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We present a system that superimposes multiple projections onto an object 

of arbitrary shape and color to produce high resolution appearance changes. 

Our system produces appearances at an improved resolution compared to 
prior works and can change appearances at near interactive rates. Three 

main components are central to our system. First, the problem of computing 

compensation images is formulated as a constrained optimization which 
yields high-resolution appearances. Second, decomposition of the target 

appearance into base and scale images enables fast swapping of 

appearances on the object by requiring the constrained optimization to be 
computed only once per object. Finally, to make high quality appearance 

edits practical, an elliptical Gaussian is used to model projector pixels and 

their interaction between projectors. To the best of our knowledge, we build 

the first system that achieves high resolution and high quality appearance 

edits using multiple superimposed projectors on complex non-planar 

colored objects. We demonstrate several appearance edits including 
specular lighting, subsurface scattering, inter-reflections, and color, texture, 

and geometry changes on objects with different shapes and colors.  
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1. INTRODUCTION 

The ability to change the appearance of a physical object in order 

to create entirely different appearances is intriguing and has been a 

goal of computer graphics and augmented reality. Appearance 

editing impacts several applications including cultural heritage, 

product design, entertainment, and architectural relighting.  

1.1 Background  

Appearance edits can be achieved by using digital projectors to 

project carefully controlled light onto an object. Three issues are 

important when considering such appearance changes:  

i) the geometric (planar or non-planar) and photometric (white 

or colored) properties of the object,  

ii) the number of projectors used, and  

iii) the configuration of the projectors which in turn decides the 

quality or resolution of the appearance achieved. 

Earlier works on appearance editing have addressed complexity in 

only a few of the above aspects. For example, Raskar et al. [2001] 

presented a system for augmenting custom-made white-colored 

objects with colored imagery. When multiple projectors were used, 

they were configured to have little overlap in their fields-of-

projection (e.g., 10% overlap). The projected images were 

geometrically registered across the overlap regions between the 

projectors. To hide unwanted color inconsistencies from projector 

to projector, the overlap regions were feathered to create a smooth 

transition between the imagery illuminated by adjacent projectors. 

However, no explicit photometric calibration was performed. 

Bandhopadhyay et al. [2002] extended the approach to provide an 

interactive painting application and Okazaki et al. [2009] included 

a high-quality geometric acquisition method. 

Many single projector editing systems exist (e.g., Nayar et al. 

[2003], Grossberg et al. [2004], Grundhöfer and Bimber [2006], 

and Wetzstein and Bimber [2007]), however a single projector is 

fundamentally inadequate for handling objects of arbitrary shape. 

Even if the projector is optimally placed, some projector pixels will 

inevitably illuminate the object’s surface at grazing angles. In fact, 

achieving the highest resolution provided by the single projector at 

all points on the surface is impossible; in practice only a fraction of 

the maximum resolution is achieved. 

Multi-projector editing systems also exist (e.g., Raskar et al. 

[2001], Bimber et al. [2005a], Bimber et al. [2005b]), and this 

requires the projectors to be registered with each other to create a 

seamless appearance (e.g., Raskar et al. [2003]). The additional 

projectors provide significant benefits. For example, the additional 

light radiance assists in achieving more difficult appearance edits 

(e.g., editing on darker colored surfaces), Bimber and Emmerling 

[2006] improved the focus and thus the quality of an appearance 

edit, and Aliaga et al. [2008] used additional projectors to control 

the maximum amount of light exposed to each surface point to 

minimize light exposure to fragile artifacts. While these works are 

capable of working with arbitrarily shaped objects, the issues 

presented by grazing angle illumination remain unaddressed. 

We observe that using multiple projectors with superimposed 

fields-of-projection decreases the probability that a portion of the 

object’s surface is illuminated only at grazing angles. In addition, 

the presence of overlapping pixels from multiple projectors can 

increase the resolution at head-on surface locations, allowing the 

entire target appearance to be achieved with improved resolution, 

not just at grazing angle locations. 
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Improving resolution or achieving super-resolution has been 

addressed in previous works. For example, Park et al. [2003] 

improved resolution using temporally adjacent video frames. In the 

context of improving resolution with superimposed fields-of-

projection, previous works have only dealt with planar white 

surfaces (e.g., [Majumder 2005, Damera-Venkata et al. 2009]). 

Both these works addressed the issue of achieving a higher 

resolution than that of a single projector. However, by limiting 

their work to planar surfaces, the grazing angle issue is mitigated. 

Majumder [2005] showed theoretically that super-resolution on 

planar surfaces is not feasible without changing the size of the 

pixels. Damera-Venkata et al. [2009] showed that projector 

placements allowed limited control over the size of the pixels 

which can be exploited to achieve higher resolution via 

superimposition of projectors. The resolution of planar displays 

was doubled by superimposing 4-10 projectors. 

