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ABSTRACT 
We present a system for rendering very complex 3D models at 
interactive rates. We select a subset of the model as preferred 
viewpoints and partition the space into virtual cells. Each cell 
contains near geometry, rendered using levels of detail and 
visibility culling, and far geometry, rendered as a textured depth 
mesh. Our system automatically balances the screen-space errors 
resulting from geometric simplification with those from textured- 
depth-mesh distortion. We describe our prefetching and data 
management schemes, both crucial for models significantly larger 
than available system memory. We have successfully used our 
system to accelerate walkthroughs of a 13 million triangle model 
of a large coal-fired power plant and of a 1.7 million triangle 
architectural model. We demonstrate the walkthrough of a 1.3 GB 
power plant model with a 140 MB cache footprint. 
Keywords: interactive walkthrough, massive models, occlusion 
culling, levels of detail, textured depth mesh, image-based 
rendering, prefetching. 

1 INTRODUCTION 
Computer-aided design (CAD) and scientific visualizations often 
need user-steered interactive displays (walk&~&s) of complex 
environments. Structural and mechanical designers create models 
of ships, oil platforms, spacecraft, and process plants whose 
complexity exceeds the interactive visualization capabilities of 
current graphics systems. Multidisciplinary design reviews of 
such structures benefit greatly from interactive walkthroughs. 
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Ideally, such walkthroughs need to maintain an update rate of at 
least 20 frames per second. Many of these massive CAD 
databases contain millions of primitives, and even high-end 
systems such as the SGI Infinite Reality cannot render them at 
interactive rates. Furthermore, we observe that model sizes are 
increasing much faster than rendering capabilities. 
The principle for the ideal algorithmic approach is simple: Do not 
even attempt to render any geometry that the user will not 
ultimately see. Such a principle culls a primitive before sending it 
to the rendering pipeline if, for example, it is outside the view 
frustum, facing away from the viewpoint, too small or distant to 
be noticed, occluded by other objects, or satisfactorily shown in a 
painted texture rather than as geometry. No one technique suffices 
for creating interactive walkthroughs of most massive models 
(models that do not fit within memory). Moreover, each technique 
achieves great speedups only for particular subsets of the 
primitives. Any general system for interactive walkthroughs 
should combine such techniques. 

1 .l System Overview 
The fundamental idea in our system is to render objects “far” from 
a viewpoint using fast image-based techniques [Maciel95, 
Shade96, Schauf96, Aliaga97, Darsa97, Sillio971 and to render all 
objects “near” the viewpoint as geometry using levels of detail 
[Turk92, Rossig93, Cohen97, Garlan97, Luebke97, Hoppe97J and 
visibility culling [Airey90, Teller91, Hudson97, Zhang971. 
Consequently, we limit the data required to render a model of any 
size to a reduced amount of near geometry and an approximately 
constant-size representation of far geometry. 
Just as in progressive rendering, some parts of a scene are chosen 
for preferential rendering in time, so we introduce a spatial View 
Preference Function (VPF). All parts of the model can be viewed 
from any viewpoint inside or outside the model volume. 
However, views from the preferred viewpoints are allocated more 
resources (e.g. rendering capability, secondary storage, 
bandwidth, preprocessing time, and running time) so that they can 
be rendered at interactive frame rates. 
In Color Figure A, we have outlined the box containing near 
geometry for a particular viewpoint in a power plant model. The 
darker colored geometry has been culled. The system includes 
extensive preprocessing to create textured polygon impostors used 
at run time to replace far geometry, to construct simplified object 
models at multiple levels of detail, and to determine sets of 
possible occluders. It organizes these auxiliary data structures so 
that they can be prefetched into memory dynamically. It sets up 
the run-time environment, establishing the memory-management 
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tactics to be used for the various acceleration techniques and the 
policies for dynamically allocating CPUs and rendering time. 

