
Appeared: IEEE Visualization '96, pp. 101-106, Oct 27-Nov 1, 1996.

Visualization of Complex Models Using Dynamic
Texture-based Simplification

Daniel G. Aliaga*
Computer Science Department

University of North Carolina at Chapel Hill

ABSTRACT
We are investigating methods for simplifying complex

models for interactive visualizations using texture-based
representations. This paper presents a simplification method
which dynamically “caches” distant geometry into textures and
trades off accurate rendering of the distant geometry for
performance. Smooth transitions and continuous borders are
defined between the geometry and textures thus the
representations can be switched without sudden jumps (as is the
case with many current texturing techniques). All the
computations for the transitions can be done a priori without the
need to change the textures each frame thereafter.

Keywords: geometry, textures, morphing, visual complexity,
space partitioning, simplification, visibility culling, interactive.

1. INTRODUCTION
Geometric models have become very large and difficult to

render at interactive rates. As a result, many algorithms have
been developed to simplify models until they are (hopefully)
small enough to be rendered at interactive rates. Two popular
approaches are visibility culling and level-of-detail management.
Visibility culling algorithms determine which subset of the
model is visible and only render that portion of the geometry
[1][7][12]. Unfortunately, these algorithms do not work well
when many primitives are still visible. For example, complex
rooms, used in architectural walkthroughs, have a large amount
of visual complexity that must be rendered. Level-of-detail
(LOD) algorithms [5][6][10], which typically require some
manual interaction for generating the multiple LODs, cannot
easily simplify scenes with a large number of visible objects.

A relatively new simplification approach is to dynamically
represent geometric complexity using textures. Textures have the
advantage of taking constant time to render regardless of the
complexity of the portion of the model they represent. We are
investigating how to create a system that renders the nearby
subset of a model as geometry and the distant, but visible, subset
of a model with a texture-based representation. As the viewpoint
changes, the system dynamically changes the geometry into
textures or the textures
back into geometry. Preliminary results indicate that representing
the distant geometry with textures produces an adequate image
quality for architectural walkthrough visualizations. The error
introduced is proportional to the

* aliaga@cs.unc.edu, (919) 962-1722
CS Dept., CB #3175, UNC-CH, Chapel Hill, NC 27599-3175

viewpoint’s distance from the original texture sample point. The
system can bound the error by resampling the texture as needed.

There are two major problems in developing this rendering
system. First, since a texture represents an arbitrary subset of the
model from a single viewpoint, changing the viewpoint causes
the image displayed by the texture to be incorrect (unless image
warping is used [9]). Consequently, the geometry surrounding the
texture does not match the geometry sampled in the texture
causing a discontinuity or “crack” to appear. Previous methods
[8][11] have either ignored this or used an error metric to decide
whether to resample the texture or display another texture from a
set of precomputed textures. Unfortunately, storing many texture
samples requires a vast amount of texture memory or fast texture
paging while frequently resampling the texture can significantly
reduce the performance gain of using textures. Furthermore, the
algorithms in [8][11] have only been applied to outdoor scenes
and are not well suited for indoor scenes (architectural
walkthroughs, radiosity-illuminated rooms, etc.). We present a
solution to the discontinuity problem (without warping the
texture), thus providing a continuous border between geometry
and texture. This gives us the freedom to unnoticeably place
textures anywhere in a model.

The second problem occurs when switching between
geometry and texture. Once the viewpoint has changed from the
texture sample point, a transition from geometry to texture (or
vice versa) will cause a sudden jump in the image (as in previous
texture-based simplification methods). Therefore, we need to
define transitions to smoothly change the geometry into texture
and texture back into geometry. We present smooth transition
operations to convert geometry into textures (and vice versa).

The following section presents an overview of the
visualization algorithm (preprocessing and run-time phases).
Section 3 describes, how the transitions from geometry to texture
(and vice versa) are performed while maintaining a continuous
border. Section 4 presents how multiple textures can be created.
Section 5 shows some results we have obtained by using our
algorithm with three complex models. Finally, Section 6 will end
with some conclusions and future work.

2. TEXTURE-BASED SIMPLIFICATION
We have devised a simplification method which

dynamically replaces arbitrary portions of a model with textures
and morphs the nearby geometry to match the texture. This
method is capable of simplifying models of high visual
complexity in cases where visibility culling and object-based
LOD are insufficient. The algorithm can be combined with an
automatic scheme to decide what portion of the model to simplify
to texture.