Non-planar surfaces pose an entirely different problem. As 

mentioned, superimposition from multiple projectors becomes 

necessary to achieve the resolution of a single projector at grazing 

angle areas. Further, non-planar surfaces result in much greater 

variations in the focal distance of the projectors, resulting in pixel 

blurs due to the defocus during superimposition. Finally, while 

white surfaces have an almost constant albedo, colored surfaces 

generally consist of significant variation in surface albedos. In 

designing our method, we consider the variations in pixel size, 

pixel blur, and surface albedos while striving to minimize 

degradation from a single projector resolution via superimposed 

multiple projectors. Thus, our content-dependent method allows us 

greater leverage to custom optimize the reduction of degradation in 

resolution in a spatially varying manner based on the desired 

spatially varying resolution of the target appearance. 

Our appearance editing framework significantly advances the state 

of the art by simultaneously considering complexity in all the 

aforementioned three aspects in order to achieve appearance edits 

of much higher quality than that possible by any earlier work. Our 

system achieves high quality appearance edits on complex non-

planar colored objects by using multiple superimposed projectors 

(i.e., nearly 100% overlap of their fields-of-projection).  

1.2 Approach Overview 

We present an approach for using multiple superimposed 

projections to achieve fast high-resolution appearance editing 

(Figure 1). By high-resolution, we imply a new appearance 

achieved at a resolution over the surface of the object that is higher 

than that accomplished using a single projector. By fast, we imply 

changing such appearances at nearly interactive update rates. We 

assume the surfaces to edit are diffuse or near-diffuse with no 

inter-reflections or other indirect illumination. 

Our appearance modeling component uses a multi-projector light 

transport matrix that models the influence of each projector pixel 

on the camera image plane. The inverse of this multi-projector 

light transport matrix provides the compensation images to be 

projected to achieve a desired appearance. However, unlike a 

single projector system, when using multiple superimposed 

projectors to improve the resolution of appearance editing, there 

exists many possibilities of how light can be illuminated from the 

projectors to create the desired appearance. We model this problem 

as a large constrained optimization and show that an optimal 

solution to this optimization yields the best quality appearance in 

the sense of producing a smooth, artifact-free appearance at the 

highest resolution possible while being within the illumination 

capability of the projectors. The error metric we optimize provides 

a quantitative measure of the proximity of our achieved appearance 

to the desired appearance. Lastly, we include an accurate modeling 

process for individual projector pixels. 

Our acceleration component tackles the issue that the constrained 

optimization system is huge, and solving such a large optimization 

once for each desired appearance is impractical. Our solution is to 

decompose the problem into two tasks: (a) a preprocessing task 

that is performed only once per object-projector setup; and (b) a 

fast runtime linear scaling task. The preprocessing task uses a 

parallelized solver to compute a solution for a base appearance. 

The computed solution is a base compensation image which when 

projected creates the base appearance. Then, for every new target 

appearance, the corresponding target compensation image is 

obtained by scaling the base compensation image at runtime by a 

scale image unique to the target appearance. This task only 

requires per pixel multiplication and division operations thus 

enabling fast appearance edits at runtime. 

1.3 Our Contributions  

Succinctly, we present three main contributions: 

 a formulation of high-resolution appearance editing as a 

constrained optimization whereby the constraints ensure the 

resulting solution is both feasible given the limited 

Fig. 1.  Fast High-Resolution Appearance Editing. We model the light interactions between multiple projectors with superimposed 

fields-of-projection over a surface of arbitrary color and geometry yielding fast, high-resolution appearance editing. All images shown are 

photos of objects visible by the naked eye. (a, c) The physical objects. (b) A glossy appearance of the object in (a) (note: glossiness is a 

static appearance and not view-dependent). (d) A subsurface-scattered marble appearance of (c). The resolution improvement achieved by 

our system: e) one projector, traditional visual compensation and f) our multi-projector method. g) Our appearance editing setup. 

 

(b) (c) (d) (a) (e) (f) 

(g) 
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illumination ability of the projectors and smooth despite the 

limited resolution of the cameras and projectors and presence 

of acquisition noise and error, 

 an algorithm to make computing and using the constrained 

optimization practical by decomposing the generation of new 

appearances into a onetime constrained optimization pre-

computation and a fast runtime linear scaling operation, and 

 a projector pixel modeling process to accurately compute 

projector pixel properties (size, shape, center, and intensity 

distribution) and to model their interaction amongst several 

projectors, all of which are critical for our objective of high-

resolution appearance editing and are also useful to other 

projector-camera applications. 

To demonstrate our approach, we perform several high-resolution 

appearance edits and analyses on a variety of objects. Our 

appearance edits include adding subtle details to objects, 

performing illumination changes, modifying object colors, 

simulating material alterations (e.g., transforming an object to have 

subsurface scattering, converting a diffuse object to one with a 

static specular appearance), and quantitative and qualitative 

measurements of the improvement in resolution. Altogether, the a 

priori acquisition and modeling requires 2-3 hours. Generating a 

new target appearance at runtime takes less than a second. 