1.2 Contributions 
This paper presents five primary contributions to ongoing 
walkthrough research: 

. A rendering scheme which employs both images and 
geometric levels of detail, automatically balancing the 
quality and speed-up of the two approaches. 

. A concept of preferred viewpoints, which are rendered more 
rapidly because they are allocated a disproportionate share of 
resources. 

. An approach to rendering massive models which partitions 
the model into manageable virtual cells, each of which can 
be optimized for speed, quality, and memory usage. 

. A system pipeline to manage resources (i.e., CPUs, main 
memory, texture memory, graphics engines) and allocate 
them among the acceleration techniques. 

. An integrated database, with a coherent representation 
technique, memory management, and prefetching of 
geometry and textures, all of which are crucial for databases 
larger than physical memory. 

2 RELATED SYSTEMS WORK 
There is an extensive literature on interactive display of large 
models. In this section, we briefly survey display algorithms and 
systems which have influenced our work by addressing the entire 
problem of interactively displaying large models. A large number 
of systems have been developed for interactive walkthroughs. We 
subdivide them into five general categories: 
. Architectural Walkthrough Systems 
. Image-Based Rendering Acceleration Systems 
. Mechanical CAD Systems 
. High-Performance Libraries 
. Architectures and APIs 

Clark [Clark761 proposed using hierarchical representations of 
models and computing multiple levels-of-detail (LODs) to reduce 
the number of polygons rendered in each frame. This technique 
has been widely used. 
Several walkthrough systems for architectural models [Brooks861 
have been presented [Airey90, Tellet91, Funkho92, Luebke951. 
These systems partitioned the model into cells and portals, 
following the division of a building into discrete rooms. The UC 
Berkeley Building Walkthrough System [Funkho96] used a 
hierarchical representation of the model, along with visibility 
algorithms [Teller911 and LODs. Ftmkhouser et al. [Funkho92] 
used an adaptive display algorithm to maintain interactive frame 
rates [Funkho93]. Aliaga [Aliaga97] built upon a cells and portals 
system, replacing geometry visible through portals with images. 
Several image-based rendering acceleration systems are 
specialized for outdoor models. Maciel and Shirley [Maciel95] 
expanded an LOD system to allow a general set of impostors 
(LODs, textured billboards, etc.). Shade et al. [Shade961 and 
Schaufler and Stuerzlinger [Schauf96] used image caching to 
accelerate interactive walkthroughs. 
The IBM BRUSH system [Schnei94] provided real-time 
visualization and inspection of very large mechanical CAD (and 
architectural) models. It used multiple LODs of the objects in the 
scene [Rossignac93]. Avila and Schroeder [Avila97] described 

Depth Meshes 

Figure 1. System Pipeline. Each new viewpoint sent into the pipeline is 
passed both to the prefetcher and to the rendering pipeline. The 
viewpoint determines what geometry and TDMs are retrieved from disk; 
it is also u parameter used by the rendering acceleration techniques. 

another system, for visualizing power generation engines and 
aircraft CAD models. Erikson and Manocha [Erikson98, 
Erikson991 have proposed algorithms for the visualization of large 
models using LODs and HLODs (hierarchical levels of detail) and 
have used them for interactive display of large static and dynamic 
environments. 
IRIS Performer [Rohll94], a high-performance library, used a 
hierarchical representation to organize the model into smaller 
parts, each of which had an associated bounding volume. This 
data structure was used to optimize culling and rendering. Other 
systems have been developed on top of Performer for 
walkthrough of large environments, including real-time urban 
simulation [Jepson95]. 
Industrial vendors, including Silicon Graphics and Hewlett- 
Packard, have proposed architectures and APIs (SGI OpenGL 
Optimizer, HP Dire&Model, etc.) for interactive display of large 
CAD models [HP97, SG197]. These systems provide standalone 
tools for simplifying polygonal models or performing visibility 
culling. 