Our simplification method has a preprocessing phase and a
run-time phase. The preprocessing phase statically partitions the

model into a 3D grid of boxes. Space partitioning and view
frustum culling are used so that the amount of work to be done
for rendering and for transitions to texture or back to geometry is
proportional to the number of primitives in the view frustum.
The run-time phase performs smooth transitions to texture and
back to geometry while maintaining a continuous border between
the geometry and texture. The following two subsections
describe the major elements of the preprocessing and run-time
phase.

Preprocessing Phase
The input to our visualization algorithm is a 3D model. For

interactive visualizations (or walkthroughs), typically the model
does not fit completely within the field of view. Thus during
rendering, only the subset of the model inside the view frustum
needs to be sent down the graphics pipeline [4].

In order to efficiently perform view frustum culling, the
model needs to be space partitioned. Various space partitioning
algorithms have been proposed (BSP trees, octtree subdivision,
etc.). In our current implementation, we found it sufficient to use
a uniform grid space partitioning algorithm. The bounding box of
the entire model is subdivided into a 3D grid of boxes. Each box
contains a list of all the primitives that lie within it. Primitives
that intersect the boundary between two or more boxes are split
(this slightly increases the number of primitives but makes the
implementation simpler).

Run-time Phase
The user is allowed to move through the model. In order to

increase interactive performance, the user can replace a distant
(and visible) subset of the model with a texture. The texture is
used to represent the subset of the model from the local view
area. Unfortunately, once the viewpoint moves again, geometry
surrounding the texture will appear discontinuous with the
texture (Color Figure 1). In order to maintain a continuous border
between the texture and the geometry around it, either:

• The texture must be warped to match the geometry.

• The geometry must be warped to match the texture.

The former case corresponds to image warping [2][3][9] in
which the sampled texture has depth information and is
reprojected every frame by warping the texture to the viewpoint
of the current frame. The adjacent geometry is rendered
normally.

We use the second approach, namely morphing the vertices
of the geometry to match the texture and maintain C0 continuity
(higher orders of continuity are also possible). This approach is
more attractive because: (a) it allows texturing hardware to be
efficiently used, (b) the texture does not need to be warped every
frame, (c) all of the work is performed at one time (at geometry-
to-texture transition time or as a precomputation), (d) it does not
introduce visible artifacts as the viewpoint changes as may be the
case with image warping. The visible artifacts introduced by
image warping include cracks in the image due to incorrect
splatting of the pixels and “empty areas” produced by previously
occluded regions becoming visible with no rendering information
available for the newly visible pixels. Although this method
could be considered less “realistic” than warping the texture, it
takes advantage of the fact that geometry is re-rendered every
frame, so by slightly modifying the geometry you are able to use
static textures and achieve higher frame rates.

After replacing a subset of the model with a texture (Color
Figure 2), the user cannot walk forward beyond the texture plane
(without returning the subset to geometry). Furthermore,
geometry near the viewpoint is rendered normally while the
geometry surrounding the texture maintains a continuous border
with the texture but is not rendered completely accurately. This
is not a bad tradeoff for the improved performance. In order to
return the texture to geometry (for example, if the viewpoint gets
too close to the texture), a smooth transition operation from
texture back to geometry is performed over the next few frames.

3. SMOOTH TRANSITIONS
The algorithm presented in this paper performs smooth

transitions between geometry and texture by morphing the nearby
geometry. Initially, the entire model is represented as geometry.
Then, an arbitrary subset of the model is simplified to a texture
by a geometry-to-texture transition. Further rendering of the
subset of the model requires only displaying the texture and not
the geometry represented by the image of the texture. In order to
return the texture to geometry, a texture-to-geometry transition
must occur. Any number of subsets of the model can be replaced
by textures (the textures can be created from a common
viewpoint or from different viewpoints; details are in Section 4).
The basic steps for these two transitions are given below.

The computations involved in the transition operations are
relatively simple. In fact, they are proportional to the number of
primitives rendered (more precisely, to the number of primitives
in the view frustum prior to replacement of geometry with
texture). Displaying the textures themselves is proportional to
the number of pixels in the textures and independent of scene
complexity. If the location of the textures and their sampling
viewpoints are determined beforehand, all the computations for
the projection and morphing operations can be done a priori at
the expense of additional storage.

