXJQYWdlOzI3NzE3MTI7QVM6MTAzNzg2NjUxNTg2NTcxQDE0MDE3NTYwNzQ0MDM%3D&el=1_x_10&_esc=publicationCoverPdf

1 of 9

 Implementation of Graphing Tools
by Direct GUI Composition

Daniel G. Aliaga, Martin Brenner,
Matthias Schneider-Hufschmidt

Siemens Corporate Research and Development
 Otto-Hahn-Ring 6

D-8000 Munchen 83

Phone: (+49) 89 636 49505
Fax: (+49) 89 636 48000

Abstract: we describe an object oriented design and
flexible implementation of a set of graphing tools imple-
mented by using only the standard graphical user interface
widgets provided by an interactive program composition
system developed at Siemens Corporate R&D. The sys-
tem, SX/Tools, allows for the addition of arbitrary tools
(widgets) by direct composition of a set of initial objects.
Using this mechanism and without any further system pro-
gramming we were able to design a powerful set of graph-
ing tools for applications ranging from static displays of
data, to business graphs, to dynamically varying data and
maintaining interactive rates.

1 Introduction

1.1 The general problem

1.1.1 User Interfaces

As a consequence of the computer boom of the last few
decades, computers are being used by a continuously
growing number of non-technical users. Specifically, com-
puters have infiltrated and become an integral part of
banking, international trade, air traffic control and even
everyday home activities. In most cases, the users are well

versed in the field for which they use computer technology
but are not computer experts. Unfortunately, most soft-
ware was originally designed for and by computer experts
and thus was not easily accessible to bank clerks, financial
counselors, etc.

As computer performance improved, it became possible to
devote more CPU time to the user interface [1].Graphical
User Interfaces (GUI) became the most popular and intui-
tive, though not the easiest to design [2]. Thus, the field of
Computer-Human Interaction (CHI) was born.

1.1.2 From CHI to Direct Composition

Among the difficulties found in CHI, was that every user
is unique (and also quite stubborn). Somehow users have
the magical ability to create situations that have never
been thought of before. This made the quest to design sim-
ple but powerful user interfaces even more challenging.
Graphical interfaces have the potential of being very intui-
tive to use. Unfortunately, it is not very clear how to bind
functionality with a graphical representation.

Novelties such as object oriented programming, menu-
based interfaces (the beginning of the Macintosh era) and
many others soon appeared. This, together with the grow-
ing popularity of windowing systems and the trend to stan-

Introduction

2 of 9 Implementation of Graphing Tools by Direct GUI Composition

dardize their API, caused the advent of soon to become
standard concepts like pull-down menus, sliders, buttons
and, in general,widgets. Shortly afterwards, the difficulty
of manually programming a graphical user interface for an
application became clear. Thus, interface builders
appeared which quickly evolved into more complete
development systems where you could actually construct
or link your application from within the interface builder.
Many of these systems supported a C-like scripting lan-
guage or produced C code that could later be compiled.

1.1.3 Direct Composition

One of the most powerful strategies used by several of the
aforementioned systems isdirect composition [3]. In
essence, an interface designer is given an initial set of wid-
gets with which the user interface is to be built. Once the
layout is determined, the application designer or program-
mer links the user interface to the application. The out-
come is a fully functional system with a pleasing, though
not perfect, user interface. In most cases, the user interface
can be modified without having to change the back-end
application.

The ease with which the user interface itself can be altered
has caused areas likeAdaptive User Interfaces (AUI) to
flourish. The difficulty lies in determining an interface
suitable for all users, AUI tries to solve this through self-
adaptation, user-controlled adaptation, computer-aided
adaptation, among others [4].

Naturally, the interface designers, namely non-computer
experts, soon also wanted to take part in the application
construction and linkage. This caused the systems to pro-
vide more powerful composition methods. The previous
interface designers now also had sets of black-box func-
tionality they could manipulate. A simple task, for exam-
ple requesting information from a database, could be
black-boxed into a single widget. Later, it could be
dragged into a new interface without having to reprogram.
A succession of these operations is all that is needed to
create a new application.

1.1.4 Platforms

For computer systems running Unix and the X Windowing
System, many widget packages exist (X Toolkit, Athena
Toolkit, MOTIF, etc.). To name only a few interface build-
ers, some of which obey a direct composition-like strat-

egy: UIMX (MOTIF) [5], DevGuide (OpenLook) [6],
NeXT Interface Builder [7].

We implemented our graphing tools using a platform
developed at Siemens Corporate R&D, namelySX/Tools,
[8] which follows the principle of direct composition.