3. SYSTEM 
In this section, we detail our system pipeline (Figure 1). First, we 
describe the representation used for far geometry. Second, we 
summarize the simplification performed on near geometry. For 
each, we describe the preprocessing and run-time components. 
Third, we present an algorithm to balance the quality of near 
geometry and far geometry representations. 

3.1 Far Geometry 
The first acceleration technique we use substitutes texture 
impostors for distant geometry. As a preprocess, we partition the 
space of the model into virtual cells. These cells are similar to 
those used in architectural models, but they need not coincide 
with walls or other large occluders. Around each cell we place a 
cull bon. The cull box divides the space into near and far 
geometry; the far geometry, outside the cull box, is not rendered 
when the viewpoint is inside the virtual cell. We generate for each 
of the six inside faces of the box a textured depth mesh (TDM) to 
replace the far geometry [Darsa97][Sillion97]. Together, they 
image the outside of the box as viewed from the cell centerpoint. 
Each depth mesh (similar to a height-field) is simplified. 
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Figure 2. Offline and online components of textured-depth mesh
generation. The preprocess generates a texture and a mesh from a
captured image and a captured depth image; the textured depth
meshes are displayed at run time.

Using a general simplification algorithm with error bounds to
process a large number of dense meshes is time consuming.
Instead, we render each face of the cull box, store the resulting
image, create a depth mesh of the same resolution, and apply a
fast pre-simplification algorithm to the depth mesh (Figure 2).
This step simplifies rectangular planar regions, using a greedy
search. The resulting mesh has approximately one tenth its
original polygon count. Then, we apply the more general
simplification algorithm of Garland and Heckbert [Garlan97]. No
special treatment of discontinuities is used.
At run time, we cull away all the geometric primitives outside the
cull box of the cell closest to the current viewpoint. We display
the cell’s simplified depth meshes using projective texture
mapping to place the image rendered from the cell’s center onto
the mesh (Color Figure B). As the viewer moves from cell to cell,
simple prediction enables the relevant TDMs to be prefetched.
The use of a TDM rather than a static, textured quadrilateral
provides some perspective correction at the mesh vertices (similar
to three-dimensional image warping [McMillan95]) which
radically reduces popping and the other artifacts that can occur as
the viewpoint moves between cells. Moreover, projective texture
mapping yields a better image quality than standard texture
mapping, since artifacts from texture interpolation due to regional
oversimplification are much less noticeable. No holes appear;
instead, the mesh stretches into skins to cover regions where no
information is available. As different objects can be visible in the
skin regions for different cells, small popping artifacts may still
appear when moving between the TDMs of adjacent cells.

3.2 Near Geometry
After culling away the portions of the scene outside the current
cull box, we render the near geometry. We cull to the view
frustum, cull back-facing triangles, select for each object a
simplified surrogate model (with the degree of simplification
depending upon the object’s distance), and perform occlusion
culling (Color Figure C).
During preprocessing, we use the algorithm of Erikson and
Manocha [Erikson99] to compute four levels of detail for each of
the objects in the model, each with half the complexity of its
predecessor. Objects significantly larger than the average cull box
size are partitioned, then, each partition is separately simplified.

Figure 3. TDM Error Metric, (Left) Skin as seen from center of virtual
cell. (Right) Skin as seen from the cell boundary. TDM error metric
measures the maximum skin size, in screen-space pixels, for each cell.

Small cracks can appear between partitions that share geometry
but are being viewed at different levels of detail.
We cull geometry hidden behind other objects if the current cull
box has enough triangles to approximately outweigh the cost of
occlusion culling. Our occlusion culling implementation is based
on that of Zhang et al. [Zhang97]. Briefly, we preprocess each
virtual cell to select potential occluders. At run time, the
algorithm uses a two-pass scheme. First, the potential occluders of
the current cell are rendered to create a hierarchical occlusion
map. Then, during the culling pass, we cull objects whose screen-
space bounding box is hidden by previously rendered occluders.