Geometry-To-Texture Transition
1. The user selects a subset of the model to replace with a

texture. This can be done in various ways. We adopted the
following strategy: select all geometry inside the view frustum
and beyond a distance d from the viewpoint. Since we are using
view frustum culling for rendering, determining what geometry is
in the view frustum is trivial. The space partitioning allows us to
easily determine which boxes (and thus what geometry) are
behind the texture plane. The texture plane is defined as the
plane whose normal is the current view direction vd and contains
the point to which is at a distance d from the eyepoint along the
view direction (Figure 1). The subset of the model to be replaced
with a texture is called the culled geometry.

2. The current rendered image of the culled geometry is
copied from the framebuffer to texture memory. A texture
primitive (a texture-mapped quadrilateral covering the subset of
the model being replaced) is added to the model. Since the
texture contains an image of shaded geometry, lighting is
temporarily turned off when rendering the texture primitive (in
our test cases, we used static lighting: directional lights or
precomputed radiosity-illuminated scenes).

 To reduce texture memory requirements, the texture can be
sampled at a resolution lower than the framebuffer’s resolution.
The texturing hardware is used to magnify the texture using
bilinear interpolation between the texels. On the other hand, the
texture can be sampled at a higher resolution than it will be

displayed and prefiltered to achieve apparent high-quality
antialiased imagery (in addition to MIP mapping the texture).

3. The culled geometry is removed from the set of rendered
geometry. The space partitioning boxes that intersect the view
frustum can be further partitioned or not culled at all. In our
implementation, we choose not to cull these boxes. Thus, some
geometry is rendered “behind” the edges of the texture and is
never actually visible; in practice this amounts to only a small
amount of geometry.

4. The geometry in front of the texture plane is rendered
normally (near geometry). The geometry behind the texture plane
(that has not been culled) and the geometry surrounding the
texture are morphed to match the geometry represented by the
texture (this is the continuous border problem). Both these sets
become the morphed geometry (Figure 1).

to

|vd| = d

Culled Geometry

Morphed Geometry

Near Geometry

Viewpoint

Texture

Figure 1: Model Partitioning Strategy. Each box
corresponds to a space-partitioning box. The
boxes are classified: near, culled and morphed.
Intersected boxes can be optionally partitioned.

We defined the texture plane to always be parallel to the
screen plane at sampling time (though it does not necessarily
cover the entire view frustum). Therefore, during the first
geometry-to-texture transition of a texture there is no need to
gradually morph the geometry surrounding a texture from its
original position to its projected position on the texture plane.
Instead the surrounding geometry is immediately projected onto
the texture plane.

Once a texture has been computed it might undergo various
geometry-to-texture and texture-to-geometry transitions. All
subsequent transitions (after the first geometry-to-texture
transition) will generally be from viewpoints other than the
texture sample point. Thus the surrounding geometry is gradually
morphed from its original position to its projected position on the
texture plane. In any case, since space partitioning and view
frustum culling are used, only the visible geometry is actually
morphed or projected. The morphing operation can be described
by the following equation:

vm(s) = svp + (1-s)vo

This describes a linear interpolation between the model-
space vertex positions (vo) and the vertex positions projected
onto the texture plane (vp), as s varies from 0 to 1. The latter set
of vertices are almost the same as the screen-space projection of
the vertices at the time of the first geometry-to-texture transition
of a given texture. In fact, they are obtained by transforming the
model-space vertices to screen-space (vs), then setting their z-
value to be the screen-space projected z-value of the texture
plane (tsz) and transforming them back to model-space:

vs = Tvo ts = Tto → vsz = tsz → vp = T-1vs

In order to morph the vertices from their original position to
their projected position, the value of s is gradually incremented
from 0 to 1 over the next few frames after the start of the
transition (Figure 2 and Color Figure 3).

texture sample
point

Near
Geometry

(a)
Morphed
Geometry

(b)

Culled
Geometry
texture

(c)
Figure 2: Morphing Sequence.
A geometry-to-texture
transition goes from (a) to (c).
At the end of the transition,
the texture is introduced. A
texture-to-geometry transition
goes from (c) to (a). From the
texture sample point, the
objects look the same at all
times.