1.2 Graphing Tools

1.2.1 Graphs in General

It is well known that humans understand facts better when
it is presented to them in a visual or graphical manner.
From financial activities to scientific explanations, pic-
tures and graphs are a powerful medium to express ideas.

In terms of computer technology, the development of high
resolution displays, large colormaps (instead of the previ-
ous green and black computer screen) has allowed for very
complex computer generated graphs. Indeed graphics has
become a very important part of computer software today.
The field of computer graphics has grown tremendously;
but we will limit our graphs to two dimensional non-pho-
torealism graphs. Namely, we wish to display information
(e.g. from a database) or the evolution of parameters over-
time and not achieve a photo-realistic representation. We
can group these graphs into three categories. This subdivi-
sion is not the only one possible, but it seems to be a good
categorization:

■ Static Presentation Graphs: the graphs in this category
are very elaborate and are especially tailored for the
specific data or concept to be expressed.

■ Partially Dynamic Presentation Graphs: these graphs
may be elaborate, but also have some degree of vari-
ability; for example, predictions of the number of com-
pany shares sold in the next trimester given a set of
initial conditions.

■ Fully Dynamic Graphs: this category contains the
graphs which are constantly undergoing real-time
changes. Such dynamic qualities may be used to dis-
play the current weather conditions, for engine tuning
purposes or to display the status of a complex experi-
ment.

1.2.2 Our Goal

We wish to design and implement a powerful set of graph-
ing tools using only direct composition. Our tools will

Implementation

Implementation of Graphing Tools by Direct GUI Composition 3 of 9

hopefully be able to generate graphs for each of the previ-
ous categories, though we will emphasize more on the sec-
ond and third category, since the graphs can always be
embellished afterwards. The graphs should also not be
limited to one or a few specific application areas and
should easily be incorporable into more complex visual-
izations limited, in fact, only by the imagination of the
designer.

Furthermore, we wish to design the tools in such a way as
to minimize the amount of work for the application
designer; though if we were to strictly follow the mini-
mum-work paradigm, it would lead us to constructing
graphs with a very rigid layout despite being totally auto-
mated. Hence, we will pursue a design in between both
extremes.

Another issue to consider is extensibility. We will not
claim our graphing tools (or the platform on which they
are built) as being capable of performing all the tasks we
will ever imagine. As you will read later, our direct com-
position platform allows for communication with external
partners (or clients). We wish to design our graphs in such
a fashion as to allow for easy interaction with such part-
ners; thus, applications can easily access resources exter-
nal to the platform on which the graphs are built. At the
same time, we would like to maintain a clear separation
between the partner and the graph configuration, so editing
of the graph configuration (i.e. change the graph type)
does not require modification of the partner.

Finally, we do not wish to duplicate the functionality
already available with the underlying platform. If the
direct composition platform already provides extensive
modifiable properties for ellipses, providing a method to
alter each property of the ellipses of a pie graph would be
an instance of unnecessary duplication of functionality.
Additionally, if the platform were ever to provide new
editable ellipse properties, the graphs would not be able to
take advantage of them.

1.2.3 Graph Types

We determined the following three types of graphs to be a
good base set:

■ Pie Graph

■ Bar Graph

■ Line Graph

2.0 Implementation

2.1 SX/Tools

As mentioned before, the graphing tools are implemented
using the SX/Tools direct composition platform developed
in our lab. The first author of this paper was able to con-
struct on his second day using SX/Tools a functional pie
graph with a variable number of slices. Soon afterwards, it
became clear that a full implementation of a set of graph-
ing tools was possible. After a few weeks, the initial ver-
sion was complete as well as a set of interesting
applications.

SX/Tools provides the user with a workarea (initially a
blank window) and a selection of initial graphical objects
(toolbox). The workarea, once filled with objects, can be
saved into ascene. All objects possess a list of methods
which can be called from a C-like scripting language pro-
vided by the platform. Furthermore, event-triggered and
user-defined methods can be added to any object. With a
click of the mouse, a configurable pop-up menu appears
for the currently selected object. Through this menu the
object’s methods and properties1 can be altered as well as
other standard editing functions.

2.2 Toolboxes

2.2.1 What are Toolboxes?

In SX/Tools, any scene or part of a scene can be com-
pounded into a single object (called a container object).
The details of how the compounded object is constructed
are hidden. A collection of such objects is put into atool-
box and essentially added to the set of initial objects avail-
able. Thus, through the toolbox mechanism, any number
of tools can be added to the platform. In our case, we
added graphing tools, but there is no reason why not to add
audio and video tools, for example. With a direct composi-
tion platform, like SX/Tools, such expansions are trivial.