3.3 Balancing The Quality Of Near And
Far Geometry Representations
Both the near and far geometry representations are simplifications
of the underlying model geometry. They both introduce visual
errors that we would like to balance for uniform quality across the
rendered frame. Using a pair of error metrics, we compute, for
each virtual cell, a cull box size and LOD error threshold to
balance the combined error of the near and far geometry
representations.

3.3.1 Error Metrics
We define two measures to quantify our visual errors. First, we
measure the error introduced by near geometry simplification. Our
visibility culling algorithms do not alter the visual content but our
LOD simplification does. Thus, we choose to use an upper bound
on the difference (in pixels) between an object’s silhouette and the
simplified object’s silhouette as the error metric.
Second, we measure the error in the far geometry representation.
This error comes from two sources: (1) the process used to
simplify a screen-resolution depth mesh to a manageable mesh,
and (2) the stretching of TDM skins as the viewer moves away
from a cell center. For simplicity, we consider the error due to
mesh simplification to be constant and measure worst-case error
by finding the maximum distance (in pixels) that a skin stretches
as one moves to a cell boundary (Figure 3).

3.3.2 Reducing Polygonal Complexity While
Balancing Error
To achieve walkthroughs with fast frame rates, we can render
only a modest number of primitives. Given a desired polygon
budget, we devote a fixed number of polygons to rendering our
TDMs. We use the remainder of our budget by balancing the size
of the cull box and the levels of detail of unculled geometry.
Simply adjusting the size of the cull box often does not yield the
best image quality. Small cull boxes are bad, because stretching
of skins in the TDM is more exaggerated. Levels-of-detail can be
applied to the geometry inside the cull box, but as the size of the
cull box grows, coarser LODs must be used to maintain the target
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number of primitives. To improve the image quality, we find the
cull box size and LOD error threshold that reduces a weighted
sum of the TDM and LOD visual errors (after several trials, we
converged on a weight ratio of 0.15 pixels of TDM error to one
pixel of LOD error).
As one increases the size of a cell’s cull box and holds the number
of unculled primitives constant, errors contributed by the TDM
never increase, while errors due to an increasing LOD error
threshold never decrease. Based on this monotonic behavior of
our error metrics, we use nested bisection routines to balance and
minimize our errors.

4 DATA REPRESENTATION AND
MANAGEMENT
Data representation is a major issue when combining multiple
acceleration techniques. Though each technique may have its own
ideal data structures, we use a common representation that allows
efficient traversal and avoids replication of data at all costs. Our
system uses two main data structures: a scene graph and a cell
graph.

4.1 Scene Graph
The system stores the model database in a scene graph hierarchy.
We implemented this from the ground up, on top of OpenGL, for
maximum flexibility. Such a system could also be built on top of
Iris Performer [Rohlf94] or Inventor. Each node in our scene
graph may have an arbitrary number of children, and each has a
bounding box used for culling. Any node in the scene graph may
also have attached a set of geometry stored as triangle strips (a
renderable).

The scene graph is automatically constructed from the model
database. We would like to organize our scene graph spatially, but
many real-world models have object hierarchies grouped
according to non-spatial criteria, e.g. functional organization. We
thus use the model’s grouping as the upper layer of our hierarchy,
and below that construct an octree-like bounding volume
hierarchy. This subdivision terminates when one of three
stopping criteria is reached: a minimum number of polygons per
leaf, a maximum depth, or a minimum bounding volume size.
We store all geometry as triangle strips in the leaf nodes. There is
an important trade-off between the average triangle strip length
and the size of leaf-node bounding volumes. On average, larger
leaf nodes allow longer triangle strips, enabling faster rendering.
Smaller leaf nodes allow more accurate culling, but limit the
length of triangle strips. This trade-off must be considered when
choosing termination conditions for the octree subdivision. In our
system, we empirically determined a leaf-node bounding volume

size that produces triangle strips that provide an overall
performance gain.
At run time, the scene graph is traversed once, in depth-first order.
Our acceleration techniques are implemented as callback
functions. LOD support is handled with special LODNodes,
similar to Performer. During our traversals, a single child of each
LODNode is active; the distance to the node’s bounding box, the
viewing parameters, and the LOD error threshold determine the
active child.