The above morphing operation maintains C0 continuity (i.e.
positional continuity) between the texture and the geometry
surrounding the texture (morphed geometry). This implicitly
achieves C0 continuity of the texture and morphed geometry’s
border with the near geometry. It does not require morphing the
near geometry. Higher order interpolation could be used to
achieve smoother continuity between the texture, near geometry
and morphed geometry. In this case, the near geometry, close to
the texture, would be modified to obtain smoother continuity
with the texture and morphed geometry. This would improve the
texture and morphed geometry’s border with the near geometry
when viewed far from the original texture sample point.
Unfortunately, this would violate the desire to keep near
geometry undistorted.

Texture-to-Geometry Transition
1. The culled geometry is reintroduced into the model. The

vertices are set to their projected position on the texture plane.
This is done by computing the vertex positions with s = 1.

2. The vertices of the geometry reintroduced into the model
are morphed from their projected position on the texture plane to
their original position (note that if the texture plane is currently
not in the view frustum, an instantaneous transition can be
performed). The value of s is gradually reduced from 1 to 0 over
the next few frames (Color Figure 3).

3. The vertices of the morphed geometry are similarly
returned to their original position. Again, since space partitioning
and view frustum culling are used, only the visible geometry is
actually morphed.

4. MULTIPLE TEXTURES
So far we have described how to replace a single subset of a

model with a texture. Multiple subsets of a model can also be
simultaneously represented by using multiple textures.

Additional textures can be created either from a common
viewpoint and constant distance or from different viewpoints and
distances. The main difference between the two strategies is the
effect they have on how geometry is morphed. In our system, we
implemented both strategies except for the cases that require
morphing of geometry to match two textures simultaneously.

• Common Viewpoint and Constant Distance: The multiple
textures are created by changing only the view direction and
selecting non-overlapping subsets of the model. The same
distance from viewpoint to texture (d) is used. There is no need
to morph the geometry surrounding each individual texture until
all the texture samples have been obtained. Therefore, each
texture will have an image of unmorphed geometry. If adjacent
textures share a common edge (i.e. no geometry is rendered
between the textures), the textures combine to form a single
large texture with piecewise planar components. This last
variation can be used to create textures that cover a complex
region of the model or even completely surround the viewpoint.
The geometry surrounding each texture is morphed in the same
way as described in the previous subsections (Figure 3a).

 If two textures (a “left” texture and a “right” texture) are
created using a common viewpoint but different d values and not
sharing an edge, the geometry in between the textures will have
to be morphed to match both textures simultaneously. While this
is possible, the distortion introduced by the two textures might
be very apparent from certain view directions. This is especially
true if very different d values are used. For example, assume the
left texture was sampled at a significantly closer distance than
the right texture. Thus, viewing the left texture from the left side
might occlude some of the right texture and all of the geometry in
between both textures.

• Different Viewpoints and Distances: If multiple textures
are created from different viewpoints each at a potentially
different distance from its viewpoint, the geometry surrounding
each texture must be morphed before continuing on to create the
next texture (Figure 3b). Consequently, the first texture will have
an image of unmorphed geometry. Subsequent textures that are
created by using geometry surrounding the previous textures, will
contain images of morphed geometry. Textures that are created
from viewpoints and view directions that do not contain the
geometry in the plane of the previous textures are sampled using
unmorphed geometry. Thus, it might be the case that the
distortion introduced by the morphing operations will be
magnified after several instances of textures from different
viewpoints. Typically, this will not be the case since the number
of textures needed to surround the local view area is small. If the
view area migrates to another portion of the model (by a series of
transitions), a new set of textures is used.

The subset of the model morphed for a particular texture
can intersect with another morphed geometry subset. This is
similar to the case of two textures using a common viewpoint but
different d values. Both morphed geometry subsets will have to
be morphed to match the textures simultaneously.

Culled Geometry

Viewpoint

T0 T1

T2

Morp hed
Geometry

(a)

Culled
Geometry

Viewpoints

T0

T1

Morp hed
Geometry

(b)
Figure 3: Multiple Textures. (a) Common
viewpoint and constant distance. (b) Different
viewpoints and distances.