2.2.2 Graph Toolbox

Figure 4 is how the graph toolbox appears to the designer.
Each graph tool has a symbolic icon. The designer selects

1. See Section 2.3 and 2.4 for more information on methods and
properties.

Implementation

4 of 9 Implementation of Graphing Tools by Direct GUI Composition

the desired tool and drags it onto a workarea. This creates
a new instance of the corresponding graph tool.

FIGURE 1. The Graph Toolbox

The tools were constructed by composing objects from the
initial set provided by SX/Tools. The following diagram
(figure 5) outlines the general structure of each graph tool.

FIGURE 2. Outline of a graph tool object hierarchy

The container object in figure 5 encapsulates and sends
messages to the section objects. For pie graphs the section
object is an ellipse; for bar graphs it is a rectangle and for
line graphs it is a polyline.

2.3 Methods

Once the tool object hierarchies were constructed (a pro-
cess which is accomplished by a sequence of dragging

container

section section section

dynamic instances

label label

coords

label label

operations), it was necessary to overload and expand the
functionality of each section object. For example, in the
case of the bar graphs, rather than having a method for set-
ting rectangle width and height by specifying the number
of pixels, a method was needed to set the width according
to the number of bars and the height according to the sec-
tion value, in other words, according to the percentage the
bar is to represent. Similarly, when a rectangle belonging
to a bar graph is selected with the mouse, the container
object should be informed in order to permit operations on
the currently selected section to function properly.

The script interface to the graphs, namely the methods, is
consistent among the three graph types. With a few minor
exceptions, the actual type of a graph does not matter. The
number of methods is also not as large as one would
expect, namely because many of the esthetical qualities of
the graphs can be altered using already existing accessors.
The functiongetSection is provided to obtain the section
object whose properties can be directly accessed using
standard SX/Tools features. In order to make editing of the
most commonly changed properties (color and fill style)
even simpler, shortcut methods are provided.

Table 1 contains the most important methods common to
all graph types. Applications using these methods can
interchange graph types at will. Table 2 contains the essen-
tial methods for features relevant only to specific graph
types2.

TABLE 1. Essential Common Graph Methods

Method Name Description

setNumberSections Create the desired number of sections.
getSection Accessor for a section object.
getSelectedSection Accessor for the currently selected object.
getType Return the graph type.
setSectionValue Set the value of a specified section.
setSectionLabel Set the label of a specified section.
setSectionColor Set the color of a specified section.
setSectionStyle Set the fill style of a specified section.
setShowValues Select if section value should be displayed

in a text object.
setShowLabels Select if section label should be displayed

in a text object.
setMinMax Set range of values for each section (a

floating point range).

2. See [9] for a complete listing of methods.

Implementation

Implementation of Graphing Tools by Direct GUI Composition 5 of 9

TABLE 2. Essential Graph-specific Methods

Method Name Description

For bar and line graphs:
setCoordinateStyle Select type of coordinate axes to use.
setCoordinateDivs Select the number of divisions per axis.

For pie graphs:
setFullGraph Automatically complete the pie circle.

For bar graphs:
setOrientation Select the orientation of the bars.

For line graphs:
setSectionLWidth: Specify the line width.
setSectionLStyle: Specify the line style (solid or dashed).

2.4 Links & Property Sheets

The next problem encountered was how would the
designer interactively modify the characteristics of a
graph. All objects in SX/Tools have a list of properties
which can be edited through a generic property editor.
Some example properties are: fillForegroundColor, lin-
eWidth, fillStyle, width, height, etc. Some objects may
also have more specific properties. The slider object has a
minValue, maxValue and actValue property; a radio button
column object has a numberItems and value property, etc.
The following sections outline the two approaches we pur-
sued.

2.4.1 Link Mechanism

Our first solution was to have additional tools for altering
graph properties. The tools were created in a generic fash-
ion such that they could be linked to any graph in order to
edit a predetermined property.

For example, to edit the number of sections, we con-
structed a tool which had a slider linked to thesetNumber-
Sections method of the graph being edited. Thus, when an
instance of a graph is created, an instance of a section
number tool can also be created and interactively linked to
the graph. Similarly, if the designer wishes to change a
section color, an instance of a section color tool can be cre-
ated and interactively linked to the graph. We imple-
mented three such tools: number of sections tool, color
tool and value tool.

2.4.2 Graph Specific Property Editors

After gaining experience and designing a few sample
applications, the idea to create an object dependent prop-
erty editor arose. Furthermore, the property editor itself
could be designed with SX/Tools thus giving the object
creator total freedom in the design of the property editor
and allowing it to be truly object specific.