4.2 Cell Graph
The virtual cells are organized into a graph structure to facilitate
prefetching. Cells that are adjacent in space are connected by
edges in the graph. Each cell node stores its location, its size, and
five other fields:

. the size of its associated cull box,

. a LOD error threshold,

. the IDS of potential occluders,

. the IDS of the cull box’s TDMs, and

. the IDS of renderables contained in the cull box.
Since the cells are spatially connected and the viewpoint does not
move much from one frame to the next, we can always quickly
find the cell containing the viewpoint. Then, the IDS and the
speculative prefetching algorithm (next section) are used to find
the neighboring cells whose TDMs and renderables to fetch.

5 SYSTEM IMPLEMENTATION
Our MMR system is written in C++, using OpenGL and GLUT.
We ran our performance tests on a SGI Onyx2 with four 195 MHz
R10000’s, 1 GB of memory, Infinite Reality Graphics, two RM6
boards and 64 MB of texture memory.

5.1 Multiple Processors
Our system uses three processors to set up for frame n+l and
render frame n (Figure 4). On the fourth processor, an
asynchronous process prefetches the TDMs and renderables. We
divide each frame’s work into four phases: interframe, cull,
render, and prefetch. Distributing these tasks realizes a significant
performance increase, but introduces one frame of additional
latency.

5.1.1 Interframe Phase
The interframe takes place on the same processor that will later
render the current frame’s geometry (frame n) and imposes barrier
synchronization between the cull phase and render phase. It also



COMPUTE PREFETCH NEEDS: 
Find user's current cell C 
Find set of nearby cells N 

IMMEDIATE NECESSITIES: 
Look up geometry G required to render C 

If not loaded, page G into memory from disk 
SPECULATIVE PREFETCHING: 

For all cells neN use prediction rules to 
enumerate in order of increasing distance 
from viewpoint: 

Look up geometry G needed to render cell n 
Append G onto geometry prefetch queue 
Look up TDMs T visible from cell n 
Append T onto TDM prefetch queue 

While C remains constant: 
Page in geometry G and TDMs T from queues 

Figure 5. Prefetch Algorithm 

determines which cell contains the viewpoint and chooses the 
TDMs for frame n+l. 
Our implementation of occlusion culling requires the graphics 
pipeline to render occluders. We perform this task as part of the 
interframe phase, limiting it to roughly 5% of the frame time. 
Since this rendering occurs on the same processor as the render 
phase, we avoid costly graphics context switches. 

5.1.2 Cull Phase 
During the cull phase, we traverse the scene graph and select the 
geometry to render for frame n+l. Because traversal of the scene 
graph is expensive, we perform our four culling operations in a 
single traversal. First, each scene-graph node is tested for overlap 
with the current cull box. Second, if the boxes overlap, we cull the 
node against the view frustum. We also determine which of the 
six TDMs of the current cell are visible. Third, if the node being 
visited is an LOD node (whose children represent the same object 
at different levels of detail), we use the viewpoint and per-cell 
LOD error threshold to select an LOD. Fourth, if the node is still 
visible, we occlusion cull. 
Combining acceleration techniques is complicated by the fact that 
different techniques are better suited to different models. 
Occlusion culling performs best on scenes having high depth 
complexity; by discarding all geometry outside the current virtual 
cell’s cull box, we sharply limit depth complexity, restricting the 
utility of occlusion culling. Thus, we disable occlusion culling 
when a view from inside the cull box contains fewer than 100,000 
polygons. 

5.1.3 Render Phase 
During the render phase, we first render the visible textured depth 
meshes of the current cell, then quickly traverse the scene graph 
and render geometry that was marked as visible during the cull 
phase. 