5. RESULTS
We implemented this algorithm on a SGI graphics

workstation using OpenGL. The algorithm was applied to three
models: a procedurally generated pipes model, a radiosity-
illuminated church1 and an auxiliary machine room of a nuclear
submarine2.

For each model, several textures were created. We recorded
various paths through the models (spline-interpolated paths and
some freehand manipulation of the viewpoint). Interactive
performance is significantly improved when textures are
introduced. The distortion caused by the morphing is not very
noticeable as you can see in the color figures (and video).
Furthermore, no discontinuities or “cracks” are perceivable at the
border between geometry and texture, though some color
disparities are present. Since we are using static lighting, the
texture and geometry’s colors should match at the border. The
small disparity may be a consequence of the texture sampling or
of exactly how the texturing hardware processes the texel colors.

The procedurally generated pipes model provides a very
good test case of a high depth complexity model where visibility
culling (for example, cells and portals [1][7][12]) is hard to
apply. The model has 205,536 primitives (triangles). The space
partitioning algorithm divided the model into a

1 Courtesy of Lightscape Technologies Inc.
2 Courtesy of Electric Boat Division, General Dynamics Corporation.

altar

seats

pipes

exhaust tubes, tanks

pathways

(a) (b) (c)

Figure 4: (a) Outline of pipes model and the path through the model (3 textures present). (b) Radiosity-illuminated
church model and the recorded path (3 textures). The viewer is always looking in the general direction of the
textures. (c) Auxiliary machine room model with its flythrough path (2 textures). The path is traversed in both
directions but always looking towards the complex region of the model. In all figures, the ‘x’ marks the spot where
the corresponding color figure was taken.

10x1x10 grid of boxes (most of the complexity lies in the plane
of the observer, namely the XZ plane). If the viewpoint was near
the edge of the model looking outward, view frustum culling
alone was able to produce decent interactive performance (18.52
frames/second). But if the view direction rotated to look inside
the model, or if the viewpoint was approximately in the middle
of the model, performance without texture-based simplification is
very poor (1.21 frames/second at the edge of the model looking
inward, 1.98 frames/second in the middle of the model). Three
textures were introduced covering the field of interest at a far
distance. A single path was traversed from the border of the
model towards the middle of the model. The average frame rate
at the edge of the model looking inwards was 9.09 frames/second
and in the middle of the model was 22.20 frames/second (Figure
4a and Color Figure 4a). We do not regard the “average frame
rate” as the best means to measure the performance. The frame
rate with textures present depends greatly on how much
geometry is actually rendered. A decent view of the model can be
produced with very little geometry and a few textures. We are
still investigating better metrics of performance.

The radiosity-illuminated church model is an example of a
single room that is visually complex (158,604 triangles, 8x3x8
grid of boxes). Geometric-based LOD algorithms which simplify
enough to significantly improve rendering performance would
lose much of the shape and color details of the room. A texture
on the other hand reduces rendering complexity, but maintains
the apparent detail. In our test case, we recorded a path rotating
and translating about the middle of the room (Figure 4b and
Color Figure 4b). The average frame rate without texture-based
simplification was 2.19 frames/second. After we introduced three
textures, the frame rate rose to an average of 7.25 frames/second.
The video demonstrates the dynamic transitions of each texture
with this model and the subsequent performance increases and
decreases.

Finally, the auxiliary machine room is an example of a
visually complex model with high depth complexity (273,531
triangles, 10x1x14 grid of boxes). The recorded path (Figure 4c
and Color Figure 4c) takes approximately 113.90 seconds to
render using only view frustum culling (1.17 frames/second
average). We created two textures representing the geometry in
the distance and it took only 17.29 seconds to traverse the same
recorded path (7.69 frames/second average; we introduced a third

texture and the frame rate increased to an average of 9.47
frames/second).

6. CONCLUSIONS & FUTURE WORK
Visibility culling algorithms alone cannot simplify models

when a large subset of a model is still visible. For example,
models consisting of many rooms are well suited for visibility
culling algorithms, but if the geometry inside one room is still
very complex there is inherently a large amount of geometry in
the view frustum. Object simplification requires highly
structured models in order to separate the model into objects.
Furthermore, in scenes where there is high visual complexity,
object simplification is not always sufficient.

