
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/220792051

MMR: an interactive massive model rendering system using geometric and

image-based acceleration.

Conference Paper · January 1999

Source: DBLP

CITATIONS

73
READS

169

13 authors, including:

Some of the authors of this publication are also working on these related projects:

Low Latency Display View project

Gaze Prediction in VR View project

Daniel G. Aliaga

Purdue University

164 PUBLICATIONS 3,484 CITATIONS

SEE PROFILE

Andrew Wilson

Sandia National Laboratories

37 PUBLICATIONS 740 CITATIONS

SEE PROFILE

Mary C Whitton

University of North Carolina at Chapel Hill

109 PUBLICATIONS 4,698 CITATIONS

SEE PROFILE

All content following this page was uploaded by Dinesh Manocha on 13 October 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/220792051_MMR_an_interactive_massive_model_rendering_system_using_geometric_and_image-based_acceleration?enrichId=rgreq-0866f97bcdeb7de1a99cbd401624370b-XXX&enrichSource=Y292ZXJQYWdlOzIyMDc5MjA1MTtBUzoxNTE4MDM0NjMyMTMwNTdAMTQxMzIwNDE3NDQ2Mw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/220792051_MMR_an_interactive_massive_model_rendering_system_using_geometric_and_image-based_acceleration?enrichId=rgreq-0866f97bcdeb7de1a99cbd401624370b-XXX&enrichSource=Y292ZXJQYWdlOzIyMDc5MjA1MTtBUzoxNTE4MDM0NjMyMTMwNTdAMTQxMzIwNDE3NDQ2Mw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Low-Latency-Display?enrichId=rgreq-0866f97bcdeb7de1a99cbd401624370b-XXX&enrichSource=Y292ZXJQYWdlOzIyMDc5MjA1MTtBUzoxNTE4MDM0NjMyMTMwNTdAMTQxMzIwNDE3NDQ2Mw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Gaze-Prediction-in-VR?enrichId=rgreq-0866f97bcdeb7de1a99cbd401624370b-XXX&enrichSource=Y292ZXJQYWdlOzIyMDc5MjA1MTtBUzoxNTE4MDM0NjMyMTMwNTdAMTQxMzIwNDE3NDQ2Mw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-0866f97bcdeb7de1a99cbd401624370b-XXX&enrichSource=Y292ZXJQYWdlOzIyMDc5MjA1MTtBUzoxNTE4MDM0NjMyMTMwNTdAMTQxMzIwNDE3NDQ2Mw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Daniel_Aliaga2?enrichId=rgreq-0866f97bcdeb7de1a99cbd401624370b-XXX&enrichSource=Y292ZXJQYWdlOzIyMDc5MjA1MTtBUzoxNTE4MDM0NjMyMTMwNTdAMTQxMzIwNDE3NDQ2Mw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Daniel_Aliaga2?enrichId=rgreq-0866f97bcdeb7de1a99cbd401624370b-XXX&enrichSource=Y292ZXJQYWdlOzIyMDc5MjA1MTtBUzoxNTE4MDM0NjMyMTMwNTdAMTQxMzIwNDE3NDQ2Mw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Purdue_University?enrichId=rgreq-0866f97bcdeb7de1a99cbd401624370b-XXX&enrichSource=Y292ZXJQYWdlOzIyMDc5MjA1MTtBUzoxNTE4MDM0NjMyMTMwNTdAMTQxMzIwNDE3NDQ2Mw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Daniel_Aliaga2?enrichId=rgreq-0866f97bcdeb7de1a99cbd401624370b-XXX&enrichSource=Y292ZXJQYWdlOzIyMDc5MjA1MTtBUzoxNTE4MDM0NjMyMTMwNTdAMTQxMzIwNDE3NDQ2Mw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andrew_Wilson16?enrichId=rgreq-0866f97bcdeb7de1a99cbd401624370b-XXX&enrichSource=Y292ZXJQYWdlOzIyMDc5MjA1MTtBUzoxNTE4MDM0NjMyMTMwNTdAMTQxMzIwNDE3NDQ2Mw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andrew_Wilson16?enrichId=rgreq-0866f97bcdeb7de1a99cbd401624370b-XXX&enrichSource=Y292ZXJQYWdlOzIyMDc5MjA1MTtBUzoxNTE4MDM0NjMyMTMwNTdAMTQxMzIwNDE3NDQ2Mw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Sandia_National_Laboratories?enrichId=rgreq-0866f97bcdeb7de1a99cbd401624370b-XXX&enrichSource=Y292ZXJQYWdlOzIyMDc5MjA1MTtBUzoxNTE4MDM0NjMyMTMwNTdAMTQxMzIwNDE3NDQ2Mw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andrew_Wilson16?enrichId=rgreq-0866f97bcdeb7de1a99cbd401624370b-XXX&enrichSource=Y292ZXJQYWdlOzIyMDc5MjA1MTtBUzoxNTE4MDM0NjMyMTMwNTdAMTQxMzIwNDE3NDQ2Mw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mary_Whitton?enrichId=rgreq-0866f97bcdeb7de1a99cbd401624370b-XXX&enrichSource=Y292ZXJQYWdlOzIyMDc5MjA1MTtBUzoxNTE4MDM0NjMyMTMwNTdAMTQxMzIwNDE3NDQ2Mw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mary_Whitton?enrichId=rgreq-0866f97bcdeb7de1a99cbd401624370b-XXX&enrichSource=Y292ZXJQYWdlOzIyMDc5MjA1MTtBUzoxNTE4MDM0NjMyMTMwNTdAMTQxMzIwNDE3NDQ2Mw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_North_Carolina_at_Chapel_Hill?enrichId=rgreq-0866f97bcdeb7de1a99cbd401624370b-XXX&enrichSource=Y292ZXJQYWdlOzIyMDc5MjA1MTtBUzoxNTE4MDM0NjMyMTMwNTdAMTQxMzIwNDE3NDQ2Mw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mary_Whitton?enrichId=rgreq-0866f97bcdeb7de1a99cbd401624370b-XXX&enrichSource=Y292ZXJQYWdlOzIyMDc5MjA1MTtBUzoxNTE4MDM0NjMyMTMwNTdAMTQxMzIwNDE3NDQ2Mw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dinesh_Manocha?enrichId=rgreq-0866f97bcdeb7de1a99cbd401624370b-XXX&enrichSource=Y292ZXJQYWdlOzIyMDc5MjA1MTtBUzoxNTE4MDM0NjMyMTMwNTdAMTQxMzIwNDE3NDQ2Mw%3D%3D&el=1_x_10&_esc=publicationCoverPdf