5.1.4 Prefetch Phase 
Speculative prefetching is implemented as an asynchronous 
process running on a dedicated processor. We maintain a priority 
queue of geometry and TDMs likely to be needed in the near 
future, with higher priorities assigned to the objects of closer 
cells. The prefetch process traverses this queue, loading the 
requested data from disk. 

5.2 Prefetch Algorithm 
During preprocessing, we use the virtual cells’ cull boxes to 
compute the potentially visible near geometry for each cell. At 
run time, we maintain a list of cells that we predict the user will 
visit soon, then build a prefetch queue by examining the 

potentially visible geometry for each cell. Our prediction 
algorithm is based on the user’s velocity and viewing direction 
(Figure 5), and follows these rules: 
. If the user is moving slowly, we assume that she is interested 

in the immediate vicinity. We fetch data for adjacent cells in 
order of increasing distance from the current cell, spiraling 
outward from the current cell. 

. If the user is moving quickly, we assume there will be no 
abrupt changes in velocity or viewing direction. We fetch 
data for cells that lie in the user’s path. Furthermore, we 
only fetch the TDMs we predict will be in the view frustum 
when the user reaches the cell. 

. If the user’s viewing direction changes more than 30 degrees 
between frames, regenerate the prefetch queue. 

Model geometry and TDMs are kept in separate caches in main 
memory. Both caches are managed using a least-recently-used 
replacement policy. The coarsest LOD is fetched first. A lower 
priority request to load the appropriate LOD is appended to the 
prefetch queue. If the user stays within the same area, eventually 
the appropriate LOD for all objects will be loaded. 

6 PERFORMANCE RESULTS 

6.1 Model Statistics 
We tested our system with two models: a 13 million triangle coal- 
fired power plant model and a 1.7 million triangle architectural 
model. 
The main power plant building is over 80 meters high and 40x50 
meters in plan and it contains 90% of the entire model’s triangles. 
Surrounding chimney, air ducts, etc. contain the rest of the 
triangles. The geometry for the model, including LGDs, occupies 
approximately 1.3 GB of disk space. To create the virtual cells, 
we divided the space over the 54 stories of the power plant 
walkways such that a viewpoint on the walkways is never farther 
than one meter from the center of any cell. This created a total of 
10,565 cells. The cell centers were set at average human eye 
height above the walkways. We created LODs for objects with 
over 100,000 primitives (which totals to 7.7 million triangles). 
The swap operation used for creating triangle strips increases the 
model size to 15 million triangles, but still yields a speedup. The 
scene graph has 198,580 nodes and 129,327 renderables. 
The architectural model is of a radiositized house. We have no 
LODs; TDMs are the main source of rendering acceleration. We 
created 255 cells spanning the floor plan. The scene graph has 668 
nodes and 552 renderables. 
For the paths we recorded, we generated six 512x512 textured 
depth meshes per virtual cell. The texture images are stored in 
compressed, 256-color PNG files. 

Acceleration Percent of 
Method Remaining 

None 

Texture Mesh 1 96 

Table 1. Perfr,rmance of our te 
power plant model. First thre 
final column is averaged over f 

Polygons Polygons Average 
culled remaining percent 

reduction 
over five 
views 

15,207,363 

14621479 585804 96 

225398 360506 47 

161205 199301 47 

6417 192884 10 

,hniques to reduce the polygon count on the 
columns are data from a single view: the 

le views. 
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Graph 1. Power p&t model frame rates achieved by our system 
with view-frustum culling only, a cold cache and a warm cache. 

Graph 2. Architectural model frame rates achieved by our system 
with view-frustum culling only and with TDMs. 

6.2 Polygon Reduction 
To demonstrate polygon reduction, we rendered five views of the 
power plant model and recorded the number of polygons culled 
by each acceleration technique in the pipeline. Table 1 gives 
results in polygon count and percentage reduction for one view in 
the first three columns and the average percentage reduction over 
the five views in the last column. While the average culling 
percentage for LGD is over 60%, the value was 0% for one of the 
five views. Though not unexpected, this observation further 
supports our strategy of combining multiple techniques. On 
average over the five images, only 0.9% of original model 
polygons remain and must be rendered as polygons. 