The method presented here is able to simplify models and
increase performance in the cases where visibility culling breaks
down. Furthermore, it does not require highly structured models
as with object simplification. Scenes can be rendered quickly
regardless of visual complexity and we are able to achieve a
rendering time proportional to the amount of nearby geometry
and the number of textures used.

We are currently exploring algorithms to decide
automatically when to perform the transitions. A cost-benefit
style function [6] determines when and where in the scene the
transitions should occur in order to maintain an interactive frame
rate. This will enable us to visualize complex models while
automatically “caching” distant geometry into texture-based
representations.

Furthermore, we are developing methods to (quickly)
measure the perceptual error introduced by the morphing
operations. This will help us to decide when a new texture is
needed (since the texture-caches are only valid for the local view
area) and how to perform any necessary morphing operations,
including higher order interpolation of geometry near and in front
of the textures.

In addition, we are investigating ways to remove the
restriction of using static lighting. For example, by including per-
texel normals and other information it might be possible to
recompute the shading for the geometry represented by the
texture.

ACKNOWLEDGMENTS
This work would not have been possible without the support

and advice of my advisor, Anselmo Lastra. I would also like to
thank Gary Bishop, Frederick J. Brooks, Bill Mark, Michael
North and Peggy Wetzel for her great job helping me with the
video. This work was supported in part by NSF MIP-9306208
and ARPA Order No. A410.

REFERENCES
[1] Airey J., “Towards Image Realism with Interactive Update

Rates in Complex Virtual Building Environments”,
Symposium on Interactive 3D Graphics, 1990, pp. 41-50.

[2] Chen S. E., Williams L., “View Interpolation for Image
Synthesis”, Computer Graphics (Proceedings of
SIGGRAPH ‘93), 1993, pp. 279-288.

[3] Chen S. E, “QuickTime VR - An Image-Based Approach to
Virtual Environment Navigation”, Computer Graphics
(Proceedings of SIGGRAPH ‘95), 1995, pp. 29-38.

[4] Clark J., “Hierarchical Geometric Models for Visible
Surface Algorithms”, CACM, Vol. 19(10), October 1976,
pp. 547-554.

[5] DeHaemer M., Zyda M., “Simplification of Objects
Rendered by Polygonal Approximations”, Computer
Graphics, Vol. 15(2), 1991, pp. 175-184.

[6] Funkhouser T., Sequin C., “Adaptive Display Algorithm for
Interactive Frame Rates During Visualization of Complex
Virtual Environments”, Computer Graphics Proceedings
(Proceedings of SIGGRAPH ‘93), 1993, ACM SIGGRAPH,
pp. 247-254.

[7] Luebke D., Georges C., “Portals and Mirrors: Simple, Fast
Evaluation of Potentially Visible Sets”, Symposium on
Interactive 3D Graphics, 1995, pp. 105-106.

[8] Maciel P., Shirley P., “Visual Navigation of Large
Environments Using Textured Clusters”, Symposium on
Interactive 3D Graphics, 1995, pp. 95-102.

[9] McMillan L., Bishop G., “Plenoptic Modeling: An Image-
Based Rendering System”, Computer Graphics
(Proceedings of SIGGRAPH ‘95), 1995, pp. 39-46.

[10] Rossignac J., Borrel P., “Multi-resolution 3D
Approximations for Rendering Complex Scenes”, IBM T.J.
Watson Research Center, Technical Report, Yorktown
Heights, NY, February 1992.

[11] Shade J., Lischinski D., Salesin D., DeRose T., Snyder J.,
“Hierarchical Image Caching for Accelerated Walkthroughs
of Complex Environments”, University of Washington CSE
Dept., TR#UW-CSE-96-01-96, to appear in Proceedings of
SIGGRAPH ‘96, 1996.

[12] Teller S., Visibility Computation in Densely Occluded
Polyhedral Environments, Ph.D. Thesis, UC Berkeley CS
Dept., TR#92/708, 1992.

Color Figure 1: Geometry-Texture Border. Color Figure 2: Texture-based
(Left) No morphing. (Right) Morphed geometry. Simplification. Church Model.

Color Figure 3: Morphing Sequence. Texture-to-Geometry Transition (left to right).

a) b)

c)

Color Figure 4: Views from the recorded
paths (pipes model, church model, AMR
model). Each view contains multiple
textures. See Section 5 for a more detailed
description of the paths.