MMR: An Interactive Massive Model Rendering System Using
Geometric And Image-Based Acceleration

Daniel Aliaga*, Jon Cohen+, Andrew Wilson, Eric Baker, Hansong Zhang’, Carl Erikson,
Kenny Hoff, Tom Hudson, Wolfgang Stuerzlinger’, Rui Bastos, Mary Whitton,

Fred Brooks, Dinesh Manocha

{ aliaga, cohenj, awilson, baker, zhangh, eriksonc,
hoff, hudson, stuerzl, bastos, whitton, brooks, dm} @cs.unc.edu

Department of Computer Science
University of North Carolina at Chapel Hill

ABSTRACT
We present a system for rendering very complex 3D models at
interactive rates. We select a subset of the model as preferred
viewpoints and partition the space into virtual cells. Each cell
contains near geometry, rendered using levels of detail and
visibility culling, and far geometry, rendered as a textured depth
mesh. Our system automatically balances the screen-space errors
resulting from geometric simplification with those from textured-
depth-mesh distortion. We describe our prefetching and data
management schemes, both crucial for models significantly larger
than available system memory. We have successfully used our
system to accelerate walkthroughs of a 13 million triangle model
of a large coal-fired power plant and of a 1.7 million triangle
architectural model. We demonstrate the walkthrough of a 1.3 GB
power plant model with a 140 MB cache footprint.
Keywords: interactive walkthrough, massive models, occlusion
culling, levels of detail, textured depth mesh, image-based
rendering, prefetching.

1 INTRODUCTION
Computer-aided design (CAD) and scientific visualizations often
need user-steered interactive displays (walk&~&s) of complex
environments. Structural and mechanical designers create models
of ships, oil platforms, spacecraft, and process plants whose
complexity exceeds the interactive visualization capabilities of
current graphics systems. Multidisciplinary design reviews of
such structures benefit greatly from interactive walkthroughs.

* Currently at Lucent Technologies Bell Laboratories, Murray Hill, NJ,
aliaga&esearch.bell-labscorn
+ Currently at Dept. of Computer Science, Johns Hopkins University,
Baltimore., MD, cohen@cs.jhu.edu
’ Currently at Silicon Graphics Inc., Mountain View, CA,
hzhang@engr.sgi.com
’ Currently at Dept. of Computer Science, York University, Toronto,
Ontario - Canada, wolfgang@cs.yorku.ca

Permission to make digital or hard copies ofall or part ofthis work for
~t%WXll or classroom use is granted without fee provided that copies
arc n0t made or distributed for prolit or commercial a&antapc and that

copies bear this notice and the full citation on the first page. -ro copy

otherwise. to republish, to post on servers or to redistribute to lists.

requires pmr specific permission an&or a fee.
1999 SynlpOSium on interactive 3D Graphics Atlanta GAUSA
Copyright ACM 1999 I-581 13-082-1/99/04...$5.00

Ideally, such walkthroughs need to maintain an update rate of at
least 20 frames per second. Many of these massive CAD
databases contain millions of primitives, and even high-end
systems such as the SGI Infinite Reality cannot render them at
interactive rates. Furthermore, we observe that model sizes are
increasing much faster than rendering capabilities.
The principle for the ideal algorithmic approach is simple: Do not
even attempt to render any geometry that the user will not
ultimately see. Such a principle culls a primitive before sending it
to the rendering pipeline if, for example, it is outside the view
frustum, facing away from the viewpoint, too small or distant to
be noticed, occluded by other objects, or satisfactorily shown in a
painted texture rather than as geometry. No one technique suffices
for creating interactive walkthroughs of most massive models
(models that do not fit within memory). Moreover, each technique
achieves great speedups only for particular subsets of the
primitives. Any general system for interactive walkthroughs
should combine such techniques.

1 .l System Overview
The fundamental idea in our system is to render objects “far” from
a viewpoint using fast image-based techniques [Maciel95,
Shade96, Schauf96, Aliaga97, Darsa97, Sillio971 and to render all
objects “near” the viewpoint as geometry using levels of detail
[Turk92, Rossig93, Cohen97, Garlan97, Luebke97, Hoppe97J and
visibility culling [Airey90, Teller91, Hudson97, Zhang971.
Consequently, we limit the data required to render a model of any
size to a reduced amount of near geometry and an approximately
constant-size representation of far geometry.
Just as in progressive rendering, some parts of a scene are chosen
for preferential rendering in time, so we introduce a spatial View
Preference Function (VPF). All parts of the model can be viewed
from any viewpoint inside or outside the model volume.
However, views from the preferred viewpoints are allocated more
resources (e.g. rendering capability, secondary storage,
bandwidth, preprocessing time, and running time) so that they can
be rendered at interactive frame rates.
In Color Figure A, we have outlined the box containing near
geometry for a particular viewpoint in a power plant model. The
darker colored geometry has been culled. The system includes
extensive preprocessing to create textured polygon impostors used
at run time to replace far geometry, to construct simplified object
models at multiple levels of detail, and to determine sets of
possible occluders. It organizes these auxiliary data structures so
that they can be prefetched into memory dynamically. It sets up
the run-time environment, establishing the memory-management

199

tactics to be used for the various acceleration techniques and the
policies for dynamically allocating CPUs and rendering time.