6.3 Run-Time 
We recorded a path through each model (Graphs 1 and 2). During 
the paths, we display 10 to 30 frames per second. The sudden 
decreases in performance for the cold cache times of Graph 1 are 
due to prefetching. These downward spikes are not present when 
data are already loaded. 
We found that relatively small caches are sufficient to hold the 
texture and model data immediately necessary. We used the 
power plant model to determine the smallest cache size that does 
not hinder performance. A user’s movement through the model 
was recorded and then played back using several cache sizes. 
Graph 3 shows the data fetched from disk along our sample path 
as a function of cache size. The total number of bytes fetched 
(including model geometry, TDMs, and textures) was used as a 
measure of performance. We achieved the best results by 
allocating 60 MB for model geometry and 80 MB for textured 
depth meshes. Starting with a cold cache, total cache sizes larger 
than 140 MB produced no substantial improvement; misses have 

54 90 126 162 19.9 

Cache size (megabytes) 

234 27C 

N Model Geometry n TDM Images B TDM Depth Meshe: 

Graph 3. Performance of prefetching with different cache sizes 

loo 200 300 4w 500 WYJ 700 
Frame Number 

Graph 4. Temporal distribution of VO for recorded path. 

become asymptotically low. Run-time prefetching of geometry 
and TDMs has saved us over 89% of the 1.3GB of RAM needed 
to hold the entire database in memory. 
Graph 4 shows the temporal distribution of the disk I./O caused by 
prefetching while replaying the same path used to gather data for 
Graph 3. The bursts occur when the potentially visible set of 
geometry changes substantially - i.e. when the user moves from 
one virtual cell into an adjacent one. Fetching of textured depth 
mesh data follows a similar pattern: bursts of 1 to 10 meshes 
every 20 to 30 frames. 

6.4 Preprocessing 
Tables 2 and 3 summarize the preprocessing times. Each of the 
acceleration techniques requires some preprocessing. The largest 
amount is spent generating and simplifying the TDMs. Gn 
average, power plant meshes simplify to 10,000 triangles (161 KB 
including texture) and the architectural model’s to 1,900 triangles 
(38 KB including texture). Much of the other preprocessing can 
be parallelized and does not require a graphics workstation. only 
the generation of the textures requires a graphics workstation. 

Table 2. Power Plant Model. Breakdown of preprocessing times. 
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I I I 

I Preprocessing Technique 
I 

Time for entire 
model 

Generation of cell textures and 
depth meshes 

Pre-simplification of depth 
meshes 

Garland-Heckberl simplification 
of depth meshes 

TOTAL PREPROCESSING 
TIME 

6 hours 

2 hours 40 min 

4 hours 20 min 

13 hours 
I 

TOTAL PREPROCESSING 
SPACE 58MB 

I 4 

Table 3. Architectural Model. Breakdown of preprocessing times. 