1.4 Article Organization 

In the remainder of this article, we describe the main components 

of our approach. Figure 2 shows a summary of our overall system 

pipeline. In the order of importance, we first describe our a priori 

computations for high-resolution appearance editing as a multi-

projector constrained optimization (Section 2) – we assume that the 

acquisition and pixel modeling steps are already completed. Then, 

we describe our runtime computations for quickly generating target 

appearances (Section 3). The acquisition and pixel modeling step is 

of great importance since it models the scene, geometrically and 

radiometrically calibrates the projectors, captures a multi-projector 

light transport matrix, and performs accurate per-projector-pixel 

modeling. The geometric and radiometric information is needed in 

order to compute the necessary compensation images for a new 

appearance. Radiometric calibration serves to model the 

differences in color and intensity responses of the projectors and to 

linearize their behavior for more accurate appearances. In Section 

4, we provide algorithm details about acquisition and pixel 

modeling. Finally, we present implementation details (Section 5), 

examples and analyses (Section 6), and conclusions (Section 7). 

2. APPEARANCE MODELING 

The goal of our appearance modeling component is to obtain a set 

of projector compensation images that, when simultaneously 

illuminated on the object, produces a high-resolution visual 

appearance as visually similar as possible to the target appearance. 

Our method builds upon prior work on light transport and/or 

projector-camera systems (e.g., [Ng et al. 2003, Sen et al. 2005]) 

that use light transport to capture the light interactions with the 

object and then invert the  light transport matrix   in order to 

calculate the desired projector compensation images. However, we 

face two new challenges. 

 The light transport matrix   is very large. For example, for a 

multi-projector system, the size of   is on the order of     

rows by     columns thus making computational efficiency 

to be of prime importance.  

 Inverting a multi-projector light transport matrix   that 

explicitly models overlapping projector pixels requires 

solving a constrained optimization with many potential 

solutions each producing of a set of compensation images 

yielding appearances of varying quality. For a single 

projector, a unique pseudo-inverse of T can be easily 

computed by bounding the intensity value of each pixel 

between [0,1] – in practice, the intensity is then multiplied by 

the maximum pixel value, e.g., 255. For the multi-projector 

case, we must carefully constrain the problem so as to arrive 

at an optimal solution, defined as a high-quality and high-

resolution appearance. To illustrate this, Figure 3 shows a 

simple didactic example with several possible compensation 

image solutions when using multiple projectors. The figure 

intuitively shows that by using more projectors, a better 

solution can be achieved than with any single projector 

(Figures 3a-g). Further, the inversion of   must also take into 

account the illumination capabilities of the projectors or a 

solution might be computed that produces the target 
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Fig. 2.  System Pipeline. A summary of our system pipeline. 
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Fig. 3. Multi-Projector Constrained Optimization. (a) 

Target intensities to achieve across an appearance. (b) 

Maximum surface illumination intensities from one projector. 

Each hump represents one projector pixel across the surface. 

(c) Reconstruction of (a) (dotted) using (b) and appropriate 

projector intensity values. (d) Maximum surface illumination 

intensities from a second projector which, in this example, is 

positioned at a different orientation relative to the object that 

yields smaller projected pixels. (e) Reconstruction of (a) using 

both projectors. The reconstruction is more accurate than (c) 

and also more accurate than using only the second projector. (f-

g) Smooth projector intensities for the two projectors to 

achieve (e). (h-i) Without illumination constraints, intensity 

scales can overflow or underflow (in red) but theoretically still 

produce (e). (j-k) Without smoothness constraints, projector 

intensities may produce noise, shown as intensity undulations.  
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appearance but yields intensities that cannot be projected 

(Figures 3h-i). In addition, smoothness constraints are 

necessary to ensure the smooth areas of the target appearance 

appear as such; else the computed intensities will have 

unnecessary undulations (Figures 3j-k). 

Our described method supports full RGB color, but for clarity we 

express our techniques for a single channel. Extending to RGB 

implies repeating the same calculations for three independent 

channels. Spectral overlap between the color channels of the 

projectors and the camera is handled by the radiometric calibration. 

2.1 Light Transport 

The light transport   between   projectors of resolution     and 

a camera of resolution     is modeled by a        matrix 

(e.g., [Ng et al. 2003, Sen et al. 2005]). Mathematically, this is 

expressed as 

                                                         

where   is a       1 vector sequentially representing the pixels 

of all projectors and   is a       vector representing the camera 

pixels. Given a target image    (i.e., the desired appearance as 

viewed from the camera’s viewpoint), the target compensation 

image can be expressed as  

                                                        

where    is the pseudo-inverse of   (the pseudo-inverse is needed 

since   is typically not square).    can then be partitioned into   

segments, each containing the compensation image for a projector. 