1.2 Contributions
This paper presents five primary contributions to ongoing
walkthrough research:

. A rendering scheme which employs both images and
geometric levels of detail, automatically balancing the
quality and speed-up of the two approaches.

. A concept of preferred viewpoints, which are rendered more
rapidly because they are allocated a disproportionate share of
resources.

. An approach to rendering massive models which partitions
the model into manageable virtual cells, each of which can
be optimized for speed, quality, and memory usage.

. A system pipeline to manage resources (i.e., CPUs, main
memory, texture memory, graphics engines) and allocate
them among the acceleration techniques.

. An integrated database, with a coherent representation
technique, memory management, and prefetching of
geometry and textures, all of which are crucial for databases
larger than physical memory.

2 RELATED SYSTEMS WORK
There is an extensive literature on interactive display of large
models. In this section, we briefly survey display algorithms and
systems which have influenced our work by addressing the entire
problem of interactively displaying large models. A large number
of systems have been developed for interactive walkthroughs. We
subdivide them into five general categories:
. Architectural Walkthrough Systems
. Image-Based Rendering Acceleration Systems
. Mechanical CAD Systems
. High-Performance Libraries
. Architectures and APIs

Clark [Clark761 proposed using hierarchical representations of
models and computing multiple levels-of-detail (LODs) to reduce
the number of polygons rendered in each frame. This technique
has been widely used.
Several walkthrough systems for architectural models [Brooks861
have been presented [Airey90, Tellet91, Funkho92, Luebke951.
These systems partitioned the model into cells and portals,
following the division of a building into discrete rooms. The UC
Berkeley Building Walkthrough System [Funkho96] used a
hierarchical representation of the model, along with visibility
algorithms [Teller911 and LODs. Ftmkhouser et al. [Funkho92]
used an adaptive display algorithm to maintain interactive frame
rates [Funkho93]. Aliaga [Aliaga97] built upon a cells and portals
system, replacing geometry visible through portals with images.
Several image-based rendering acceleration systems are
specialized for outdoor models. Maciel and Shirley [Maciel95]
expanded an LOD system to allow a general set of impostors
(LODs, textured billboards, etc.). Shade et al. [Shade961 and
Schaufler and Stuerzlinger [Schauf96] used image caching to
accelerate interactive walkthroughs.
The IBM BRUSH system [Schnei94] provided real-time
visualization and inspection of very large mechanical CAD (and
architectural) models. It used multiple LODs of the objects in the
scene [Rossignac93]. Avila and Schroeder [Avila97] described

Depth Meshes

Figure 1. System Pipeline. Each new viewpoint sent into the pipeline is
passed both to the prefetcher and to the rendering pipeline. The
viewpoint determines what geometry and TDMs are retrieved from disk;
it is also u parameter used by the rendering acceleration techniques.

another system, for visualizing power generation engines and
aircraft CAD models. Erikson and Manocha [Erikson98,
Erikson991 have proposed algorithms for the visualization of large
models using LODs and HLODs (hierarchical levels of detail) and
have used them for interactive display of large static and dynamic
environments.
IRIS Performer [Rohll94], a high-performance library, used a
hierarchical representation to organize the model into smaller
parts, each of which had an associated bounding volume. This
data structure was used to optimize culling and rendering. Other
systems have been developed on top of Performer for
walkthrough of large environments, including real-time urban
simulation [Jepson95].
Industrial vendors, including Silicon Graphics and Hewlett-
Packard, have proposed architectures and APIs (SGI OpenGL
Optimizer, HP Dire&Model, etc.) for interactive display of large
CAD models [HP97, SG197]. These systems provide standalone
tools for simplifying polygonal models or performing visibility
culling.

3. SYSTEM
In this section, we detail our system pipeline (Figure 1). First, we
describe the representation used for far geometry. Second, we
summarize the simplification performed on near geometry. For
each, we describe the preprocessing and run-time components.
Third, we present an algorithm to balance the quality of near
geometry and far geometry representations.

3.1 Far Geometry
The first acceleration technique we use substitutes texture
impostors for distant geometry. As a preprocess, we partition the
space of the model into virtual cells. These cells are similar to
those used in architectural models, but they need not coincide
with walls or other large occluders. Around each cell we place a
cull bon. The cull box divides the space into near and far
geometry; the far geometry, outside the cull box, is not rendered
when the viewpoint is inside the virtual cell. We generate for each
of the six inside faces of the box a textured depth mesh (TDM) to
replace the far geometry [Darsa97][Sillion97]. Together, they
image the outside of the box as viewed from the cell centerpoint.
Each depth mesh (similar to a height-field) is simplified.

200

Figure 2. Offline and online components of textured-depth mesh
generation. The preprocess generates a texture and a mesh from a
captured image and a captured depth image; the textured depth
meshes are displayed at run time.