7 LIMITATIONS AND FUTURE WORK 
Our virtual cell mechanism is more suitable for models that have a 
large spatial extent. We have not focused on other classes of 
models, such as high object-density models (e.g. engine room of a 
submarine or aircraft carrier). Such models raise a different set of 
problems, e.g. the many details in the area immediately 
surrounding the viewer will strain parts of the system 
(prefetching, geometry simplification, etc). Furthermore, because 
of the large number of details appearing and disappearing due to 
changing occlusions, it would be difficult to sample all the 
surfaces sufficiently for a high-fidelity image-based 
representation. In addition, for our system, we manually decided 
where to create the virtual cells. Ideally, this should be done 
automatically. We find the concepts of Space Syntax, developed 
by Hillier [Hillier961 of University College London, to be 
promising for automatic View Preference Function generation. 
Our run-time prefetching scheme allows us to render models 
larger than memory. To generate TDMs, however, we must render 
subsets of the model potentially larger than memory. At present, 
this process is not optimized to employ prefetching. In order to 
render extremely massive models, we would need to page even 
the skeleton of the scene-graph hierarchy. 
When combining rendering acceleration techniques, it is crucial to 
know which method is perceptually more appropriate for each 
model subset. We have described an algorithm for balancing the 
errors introduced by TDM rendering and LOD simplification. Our 
conservative metrics, although they do quantify visual artifacts, 
do not necessarily measure the perceptual error. Moreover, the 
constants used for our weighted-sum method were determined 
very subjectively . We need to do a more comprehensive study 
and analysis of quantifying the visual impact of each rendering 
acceleration method. 
Models with moving parts present another difficult set of issues. 
Many of the acceleration techniques of today, particularly the 
image-based ones, are for static models. We wish to explore how 
algorithms can be combined to render models with limited 
dynamic elements. 
Finally, during the implementation of this large system we have 
made several choices: we chose a particular order to apply our 
rendering acceleration techniques and we empirically determined 
the value of several system parameters. As future work, we need 
to investigate the scalability and overall effect of choosing 
different values from this multi-dimensional parameter space. For 
example: if the system is limited by the number of primitives to 
render (render-bound), we should emphasize culling techniques in 
order to reduce the number of primitives; if the system is limited 
by the overhead of the simplification and culling algorithms (cull- 

bound), as might be the case with our occlusion culling method, 
we should automatically do less culling. In addition, we need to 
more precisely evaluate the time-space-quality tradeoff of the 
different methods. What is the best we can do with a fixed space 
budget? What is the best we can do with limited preprocessing 
time? There are many such research questions that we need to 
investigate. 

8 CONCLUSIONS 
We have presented a rendering system for the rapid display of 
massive models. We have demonstrated our system on two very 
large models (Color Figure D). We have also described a database 
representation scheme. Our system includes a method for 
localizing geometry, an essential component of a scalable 
walkthrough system. Our virtual cells partition the model space 
into manageable subsets that we can fetch into main memory at 
run time. Furthermore, our system includes an effective pipeline 
to combine acceleration techniques from image-based rendering, 
geometric simplification, and visibility culling. 
We encountered various design problems, including: 
. With a massive model it is crucial to carefully construct a 

single database representation that supports all the expected 
rendering acceleration techniques. Some algorithms have 
simple data structures, whereas others have much more 
complex ones (e.g. [Hoppe97], [Luebkegir]). We cannot 
afford to replicate data. 

. Any single algorithm provides a performance increase over 
naive rendering, but two combined algorithms do not 
necessarily work well together - for example, TDMs and 
occlusion culling compete. 

. The order of applying multiple acceleration techniques that 
works well for our system and our class of models would not 
necessarily work well for a different system or with a 
different class of models. 
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Color Figure A. Bird’s eye view of a power plant model. We have
outlined in white the subset of a power plant rendered as geometry
for an example viewpoint inside a cull box (model courtesy of James
Close and Combustion Engineering, Inc.). This geometry is rendered
using levels of detail and occlusion culling. Darker colored geometry
is replaced by a fast image-based representation.

Color Figure B. Example TDM. Textured depth meshes replace
distant geometry. Polygons outlined in white are part of a TDM.
Near geometry is rendered conventionally.

Color Figure C. Example Rendering Acceleration Methods:
(top) LOD - multiple geometric levels of detail are computed for
complex objects, (bottom) occlusion culling - the flooring,
column, and a portion of the pipes function as occluders that
allow the hidden geometry to be safely culled (a hierarchical set
of occlusion maps are displayed on the right side of the screen).

Color Figure D. Example Scenes: (top) power plant, (bottom)
architectural model. The base of the virtual cells are outlined in
blue. In the power plant, the far pipes and walkways are TDMs,
nearer pipes have been LOD-simplified, and tan-colored columns
make good occluders. In the architectural model, the far wall and
cabinets are actually a TDM.
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