A change in appearance can be obtained by replacing the target 

image    with a new one which in turn produces the new 

compensation image    needed to achieve the appearance. 

2.2 Inverting the Light Transport Matrix 

We formulate inverting the multi-projector light transport matrix   

as a constrained optimization problem. Sen et al. [2005] also used 

light transport but did not require  ’s inversion. Instead, they 

exploit Helmholtz Reciprocity to change the viewpoint from the 

camera to that of the projector by transposing the light transport 

matrix  . The work of Seitz et al. [2005] and of Wetzstein and 

Bimber [2007] is more closely related to our work. Seitz et al. 

define a theory of inverse light transport to create inter-reflection 

cancellation operators for removing the effects of inter-reflections 

and shadows from images. Wetzstein and Bimber invert the 

transport matrix of a single projector for radiometric compensation 

assuming no (significant) inter-pixel interaction. Further, since 

light transport is used, their method supports interreflection and 

global illumination effects. For these systems, only one way exists 

for assigning values to the projector compensation image pixels. 

To clarify this, let          be the intensity value assigned for 

projector pixel  . Each    is to be scaled just sufficiently to match 

the target image at the camera pixel which coincides with the 

projector pixel center. Hence, there is a unique inverse to    which 

when multiplied by    produces a unique compensation image   . 

In contrast, when introducing pixels from one or more additional 

projectors, there are multiple combinations of values for the   ’s 

that can create an appearance better than that produced by a single 

projector. To ensure the best quality, we need to find   ’s which 

minimize the difference between the achieved appearance and the 

target high-resolution appearance. Hence, computing    is an 

optimization. Formally, let    ‖      ‖; minimizing    yields 

a high-resolution appearance that is closest to the target image   .  

2.3 Illumination Constraints 

For multiple projectors, the solution values    must be constrained 

to be within the acceptable       range. In the case of a single 

projector system,    can be clipped to       as a post-process. This 

clipping assures the best possible quality possible with a single 

projector since no additional projectors can compensate for the 

error caused by clipping. However, for multiple projectors, 

constraining is critical to avoid solutions that achieve optimality 

with   ’s outside of a projector’s capability (e.g., underflowing and 

overflowing intensities in Figures 3h-i). The ill effects that occur 

when ignoring illumination constraints are shown in Figure 8. 

Thus, computing    now requires solving a constrained linear 

optimization with a solver capable of constraining the solution 

vector (we use Matlab’s lsqlin function which uses the Reflective 

Newton method of Coleman et al. [1996]). 

2.4 Smoothness Constraints 

Our constrained optimization also enforces adjacent projector 

pixels from the same projector that illuminate a uniform color 

region of the target appearance to have similar compensation 

values. Consider a local uniform intensity area of the target image. 

In general, there are two solutions to achieve this appearance: (a) 

the color comes from all of the projectors which sum up to the 

uniform color of the target image, or (b) at some pixels one 

projector has a high contribution but the projector has a low 

contribution at an adjacent pixel. This second solution introduces 

unnecessary noise due to projector intensity changes from pixel to 

pixel in a small local neighborhood, exacerbating calibration 

errors. To remedy this situation, we introduce smoothing 

constraints which assure (i) neighboring projector pixels from any 

one projector have smoothly changing compensation values if the 

corresponding area in the target image is also smoothly varying, 

and (ii) if the target image has a sharp edge in a local region, the 

compensation values for the corresponding neighborhood in the 

projector compensation image need not be similar. In essence, the 

weights of the constraints should be inversely proportional to the 

difference of the intensities in the target image inspired by the idea 

of bilateral filtering (e.g., [Durand et al. 2002]). 

To achieve this smoothness, we augment Equation 1 with 

additional linear equations (constraints). For any two adjacent 

projector pixels    and   , we add an equation      
          to 

the system in equation (1). The weight       is defined as 

         
|       |

   (       )
                                    

and simulates an inverse bilateral filter.   is the ratio of the target 

image intensity to the observed intensity of the projector pixel. The 

effect of using this constraint is illustrated in Figure 8. 

3. ACCELERATING APPEARANCE GENERATION  

While previous works have focused on reducing the acquisition 

time and storage requirements of the light transport matrix   (e.g., 

Garg et al. [2006], Sen and Darabi [2009], Wang et al. [2009]), our 

acceleration component focuses on improving the process of 

inverting   so as to quickly generate the compensation image    

for each new target image. Our observation is that computing    

can be decomposed into a pixel-wise multiplication and a 

computation of two compensation images: i) a base compensation 

image    computed once per object, and ii) a scaled compensation 

image    calculated at runtime for each new appearance. Then, 

using only simple pixel-wise multiplication we obtain an 

approximation to    at close to interactive speeds on the CPU (and 

could be at real-time rates with a GPU implementation). For our 

diffuse surfaces, the decomposition separates geometric 

components of the compensation into the base image and 

reflectance components of the compensation into the scale image. 
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3.1 Base-Scale Decomposition  

Our method is based on decomposing any desired target image    

into a base image   , unique to an object-projector setup, and a 

scale image   , unique to a target image. Thus, any target image    

can be expressed by 

                                                        

where   denotes a per-pixel multiplication operation. For the base 

image   , we compute its corresponding base compensation image 

   using equation (2) once a priori for the target object. Then, we 

seek to quickly compute the corresponding projector-space scale 

image    from the camera-space scale image    at runtime.  