Using a general simplification algorithm with error bounds to
process a large number of dense meshes is time consuming.
Instead, we render each face of the cull box, store the resulting
image, create a depth mesh of the same resolution, and apply a
fast pre-simplification algorithm to the depth mesh (Figure 2).
This step simplifies rectangular planar regions, using a greedy
search. The resulting mesh has approximately one tenth its
original polygon count. Then, we apply the more general
simplification algorithm of Garland and Heckbert [Garlan97]. No
special treatment of discontinuities is used.
At run time, we cull away all the geometric primitives outside the
cull box of the cell closest to the current viewpoint. We display
the cell’s simplified depth meshes using projective texture
mapping to place the image rendered from the cell’s center onto
the mesh (Color Figure B). As the viewer moves from cell to cell,
simple prediction enables the relevant TDMs to be prefetched.
The use of a TDM rather than a static, textured quadrilateral
provides some perspective correction at the mesh vertices (similar
to three-dimensional image warping [McMillan95]) which
radically reduces popping and the other artifacts that can occur as
the viewpoint moves between cells. Moreover, projective texture
mapping yields a better image quality than standard texture
mapping, since artifacts from texture interpolation due to regional
oversimplification are much less noticeable. No holes appear;
instead, the mesh stretches into skins to cover regions where no
information is available. As different objects can be visible in the
skin regions for different cells, small popping artifacts may still
appear when moving between the TDMs of adjacent cells.

3.2 Near Geometry
After culling away the portions of the scene outside the current
cull box, we render the near geometry. We cull to the view
frustum, cull back-facing triangles, select for each object a
simplified surrogate model (with the degree of simplification
depending upon the object’s distance), and perform occlusion
culling (Color Figure C).
During preprocessing, we use the algorithm of Erikson and
Manocha [Erikson99] to compute four levels of detail for each of
the objects in the model, each with half the complexity of its
predecessor. Objects significantly larger than the average cull box
size are partitioned, then, each partition is separately simplified.

Figure 3. TDM Error Metric, (Left) Skin as seen from center of virtual
cell. (Right) Skin as seen from the cell boundary. TDM error metric
measures the maximum skin size, in screen-space pixels, for each cell.

Small cracks can appear between partitions that share geometry
but are being viewed at different levels of detail.
We cull geometry hidden behind other objects if the current cull
box has enough triangles to approximately outweigh the cost of
occlusion culling. Our occlusion culling implementation is based
on that of Zhang et al. [Zhang97]. Briefly, we preprocess each
virtual cell to select potential occluders. At run time, the
algorithm uses a two-pass scheme. First, the potential occluders of
the current cell are rendered to create a hierarchical occlusion
map. Then, during the culling pass, we cull objects whose screen-
space bounding box is hidden by previously rendered occluders.

3.3 Balancing The Quality Of Near And
Far Geometry Representations
Both the near and far geometry representations are simplifications
of the underlying model geometry. They both introduce visual
errors that we would like to balance for uniform quality across the
rendered frame. Using a pair of error metrics, we compute, for
each virtual cell, a cull box size and LOD error threshold to
balance the combined error of the near and far geometry
representations.

3.3.1 Error Metrics
We define two measures to quantify our visual errors. First, we
measure the error introduced by near geometry simplification. Our
visibility culling algorithms do not alter the visual content but our
LOD simplification does. Thus, we choose to use an upper bound
on the difference (in pixels) between an object’s silhouette and the
simplified object’s silhouette as the error metric.
Second, we measure the error in the far geometry representation.
This error comes from two sources: (1) the process used to
simplify a screen-resolution depth mesh to a manageable mesh,
and (2) the stretching of TDM skins as the viewer moves away
from a cell center. For simplicity, we consider the error due to
mesh simplification to be constant and measure worst-case error
by finding the maximum distance (in pixels) that a skin stretches
as one moves to a cell boundary (Figure 3).

3.3.2 Reducing Polygonal Complexity While
Balancing Error
To achieve walkthroughs with fast frame rates, we can render
only a modest number of primitives. Given a desired polygon
budget, we devote a fixed number of polygons to rendering our
TDMs. We use the remainder of our budget by balancing the size
of the cull box and the levels of detail of unculled geometry.
Simply adjusting the size of the cull box often does not yield the
best image quality. Small cull boxes are bad, because stretching
of skins in the TDM is more exaggerated. Levels-of-detail can be
applied to the geometry inside the cull box, but as the size of the
cull box grows, coarser LODs must be used to maintain the target

201

number of primitives. To improve the image quality, we find the
cull box size and LOD error threshold that reduces a weighted
sum of the TDM and LOD visual errors (after several trials, we
converged on a weight ratio of 0.15 pixels of TDM error to one
pixel of LOD error).
As one increases the size of a cell’s cull box and holds the number
of unculled primitives constant, errors contributed by the TDM
never increase, while errors due to an increasing LOD error
threshold never decrease. Based on this monotonic behavior of
our error metrics, we use nested bisection routines to balance and
minimize our errors.

4 DATA REPRESENTATION AND
MANAGEMENT
Data representation is a major issue when combining multiple
acceleration techniques. Though each technique may have its own
ideal data structures, we use a common representation that allows
efficient traversal and avoids replication of data at all costs. Our
system uses two main data structures: a scene graph and a cell
graph.

4.1 Scene Graph
The system stores the model database in a scene graph hierarchy.
We implemented this from the ground up, on top of OpenGL, for
maximum flexibility. Such a system could also be built on top of
Iris Performer [Rohlf94] or Inventor. Each node in our scene
graph may have an arbitrary number of children, and each has a
bounding box used for culling. Any node in the scene graph may
also have attached a set of geometry stored as triangle strips (a
renderable).