This is the implementation we decided to follow for our
final version. We currently have a property editor for each
graph type. The three editors are similar in style, but each
one is specially tailored for the graph type it corresponds
to. The property editor may be used at any time, either
during the design phase or, if so desired, during the execu-
tion phase3.

The property editors provide an intuitive mechanism to
create and modify graph properties. The general structure
of the property editors is as follows: the upper portion of
the property editors is used to specify the number of sec-
tions to have in a graph (the number can change at any
time). The middle portion is for editing of section proper-
ties. A slider is given to easily switch between sections.
The values displayed are automatically updated according
to the current section number. Additionally, the designer
can graphically select (via the mouse) the section to edit
and the property editor will be notified. The lower portion
of the property editors is for global properties; for exam-
ple, coordinate systems, minimum and maximum section
values, etc.

3. See Section 3 for more information on design and execution
phase.

The idea behind SX/Tools

6 of 9 Implementation of Graphing Tools by Direct GUI Composition

FIGURE 3. Pie property editor

2.5 Dynamic Usage

SX/Tools provides a mechanism by which events can be
sent to an external partner (or client) and viceversa. Con-
sequently, the graph methods can also be invoked from a
separate client. This allows for applications requiring
external resources or for already existing applications to
easily use graph configurations designed under SX/Tools.
Hence, with a combination of the graph specific property
editors and the remote invocation of graph methods a
dynamically changing graph can easily be constructed.

The general process by which a dynamic graph can be cre-
ated starts with the specification of the interface to use.
The designer, through the SX/Tools direct composition
mechanism, constructs the user interface. Graphs can be
instantiated and placed anywhere in the interface, as well

as any other additional tools. Through the property editors,
the designer configures the graph according to the applica-
tion’s needs. If the configuration of the graph is to change
dynamically, the application need only invoke the graph
methods.

3.0 The idea behind SX/Tools

■ Envisaged application areas.

■ The principle of direct composition (basically a ref to
1.1.3).

■ Describe SX as a class library and a design environ-
ment.

■ The major features of SX: aggregation (needs some
details here), uniformity of design and runtime envi-
ronment, end-user adaptability, design of the SX/Tools
design environment using SX/Tools features.

■ Properties and scripts.

■ The structure of an SX-interface and an SX-applica-
tion.

■ The server-client structure and the application interface
(don’t forget this, I have already made 2 indirect refs to
it).

■ Extensibility, openness, multimedia environments.Im-
plementation details, hard- and software requirements.

■ Also have a ref here about design and execution phase.

4.0 Example Applications

In this section, we will briefly describe some of the appli-
cations we have built using SX/Tools and the graph tools
addition.

■ Business Applications

The construction of a static pie graph, bar graph or line
graph is a very easy process. The designer requires only to
create a new workarea, drag in the desired graph object.
Then pop-up the property editor and simply edit the prop-
erties. No programming, no compiling, all interactive!

Example Applications

Implementation of Graphing Tools by Direct GUI Composition 7 of 9

FIGURE 4. Pie graph created using the property editor

FIGURE 5. Bar graph created using the property editor

FIGURE 6. Line graph created using the property editor

■ Dynamic Applications

The X Windowing System comes with a set of utility pro-
grams.xload is one of such utility programs which dis-
plays in a window the CPU load over time. We found it
trivial to design a similar application with our package.
First we designed the graph configuration, then we wrote a
small partner to obtain the CPU load (a series of system
calls) and we had our version of xload. Furthermore, with
minimal effort we could change the graph type.

FIGURE 7. SX/Load utility (bar graph version)

Future Work

8 of 9 Implementation of Graphing Tools by Direct GUI Composition

FIGURE 8. SX/Load utility (line graph version)

■ Interactive Applications

Another program we implemented was a two dimensional
function plotting program. The user inputs an expression
(of one variable, using basic arithmetic operations, trigo-
nometric functions and a variety of other standard func-
tions). The parser, implemented as a partner, evaluates the
expression and returns the points to plot. Again, the graph
configuration and the functionality of the interface was
constructed using interactive direct composition.

FIGURE 9. 2D Plotting Program

5.0 Future Work

We can divide the future work into improvements of the
direct composition platform and improvements of the
graph tools themselves.

5.1 Direct Composition Platform

The basic functionality of a direct composition platform is
relatively easy to recognize. What presents great difficulty
is determining the interface for the composition and which
tasks should be easy to accomplish. Further work with
Adaptive User Interfaces and Intelligent User Interfaces
will surely contribute to improving the user-system rela-
tionship. Such improvements will dramatically improve
the production speed of new tools and, in our case, more
powerful graphs.