Each projector pixel of    is computed as a weighted sum of 

camera pixels from   . We assume each projector pixel   
contributes light to a contiguous region of camera pixels    

(defined by a 2D elliptical Gaussian in Section 4) and denote the 

relative contribution of each pixel in    (i.e.,     for      |  | ) 

to    by the set of weights                |  |
 . Each scalar 

value       (i.e., the scalar intensity value of the  ’th pixel of the 

projector-space scale image   ) is then computed as 

      ∑   [   ]   

|  |

   

                                        

If we consider the weights    to approximately describe a 

normalized Gaussian weighted kernel, then    is equivalent to a 

low-pass-filtered version of   .  

The target compensation image    is now approximated by   , 

                                                  

where         is the base compensation image. The advantage 

of this decomposition is that we can pre-compute the base 

compensation image    for an object. Then, for every new target 

appearance   
 , we only need to multiply the base compensation 

image    with a corresponding scale image   
  to achieve the 

desired appearance. Figure 4 shows example images. 

Different    base images provide different system capabilities. For 

example, using a base image which exactly matches a target 

appearance will yield a high quality appearance edit for the given 

target appearance, however the solution may not be optimal for 

different appearances. To achieve a target appearance with high 

resolution details (i.e., sharp changes), a base image containing 

sharp changes everywhere may be used with the hope that many of 

the sharp changes in the desired target experience are spatially 

coincident with those of the base image – however, smooth target 

appearances may suffer. Our informal experiments have shown 

that a good compromise base image    for a variety of alterations 

is an image that captures the surface albedo of the object without 

significant illumination effects (e.g., only diffusely reflected light 

is visible [Mallick et al. 2005], see Section 5 for details on 

acquiring such an image). This base image contains sharp changes 

precisely where the object albedo actually changes and  thus 

ensures that a good compensation can be computed in those 

regions – this is beneficial to a target appearance (i.e., the smooth 

parts of the object’s physical albedo are easy to change, so we 

worry mostly about the boundary areas of the object’s albedo). 

Further, illumination changes (with the exception of sharp self-

shadows) are known to be low frequency. Choosing an all-white 

appearance would be similar in effect since a smooth transition 

would have to be computed at albedo color edges. 

Thus, our base-scale decomposition can yield visual accuracy 

comparable to that using a constrained optimization for each 

unique target appearance. Moreover, albedo changes (e.g., 

color/pattern changes) can be performed as well (see Figures 1 and 

12 for a variety of strong albedo changes), and a base image which 

captures the color edges of the albedo allow the optimization to 

improve the appearance at these color edges. Nonetheless, the 

maximum resolution achievable by albedo changes when using    

is subject to some resolution limitations (see Section 3.3). 

3.2 Base Compensation Image Computation 

To make computing the base compensation image         

practical despite the large size of  , we use a parallelized solver to 

compute   . Our parallelized solver divides the camera space into 

Fig. 4. Base-Scale Decomposition. Given a particular object (a) and a target image (b), superimposed projections are used to alter the 

appearance of the object to that of the target image. The target image is decomposed to a base image (c) and a scale image (d). The 

projector base compensation images (e) are computed once using the base image. The projector scale images (f) are computed using the 

scale image. (e) and (f) are multiplied together to create the final target compensation images (g) which are projected onto the physical 

object to create the target appearance. A photograph of the final appearance edited object is in Figure 1d. 

 

 

(f) projector scale images (Ps)

(e) base compensation images (Pb)

(d) scale image (Cs)

(c) base image (Cb)

(g) target compensation images (Pt)

(b) target image (Ct)

(a) physical object
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a grid, converting a single huge constrained optimization into 

multiple smaller constrained optimizations, one for each grid cell. 

The smaller constrained optimizations are then solved (with the 

Reflective Newton method of Coleman et al. [1996]) in a parallel 

four-phase fashion. Visual artifacts are avoided by introducing 

constraints from adjacent grid cells when solving a grid cell’s 

constrained optimization. Since we assume there are no indirect 

illumination effects, no additional constraints are needed from non-

adjacent grid cells. The main steps of our solver are as follows. 

1. First, we divide the camera space image    into a     grid 

of disjoint rectangular regions. Each region    , for         
and        , is of width   and height  , containing     
    camera pixels. We typically let     be       in size. 