The scene graph is automatically constructed from the model
database. We would like to organize our scene graph spatially, but
many real-world models have object hierarchies grouped
according to non-spatial criteria, e.g. functional organization. We
thus use the model’s grouping as the upper layer of our hierarchy,
and below that construct an octree-like bounding volume
hierarchy. This subdivision terminates when one of three
stopping criteria is reached: a minimum number of polygons per
leaf, a maximum depth, or a minimum bounding volume size.
We store all geometry as triangle strips in the leaf nodes. There is
an important trade-off between the average triangle strip length
and the size of leaf-node bounding volumes. On average, larger
leaf nodes allow longer triangle strips, enabling faster rendering.
Smaller leaf nodes allow more accurate culling, but limit the
length of triangle strips. This trade-off must be considered when
choosing termination conditions for the octree subdivision. In our
system, we empirically determined a leaf-node bounding volume

size that produces triangle strips that provide an overall
performance gain.
At run time, the scene graph is traversed once, in depth-first order.
Our acceleration techniques are implemented as callback
functions. LOD support is handled with special LODNodes,
similar to Performer. During our traversals, a single child of each
LODNode is active; the distance to the node’s bounding box, the
viewing parameters, and the LOD error threshold determine the
active child.

4.2 Cell Graph
The virtual cells are organized into a graph structure to facilitate
prefetching. Cells that are adjacent in space are connected by
edges in the graph. Each cell node stores its location, its size, and
five other fields:

. the size of its associated cull box,

. a LOD error threshold,

. the IDS of potential occluders,

. the IDS of the cull box’s TDMs, and

. the IDS of renderables contained in the cull box.
Since the cells are spatially connected and the viewpoint does not
move much from one frame to the next, we can always quickly
find the cell containing the viewpoint. Then, the IDS and the
speculative prefetching algorithm (next section) are used to find
the neighboring cells whose TDMs and renderables to fetch.

5 SYSTEM IMPLEMENTATION
Our MMR system is written in C++, using OpenGL and GLUT.
We ran our performance tests on a SGI Onyx2 with four 195 MHz
R10000’s, 1 GB of memory, Infinite Reality Graphics, two RM6
boards and 64 MB of texture memory.

5.1 Multiple Processors
Our system uses three processors to set up for frame n+l and
render frame n (Figure 4). On the fourth processor, an
asynchronous process prefetches the TDMs and renderables. We
divide each frame’s work into four phases: interframe, cull,
render, and prefetch. Distributing these tasks realizes a significant
performance increase, but introduces one frame of additional
latency.

5.1.1 Interframe Phase
The interframe takes place on the same processor that will later
render the current frame’s geometry (frame n) and imposes barrier
synchronization between the cull phase and render phase. It also

COMPUTE PREFETCH NEEDS:
Find user's current cell C
Find set of nearby cells N

IMMEDIATE NECESSITIES:
Look up geometry G required to render C

If not loaded, page G into memory from disk
SPECULATIVE PREFETCHING:

For all cells neN use prediction rules to
enumerate in order of increasing distance
from viewpoint:

Look up geometry G needed to render cell n
Append G onto geometry prefetch queue
Look up TDMs T visible from cell n
Append T onto TDM prefetch queue

While C remains constant:
Page in geometry G and TDMs T from queues

Figure 5. Prefetch Algorithm

determines which cell contains the viewpoint and chooses the
TDMs for frame n+l.
Our implementation of occlusion culling requires the graphics
pipeline to render occluders. We perform this task as part of the
interframe phase, limiting it to roughly 5% of the frame time.
Since this rendering occurs on the same processor as the render
phase, we avoid costly graphics context switches.

5.1.2 Cull Phase
During the cull phase, we traverse the scene graph and select the
geometry to render for frame n+l. Because traversal of the scene
graph is expensive, we perform our four culling operations in a
single traversal. First, each scene-graph node is tested for overlap
with the current cull box. Second, if the boxes overlap, we cull the
node against the view frustum. We also determine which of the
six TDMs of the current cell are visible. Third, if the node being
visited is an LOD node (whose children represent the same object
at different levels of detail), we use the viewpoint and per-cell
LOD error threshold to select an LOD. Fourth, if the node is still
visible, we occlusion cull.
Combining acceleration techniques is complicated by the fact that
different techniques are better suited to different models.
Occlusion culling performs best on scenes having high depth
complexity; by discarding all geometry outside the current virtual
cell’s cull box, we sharply limit depth complexity, restricting the
utility of occlusion culling. Thus, we disable occlusion culling
when a view from inside the cull box contains fewer than 100,000
polygons.

5.1.3 Render Phase
During the render phase, we first render the visible textured depth
meshes of the current cell, then quickly traverse the scene graph
and render geometry that was marked as visible during the cull
phase.

5.1.4 Prefetch Phase
Speculative prefetching is implemented as an asynchronous
process running on a dedicated processor. We maintain a priority
queue of geometry and TDMs likely to be needed in the near
future, with higher priorities assigned to the objects of closer
cells. The prefetch process traverses this queue, loading the
requested data from disk.

5.2 Prefetch Algorithm
During preprocessing, we use the virtual cells’ cull boxes to
compute the potentially visible near geometry for each cell. At
run time, we maintain a list of cells that we predict the user will
visit soon, then build a prefetch queue by examining the

potentially visible geometry for each cell. Our prediction
algorithm is based on the user’s velocity and viewing direction
(Figure 5), and follows these rules:
. If the user is moving slowly, we assume that she is interested

in the immediate vicinity. We fetch data for adjacent cells in
order of increasing distance from the current cell, spiraling
outward from the current cell.

. If the user is moving quickly, we assume there will be no
abrupt changes in velocity or viewing direction. We fetch
data for cells that lie in the user’s path. Furthermore, we
only fetch the TDMs we predict will be in the view frustum
when the user reaches the cell.

. If the user’s viewing direction changes more than 30 degrees
between frames, regenerate the prefetch queue.

Model geometry and TDMs are kept in separate caches in main
memory. Both caches are managed using a least-recently-used
replacement policy. The coarsest LOD is fetched first. A lower
priority request to load the appropriate LOD is appended to the
prefetch queue. If the user stays within the same area, eventually
the appropriate LOD for all objects will be loaded.