More specific enhancements are listed below:

■ State saving: our current platform does not yet allow
the user to save the dynamic state of user interface
objects. Consequently, all interactive editing of a graph
must occur in the original design phase. The platform
does have a save option, but it does not include the
dynamically generated information of objects, rather
only saves the predefined properties.

■ Link capability: we would like to allow for an elegant
interactive specification of a link between 2 objects.
For our initial property editing facility, we utilized a
global object. A truly dynamic link capability (for
example, with the introduction of a link event) would
allow for a very intuitive though complex operation to
be trivially accomplished.

■ Multimedia, additional tools: in addition to graphing
tools, we would also like to construct (with direct com-
position) a set of audio and video control tools, for
example. A combination of these tools can easily pro-
duce a very impressive multimedia platform. A tangent
group to ours is already pursuing this goal.

5.2 Graph Tools

The most obvious improvement for the graph tools is to
further embellish their presentation. This can be accom-
plished by the addition of more methods and parameters.

Conclusions

Implementation of Graphing Tools by Direct GUI Composition 9 of 9

A more interesting improvement is to provide mechanisms
by which the designer can quickly compose his own
graphs. Namely, rather than only having a toolbox contain-
ing three finished graphs, also offer a toolbox of graph
components. This improvement is not only a change of the
granularity of the end-user’s tools, but rather a totally dif-
ferent concept whereby the designer, in fact, can “pro-
gram” the actual graph.

One can envisage a graph with an initial set of methods
available to a remote partner. The graph could be interac-
tively composed for a specific application and thus offer
yet another set of methods that control functionality before
non-existent.

6.0 Conclusions

We accomplished a successful implementation of a power-
ful set of graphing tools using only direct composition, no
additional system programming, thus proving the effectiv-
ity of a direct composition platform. The graphs operate at
interactive rates, have a flexible interface and are easily
expandable.

There are surely variations of graphs that our tools cannot
currently handle, but with a system like SX/Tools adapting
our graphs to the specific needs would require minimal
effort. Furthermore, providing a low-level (object oriented
in our case) scripting language within the platform has
shown to be very useful. It allows for programmers to cre-
ate whatever additional functionality is needed. Parallely,
for the average non-programmer property editors and
dragging and clicking is also available. Thus, program-
mers can compound objects that have specific functions
and the non-programmers or designers need merely to
click and drag in order to add the compounded objects to
their application.

Additionally, the definition of a proper initial set of mini-
mal widgets is crucial and as well as the flexibility of the
implementation of additional tools. With SX/Tools, every
tool is a scene, hence can always be edited. Ideally, of
course, Adaptive User Interfaces would take care of the
user-system relationship during the design phase and exe-
cution phase of an application.

7 References

[1] B. Shneiderman:Designing the User Interface, Addi-
son-Wesley Publishing Company, 1987.

[2] Pergamon Infotech Limited, Maidenhead Berkshire,
England:Designing end-user interfaces, 1988.

[3] T. Kuhme, M. Schneider-Hufschmidt:SX/Tools - An
Open Design Environment for Adaptable Multimedia User
Interfaces, Proceedings of Eurographics ‘92, Cambridge,
UK, 7-11 September 1992.

[4] T. Kuhme, H. Dieterich, U. Malinowski, M.
Schneider-Hufschmidt:Approaches to Adaptivity in User
Interface Technology: Survey and Taxonomy, Proceedings
of the IFIP TC2/WG2.7 Working Conference on Engineer-
ing for Human-Computer Interaction, Ellivuori, Finland,
10-14 August 1992.

[5] Visual Edge Software Ltd.,3870 Cote Vertu, Mont-
real, Quebec H4R 1V4:UIMX, 1990.

[6] SunSoft:DevGuide. ($$$$$$$)

[7] NeXT Inc., 900 Chesapeake Drive, Redwood City,
CA 94063:NeXTStep and the NeXT Interface Builder,
1991.

[8] SX/Tools doc ($$$$$$$)

[9] D. Aliaga:SX/Graphs: Implementation Overview,
July 1992.

[further ideas:

Add an example to the last paragraph of the graph tools
future work section. I couldn’t think of one (and its
already Friday 24th!).

to-do:

Section 3.0 needs to be filled. 2 refs are still missing, if
cannot be completed, omit them. Once final text is all
inserted, arrange so that figures do not cause large empty
sections in the paper.]

View publication statsView publication stats

https://www.researchgate.net/publication/2771712