Let     be the number of projector pixels from all projectors 

in the setup whose centers lie inside    . The rectangular 

regions     are extended by a fraction of   and   (e.g., 25%) 

to create overlap between adjacent    ’s and are called    
   

Let    
  be the number of camera pixels inside    

 , where 

       
 . Let the number of projector pixels whose center 

lie in    
  be    

 . Since        
  then        

  . The 

extended    
 ’s ensure continuity of the values in the 

compensation image across the boundaries of     during 

optimization (Figure 5). 

2. Next, smaller sets of linear equations, one for each    
 , are 

created from the large set given by Equation 1. All the 

equations involving the    
  projector pixels and    

  camera 

pixels are chosen to create a smaller system of equations, 

                                                   

In the above equation, the sizes of          and     are 

   
     

 ,       , and    
    respectively. In the next step, 

we solve these smaller systems of equations in parallel while 

assuring continuity across boundaries.  

3. Lastly, the parallel solver works in four phases. In each phase, 

the intensity values of projector pixels associated with 
 

 
 

 

 
 

regions are computed in parallel. These    
  of alternate rows 

and columns in the     grid are solved to assure that no 

overlapping    
 ’s are processed together. Solving a    

  

region finds the value of the compensation image at    
  

projector pixels, but only     of these pixels belonging to 

       
  are taken as part of the final solution. When solving 

for the adjacent region        
  in the next phase, values of the 

compensation image at some of the        
  projector pixels in 

the boundary of     and         are already finalized. Hence, 

the equations being solved in this next phase are much more 

constrained in the overlapping boundaries than in the current 

phase. The same pattern repeats in the subsequent phases 

when       
  and            

  are solved. In each phase the 

equations being solved get more constrained assuring 

continuity at the boundaries.  

3.3 Accuracy of the Decomposition 

The base-scale decomposition opens up the question of accuracy: 

how close is the result of using    to using   ? To address this 

question, we analyze the potential frequency content of the 

involved images. In our discussion, the maximum frequency 

content of an image that can be illuminated by a single projector is 

denoted as   (e.g., for a projector of horizontal resolution     , 

     ). 

Consider the case when a target appearance    has content with a 

maximum frequency of  . When using a single projector, the 

appearance    can only be fully achieved on the subset of the 

object’s surface that is head-on to the projection direction. In all 

other regions, the high frequency details in    are aliased (e.g., 

Figure 1e). For most non-planar objects, grazing angles are 

common, and the maximum frequency content over these portions 

of an object is a small fraction of  . In contrast, when using 

multiple projectors with superimposed projections, the limitation in 

the maximum possible frequency is removed because of the 

additional illumination directions (e.g., Figure 1f).  

The compensation images    computed by our base-scale 

composition accurately yield a maximum frequency content of   

and thus can be used to significantly improve appearance editing 

resolution as well as computation speed. Recall         .    

has the same maximum frequency content as    since it is obtained 

by computing    and multiplying with   ;    in turn is 

bandlimited by  , thus so is   . Also,    is bandlimited by   since 

it is created in projector space using Equation 5. Therefore,    is 

bandlimited by   as would be   , and thus the base-scale 

decomposition can be used to significantly improve the 

computation speed of multiple appearances without sacrificing 

accuracy in the appearances. 

However,    can theoretically have content with a frequency 

higher than   since the camera’s resolution is usually higher than 

the projector’s resolution (the frequency content is still limited by 

the camera’s resolution, however). For surface locations that are 

head-on illuminated by two or more projectors,    can theoretically 

produce an appearance with frequencies higher than   but not 

more than that possible by the combined sampling ability of the   

projectors. In this case, using the base-scale decomposition without 

sacrificing accuracy requires the high-frequency content of    to be 

shifted into    rather than leaving it in   . Then, the frequency 

content of the appearance that is higher than   is transferred to    

via   , making      . If the high-frequency content is not placed 

 Fig. 5. Base Compensation Image Computation.  Our algorithm divides the projector pixels into four groups, each processed in 

parallel.  In each step, one of the projector pixel groups (in red) is solved. Yellow pixels are part of    
 . Blue pixels are unused and yet 

to be solved. Green pixels have already been solved, and the grey pixels are pixels in    
  which are already solved.  

   

 

proj. pixels to solve extended proj. pixels unused proj. pixels solved proj. pixels extended, solved proj. pixels 
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in   , the higher frequencies will be lost during the low-pass 

filtering to create    and will result in aliasing artifacts. An 

experimental validation is illustrated in Figures 12e-f (a proof is 

also available in Appendix A). Since only a low resolution    

allows us to create a large number of different appearances 

quickly, this shows that for target appearances that contain 

frequencies higher than  , the full constrained optimization must 

be performed (i.e.,    is used as the base image to compute   ). 

4. ACQUISITION AND PIXEL MODELING 

Our approach includes a comprehensive acquisition component to 

model and calibrate the appearance editing stage. The digitization 

and calibration methods are mostly based on previous methods. 