6 PERFORMANCE RESULTS

6.1 Model Statistics
We tested our system with two models: a 13 million triangle coal-
fired power plant model and a 1.7 million triangle architectural
model.
The main power plant building is over 80 meters high and 40x50
meters in plan and it contains 90% of the entire model’s triangles.
Surrounding chimney, air ducts, etc. contain the rest of the
triangles. The geometry for the model, including LGDs, occupies
approximately 1.3 GB of disk space. To create the virtual cells,
we divided the space over the 54 stories of the power plant
walkways such that a viewpoint on the walkways is never farther
than one meter from the center of any cell. This created a total of
10,565 cells. The cell centers were set at average human eye
height above the walkways. We created LODs for objects with
over 100,000 primitives (which totals to 7.7 million triangles).
The swap operation used for creating triangle strips increases the
model size to 15 million triangles, but still yields a speedup. The
scene graph has 198,580 nodes and 129,327 renderables.
The architectural model is of a radiositized house. We have no
LODs; TDMs are the main source of rendering acceleration. We
created 255 cells spanning the floor plan. The scene graph has 668
nodes and 552 renderables.
For the paths we recorded, we generated six 512x512 textured
depth meshes per virtual cell. The texture images are stored in
compressed, 256-color PNG files.

Acceleration Percent of
Method Remaining

None

Texture Mesh 1 96

Table 1. Perfr,rmance of our te
power plant model. First thre
final column is averaged over f

Polygons Polygons Average
culled remaining percent

reduction
over five
views

15,207,363

14621479 585804 96

225398 360506 47

161205 199301 47

6417 192884 10

,hniques to reduce the polygon count on the
columns are data from a single view: the

le views.

203

Graph 1. Power p&t model frame rates achieved by our system
with view-frustum culling only, a cold cache and a warm cache.

Graph 2. Architectural model frame rates achieved by our system
with view-frustum culling only and with TDMs.

6.2 Polygon Reduction
To demonstrate polygon reduction, we rendered five views of the
power plant model and recorded the number of polygons culled
by each acceleration technique in the pipeline. Table 1 gives
results in polygon count and percentage reduction for one view in
the first three columns and the average percentage reduction over
the five views in the last column. While the average culling
percentage for LGD is over 60%, the value was 0% for one of the
five views. Though not unexpected, this observation further
supports our strategy of combining multiple techniques. On
average over the five images, only 0.9% of original model
polygons remain and must be rendered as polygons.

6.3 Run-Time
We recorded a path through each model (Graphs 1 and 2). During
the paths, we display 10 to 30 frames per second. The sudden
decreases in performance for the cold cache times of Graph 1 are
due to prefetching. These downward spikes are not present when
data are already loaded.
We found that relatively small caches are sufficient to hold the
texture and model data immediately necessary. We used the
power plant model to determine the smallest cache size that does
not hinder performance. A user’s movement through the model
was recorded and then played back using several cache sizes.
Graph 3 shows the data fetched from disk along our sample path
as a function of cache size. The total number of bytes fetched
(including model geometry, TDMs, and textures) was used as a
measure of performance. We achieved the best results by
allocating 60 MB for model geometry and 80 MB for textured
depth meshes. Starting with a cold cache, total cache sizes larger
than 140 MB produced no substantial improvement; misses have

54 90 126 162 19.9

Cache size (megabytes)

234 27C

N Model Geometry n TDM Images B TDM Depth Meshe:

Graph 3. Performance of prefetching with different cache sizes

loo 200 300 4w 500 WYJ 700
Frame Number

Graph 4. Temporal distribution of VO for recorded path.

become asymptotically low. Run-time prefetching of geometry
and TDMs has saved us over 89% of the 1.3GB of RAM needed
to hold the entire database in memory.
Graph 4 shows the temporal distribution of the disk I./O caused by
prefetching while replaying the same path used to gather data for
Graph 3. The bursts occur when the potentially visible set of
geometry changes substantially - i.e. when the user moves from
one virtual cell into an adjacent one. Fetching of textured depth
mesh data follows a similar pattern: bursts of 1 to 10 meshes
every 20 to 30 frames.

6.4 Preprocessing
Tables 2 and 3 summarize the preprocessing times. Each of the
acceleration techniques requires some preprocessing. The largest
amount is spent generating and simplifying the TDMs. Gn
average, power plant meshes simplify to 10,000 triangles (161 KB
including texture) and the architectural model’s to 1,900 triangles
(38 KB including texture). Much of the other preprocessing can
be parallelized and does not require a graphics workstation. only
the generation of the textures requires a graphics workstation.

Table 2. Power Plant Model. Breakdown of preprocessing times.

204

I I I

I Preprocessing Technique
I

Time for entire
model

Generation of cell textures and
depth meshes

Pre-simplification of depth
meshes

Garland-Heckberl simplification
of depth meshes

TOTAL PREPROCESSING
TIME

6 hours

2 hours 40 min

4 hours 20 min

13 hours
I

TOTAL PREPROCESSING
SPACE 58MB

I 4

Table 3. Architectural Model. Breakdown of preprocessing times.