However, a key distinguishing factor of our acquisition component 

is an accurate projector pixel modeling method. Accurately 

detecting projector pixel properties – such as pixel shape, center, 

and intensity distribution as well as the overlap between projector 

pixels – is critical for our objective of high-resolution, high-quality 

appearance edits and for making high-resolution appearance 

editing feasible using off-the-shelf hardware. Since projector pixels 

may overlap with other projector pixels from the same projector or 

from other projectors, a precise model that reflects the overlap 

between pixels is important. If the amount of overlap is over- or 

under-estimated, aliasing artifacts or excessive loss of contrast may 

appear in the resulting appearance. 

Contemporary work on projector-camera systems seeks a good 

analytical model for representing projector pixels (e.g., [Summet et 

al. 2006, Yang et al. 2005]). Similar to Chuang et al. [2000] and 

Ruzon and Tomasi [2000], our projector pixel modeling approach 

is based on using 2D elliptical Gaussians to define metapixels, but 

unlike those approaches we use 2D elliptical Gaussians to precisely 

model the interaction of projector pixels across multiple projectors. 

Our pixel modeling approach is useful for appearance editing and 

also for other projector-camera applications. 

4.1 Calibration and Light Transport 

Prior to appearance editing, we perform a self-calibrating 

reconstruction of the object (which also calibrates the poses of the 

projectors), compute a radiometric calibration, and sample the light 

transport matrix. Our self-calibrating object reconstruction method 

is based on the photogeometric structured-light method of Aliaga 

and Xu [2009] which supports diffuse and mildly specular objects. 

The projectors and camera are radiometrically calibrated using 

high dynamic range (HDR) imaging techniques that also output the 

camera transfer function [Debevec et al. 1997]. Further, to 

linearize the projectors, we use the work of Raij et al. [2003].  

To acquire the light transport matrix  , a set of patterns is 

illuminated from each projector onto the scene, and a camera 

captures their projection (similar to Sen et al. [2005]). For these 

patterns, a projector image is divided into regions of     pixels. 

In each pattern, only one pixel in each region is turned on (to 

white). The captured image for pattern          is denoted by   . 

4.2 Projector Pixel Modeling 

Projectors attempt to emit discrete (square) pixels, but due to the 

relative orientation of the projector with respect to the local surface 

normal and the local dispersion of light on the surface, the 

appearance of a pixel projected on a diffuse surface on the camera 

plane more closely resembles a blob of pixels with a smooth fall-

off (Figure 6a). We experimented with several pixel models 

(Figure 8) and found elliptical Gaussians to be good estimates of 

these metapixels. A metapixel is not a simple point but has 

associated properties such as axes lengths, amplitude, position, and 

orientation as defined by an elliptical Gaussian (Figure 6b). 

Further, a metapixel exists in camera space instead of projector 

space but is still indexed in the same way as projector pixels. 

Another advantage of our analytical modeling of projector pixels is 

the improved ability to support the limited resolution of cameras. 

For an ideal noise-free camera at the same distance from the object 

as all projectors, the Nyquist sampling criterion states that a 

camera resolution of double the horizontal and vertical projector 

resolution is sufficient to estimate the projector properties to 

subpixel accuracy. However, when using consumer cameras, the 

presence of noise cannot be avoided and thus a denser sampling is 

required. Our experiments show that our model better estimates 

projector pixels’ properties and their overlap amounts, despite 

relatively coarse camera pixel sampling, and obtains improved 

quality as compared to simpler approaches. 

4.2.1 Metapixel Acquisition 

To capture the properties of the metapixels, we exploit the patterns 

used to acquire the light transport and also capture an image   of 

the scene as illuminated by an all white image.  The intensity of the 

metapixels captured in image    is related to the poses of the 

projector, camera, and surface as well as the color and reflectance 

of the surface. Our initial modeling goal is to accurately detect the 

blob in    corresponding to each metapixel so that we can estimate 

its shape and location. However, if the nature of the object’s 

reflectance makes the blob too dark, we cannot detect it well. To 

remove the dependency on the intensity of the surface reflectance, 

we divide each    by  . The resulting intensity independent 

pattern image   
 , has a normalized intensity for every metapixel. 

In the following, we describe how to process   
  to estimate the 

elliptical Gaussian for each metapixel.  

4.2.2 Fitting Optimization 

An elliptical Gaussian         is fitted to each metapixel blob in 

  
 . We compute the elliptical Gaussian’s amplitude  , camera 

image center        , orientation  , and standard deviations 

(     ) along the ellipse’s two semi-axes. Since   
  is intensity 

independent, we cannot estimate the elliptical Gaussian’s 

amplitude   from this image. However,   
  is used to estimate all 

other properties of a metapixel using a non-linear least squares 

optimization that minimizes 

‖          
      ‖                                   

where       is a camera pixel covered by the metapixel. To 

initialize the optimization, we use the projector-camera 

correspondences from the geometric calibration. These estimated 

properties are used to detect the blob corresponding to the 

metapixel in  , and then   is computed  as a weighted average of 

the constituting pixel intensities in  . Since each metapixel blob is 

Fig. 6. Projector Pixel Modeling. (a) Projector pixels from an 

acquisition pattern image used to estimate metapixel parameters. 