7 LIMITATIONS AND FUTURE WORK
Our virtual cell mechanism is more suitable for models that have a
large spatial extent. We have not focused on other classes of
models, such as high object-density models (e.g. engine room of a
submarine or aircraft carrier). Such models raise a different set of
problems, e.g. the many details in the area immediately
surrounding the viewer will strain parts of the system
(prefetching, geometry simplification, etc). Furthermore, because
of the large number of details appearing and disappearing due to
changing occlusions, it would be difficult to sample all the
surfaces sufficiently for a high-fidelity image-based
representation. In addition, for our system, we manually decided
where to create the virtual cells. Ideally, this should be done
automatically. We find the concepts of Space Syntax, developed
by Hillier [Hillier961 of University College London, to be
promising for automatic View Preference Function generation.
Our run-time prefetching scheme allows us to render models
larger than memory. To generate TDMs, however, we must render
subsets of the model potentially larger than memory. At present,
this process is not optimized to employ prefetching. In order to
render extremely massive models, we would need to page even
the skeleton of the scene-graph hierarchy.
When combining rendering acceleration techniques, it is crucial to
know which method is perceptually more appropriate for each
model subset. We have described an algorithm for balancing the
errors introduced by TDM rendering and LOD simplification. Our
conservative metrics, although they do quantify visual artifacts,
do not necessarily measure the perceptual error. Moreover, the
constants used for our weighted-sum method were determined
very subjectively . We need to do a more comprehensive study
and analysis of quantifying the visual impact of each rendering
acceleration method.
Models with moving parts present another difficult set of issues.
Many of the acceleration techniques of today, particularly the
image-based ones, are for static models. We wish to explore how
algorithms can be combined to render models with limited
dynamic elements.
Finally, during the implementation of this large system we have
made several choices: we chose a particular order to apply our
rendering acceleration techniques and we empirically determined
the value of several system parameters. As future work, we need
to investigate the scalability and overall effect of choosing
different values from this multi-dimensional parameter space. For
example: if the system is limited by the number of primitives to
render (render-bound), we should emphasize culling techniques in
order to reduce the number of primitives; if the system is limited
by the overhead of the simplification and culling algorithms (cull-

bound), as might be the case with our occlusion culling method,
we should automatically do less culling. In addition, we need to
more precisely evaluate the time-space-quality tradeoff of the
different methods. What is the best we can do with a fixed space
budget? What is the best we can do with limited preprocessing
time? There are many such research questions that we need to
investigate.

8 CONCLUSIONS
We have presented a rendering system for the rapid display of
massive models. We have demonstrated our system on two very
large models (Color Figure D). We have also described a database
representation scheme. Our system includes a method for
localizing geometry, an essential component of a scalable
walkthrough system. Our virtual cells partition the model space
into manageable subsets that we can fetch into main memory at
run time. Furthermore, our system includes an effective pipeline
to combine acceleration techniques from image-based rendering,
geometric simplification, and visibility culling.
We encountered various design problems, including:
. With a massive model it is crucial to carefully construct a

single database representation that supports all the expected
rendering acceleration techniques. Some algorithms have
simple data structures, whereas others have much more
complex ones (e.g. [Hoppe97], [Luebkegir]). We cannot
afford to replicate data.

. Any single algorithm provides a performance increase over
naive rendering, but two combined algorithms do not
necessarily work well together - for example, TDMs and
occlusion culling compete.

. The order of applying multiple acceleration techniques that
works well for our system and our class of models would not
necessarily work well for a different system or with a
different class of models.

9 ACKNOWLEDGMENTS
We especially thank James Close and Combustion Engineering,
Inc., as donors of the power plant CAD model, an extremely
valuable asset for us. We thank William Baxter, Mark Harris, and
Wesley Hunt for helping with the results for the Brooks House
model. We appreciate the help of members of the UNC Graphics
Lab, especially Kevin Arthur, Mark Livingston and Todd Gaul.
We also thank our funding agencies: ARO, DARPA, Honda, Intel,
NIH National Center for Research Resources, NSF, ONR, and
Sloan Foundation.

REFERENCES
[Airey90] J. Airey, J. Rohlf, and F. Brooks. Towards image

realism with interactive update rates in complex virtual building
environments. ACM Symposium on Interactive 30 Graphics,
1990, DO. 41-50.

..A

[AliagB’I] D. Aliaga and A. Lastra. Architectural Walkthroughs
using Portal Textures. IEEE Visualization, October 1997, pp. __
355-362.

[Avila97] L. Sobierajski Avila and William Schroeder.
“Interactive Visualization of Aircraft and Power Generation
Engines. IEEE Visualization, October 1997, pp. 483-486.

[Brooks861 F. Brooks. Walkthrough: A dynamic graphics system
for simulating virtual buildings. ACM Symposium on Interactive
30 Graphics, Chapel Hill, NC, 1986.

[Clark761 I. Clark. Hierarchical Geometric models for visible
surface algorithms. Communications of the ACM, volume 19
number 10,1976, pp. 547-554.

205

[Cohen971 J. Cohen, D. Manocha, and M. Olano. Simplifying
Polygonal Models Using Successive Mappings. IEEE
Visualization, October, 1997, pp. 395402.

[Coorg97] S. Coorg and S. Teller. Real-time occlusion culling
for models with large occluders. ACM Symposium on
Interactive 30 Graphics, 1997, pp. 83-90.

[Dama L. Darsa, B. Costa, and A. Varshney. Navigating Static
Environments Using Image-Space Simplification and
Morphing. ACM Symposium on Interactive 30 Graphics,
Providence, RI, 1997, pp. 25-34.

[Erikson98] C. Erikson and D. Manocha. Simplification Culling
of Static and Dynamic Scene Graphs. UNC-Chapel Hill
Computer Science Technical Report TR98-009, 1998.

[Erikson99] C. Erikson and D. Manocha. GAPS: General and
Automatic Polygonal Simplification. UNC-Chapel Hill
Computer Science Technical Report TR98-033, 1998. To
appear in ACM Symposium on Interactive 30 Graphics, 1999.

[Funkho92] Thomas A. Funkhouser, Carlo H. Sequin, and Seth J.
Teller. Management of large amounts of data in interactive
building walkthroughs. ACM Symposium on Interactive 30
Graphics), March 1992, pp. 1 l-20.

[Funkho T. A. Funkhouser. Database and Display Algorithms
for Interactive Visualization of Architecture Models. Ph.D.
Thesis, CS, UC Berkeley, 1993.

lFunkhou961 T. Funkhouser, S. Teller, C. Sequin, and D.
Khorramabadi. The UC Berkeley System for Interactive
Visualization of Large Architectural Models. Presence. volume
5 number 1,1996. y

[Ga$n97] M. Garland and P. Heckbert. Surface Simplification
;m~g$uadrattc Error Bounds. ACM SIGGRAPH, 1997, pp.

[Hillier961 B. Hillier, Space is the Machine. Cambridge
University Press, 1996.

[HP971 HP Dire&Model. http://hpcc920.extemal.hp.com
/wsg/products/grfx/ dmodeYindex.html, 1997.

tHwe971 View-Dependent Refinement of
Progressive I?&h~!!?$f SIGGRAPH, 1997, pp. 189-198.

[Hudson971 T. Hudson, D. Manocha, J. Cohen, M. Lin, K. Hoff,
and H. Zhang. Accelerated Occlusion Culling using Shadow
Frusta. ACM Symposium on Computational Geometry, 1997,
pp. l-10.

[J&son951 W. Jepson, R. Liggett, and S. Friedman. An
Environment for Real-time Urban Simulation. ACM
Symposium on Interactive 30 Graphics, 1995, pp. 165166.

[Luebke95] D. Luebke and C. Georges. Portals and Mirrors:
Simple, Fast Evaluation of Potentially visible sets. ACM
Symposium on Interactive 30 Graphics, Monterey, CA, 1995,
pp. 105-106.

lLuebke971 D. Luebke and C. Erikson. View-Dependent
Simplification Of Arbitrary Polygonal Environments. ACM
SIGGRAPH, 1997, pp. 199-208.

[Maciel95] Paul0 W. C. Maciel and Peter Shirley. Visual
Navigation of Large Environments Using Textured Clusters.
$~~o$ymposium on Interactive 30 Graphics, April 1995, pp.

- .
[McMi1195] Leonard McMillan and Gary Bishop. PlenigtM

Modeling: An Image-Based Rendering System.
SIGGRAPH, August 1995, pp. 39-46.

[Rohlt94] J. Rohlf and J. Helman. Iris Performer: A high
performance multiprocessor toolkit for realtime 3D Graphics.
ACM SIGGRAPH, 1994, pp. 381-394.

[Ronfar96] R. Ronfard and J. Rossignac. Full-range
approximation of triangulated polyhedra. Computer Graphics
Forum, vol. 15, pp. 67-76,462, August 1996.

[Ross@31 J. Rossignac and P. Borrel. Multi-Resolution 3D
Approximations for Rendering. Modeling in Computer
Graphics: Springer-Verlag, 1993, pp. 455-465.

[SGI97] SGI 0 enGL Optimizer. http://www.sgi.com
/Technology /open 8 IJ optimizer_wp.html. 1997.

[Schaul96] Gemot Schaufler and Wolfgang Sttirzlinger. A Three-
Dimensional Image Cache for Virtual Reality. Computer
Graphics Forum 15(3) (Eurographics), pp. 227-236.

[Schnei94] B. Schneider, P. Borrel, J. Menon, J. Mittelman, and
J. Rossignac. Brush as a walkthrough system for architectural
models. Ftjth Eurographics Workshop on Rendering, July
1994, pp. 389-399.

[Shade96] Jonathan Shade, Dani Lischinski, David Salesin, Tony
DeRose, and John Snyder. Hierarchical Image Caching for
Accelerated Walkthroughs of Complex Environments. ACM
SIGGRAPH, August 1996, pp. 75-82.

[Sillio97] Francois Sillion, George Drettakis, and Benoit Bodelet.
Efficient Imoostor Manioulation for Real-Time Visualization of
Urban Scknery. Computer Graphics Forum 1W
(Eurographics), pp. 207-218.

[Teller911 S. Teller and C. H. Sequin. Visibility Preprocessing for
Interactive Walkthroughs. ACM SIGGRAPH, 1991, pp. 61-69.

[Turk921 G. Turk. Re-Tiling Polygonal Surfaces. ACM
SIGGRAPH, 1992, pp. 55-64.

[Zhang97] H. Zhang, D. Manocha, T. Hudson, and K. Hoff.
Visibility Culling Using Hierarchical Occlusion Maps. ACM
SIGGRAPH, 1997, pp. 77-88.

206

Color Figure A. Bird’s eye view of a power plant model. We have
outlined in white the subset of a power plant rendered as geometry
for an example viewpoint inside a cull box (model courtesy of James
Close and Combustion Engineering, Inc.). This geometry is rendered
using levels of detail and occlusion culling. Darker colored geometry
is replaced by a fast image-based representation.

Color Figure B. Example TDM. Textured depth meshes replace
distant geometry. Polygons outlined in white are part of a TDM.
Near geometry is rendered conventionally.

Color Figure C. Example Rendering Acceleration Methods:
(top) LOD - multiple geometric levels of detail are computed for
complex objects, (bottom) occlusion culling - the flooring,
column, and a portion of the pipes function as occluders that
allow the hidden geometry to be safely culled (a hierarchical set
of occlusion maps are displayed on the right side of the screen).

Color Figure D. Example Scenes: (top) power plant, (bottom)
architectural model. The base of the virtual cells are outlined in
blue. In the power plant, the far pipes and walkways are TDMs,
nearer pipes have been LOD-simplified, and tan-colored columns
make good occluders. In the architectural model, the far wall and
cabinets are actually a TDM.

237

V i e w p u b l i c a t i o n s t a t sV i e w p u b l i c a t i o n s t a t s

https://www.researchgate.net/publication/220792051