(b) Close-up of a projector pixel on the camera plane and the five 

metapixel parameters to be discovered.  

 

(a)

σx σy
θ

(x0, y0)

(b)
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non-overlapping in each   , the fitting optimizations for each 

metapixel are computed in parallel. 

4.2.3 Metapixel Interaction 

To accurately model the interaction between metapixels, we use 

the multi-projector light transport representation as described in 

Section 2. In this representation, the matrix element        
corresponds to the response of camera pixel   to the projected 

image of projector pixel   on the object surface. To create  , we 

assign   
         to matrix element        where   

       is the 

elliptical Gaussian function for metapixel   and (     ) are the 

camera coordinates of camera pixel  . Since the metapixels may 

overlap each other in camera space,   encodes the interaction 

between metapixels within and across different projectors and is 

generally a sparse matrix. Our parallel solver described in Section 

3.2 breaks up   into multiple smaller matrices. While these smaller 

matrices are relatively denser than  , they are still sparse and 

benefit from our sparse constrained linear system solver. 

4.2.4 Metapixel Regularization 

To reduce noise in the system, we exploit the fact that metapixels 

from the same projector are uniformly spaced in the projector 

image. In general, errors are present in the acquisition, calibration, 

digital cameras, and elliptical Gaussian optimizations. To reduce 

noise, we use a priority-based algorithm which ensures that the 

locations of the metapixels in the camera image exhibit the 

expected local uniformity in their spatial distribution. Consider 

metapixel   of a projector with estimated center        . Even for a 

nearly parallel camera image plane and projector image plane, the 

estimated metapixel locations computed in Section 4.2.1 deviate 

from perfect uniformity due to accumulated numerical errors. Our 

priority-based regularization algorithm regularizes the spacing 

between metapixels by perturbing the estimated        ’s so as to 

improve their spatial uniformity with respect to immediately 

adjacent metapixels from the same projector. The local surface 

orientation and perspective foreshortening will make the distances 

between immediately adjacent metapixels not perfectly equal; 

nevertheless, we found our approximation to be sufficiently 

accurate to yield improved results.  

This regularization method consists of the following steps, 

repeated for a number of iterations. 

1. First, we identify the estimated centers of the eight connected 

neighbors of metapixel   in the camera image. Since we know 

the projector pixel that corresponds to each metapixel, we can 

obtain metapixel adjacency information directly from the 

pixel position on the projector image plane. 

2. Next, we estimate the local uniformity in spatial distribution 

at (     ) by computing the ratio    of the shortest to the 

longest distance of (     ) from its neighboring metapixel 

centers in the camera image.  

3. To prioritize the metapixels, we introduce a metric    defined 

as the change in    if metapixel   is moved from its current 

location to the average location of its neighbors in the camera 

image. Let   
  be this new ratio and          

 . A positive 

   indicates an improvement in the local uniformity while a 

negative    implies a reduction in the uniformity.  

4. We place the metapixels in a max-heap. When the metapixel 

with the largest    is moved, the maximum benefit to achieve 

local uniformity in the spatial distribution is provided. 

5. To perform the overall regularization, we follow a greedy 

optimization approach by removing a metapixel from the top 

of the heap, moving its estimated center (     ) to the 

average of the centers of its connected neighbors, and 

updating    for its affected neighbors (e.g., all neighbors are 

also removed from the heap, updated, and reinserted). This 

process iterates until the largest    is too small to provide any 

benefit or the heap contains only negative   ’s. 

On rare occasions, some of the neighbors of metapixel   may not 

be detected in the camera image due to the object’s reflectance. In 

this case, moving the estimated metapixel to the average of the 

centers of its neighbor might increase the size of the hole created 

by the undetected neighboring metapixel(s). To avoid this 

situation, metapixel   is connected to farther metapixels and the 

metapixel is moved to a weighted average of the estimated centers 

of its neighbors. The weights are inversely proportional to the 

distance between the neighbors in the projector space. If the 

metapixel lies on an edge or a corner (e.g., it is missing a row or a 

Fig. 7. Regularization. (a) Before regularization, the metapixels 

have non-uniform spacing. (b) After regularization, the 

metapixels have a more uniform pixel spacing. 

(a) (b)

Fig. 8.  Comparisons. (a) Computing a naïve inverse light 

transport optimization results in artifacts. (b) A constrained 

optimization restricts the pixel values to      , but severe noise 

and graininess still exists. (c) Projector pixel modeling using 

elliptical Gaussians is added for an improved image. (d) 

Regularization is added to reduce noise. (e) Smoothness 

constraints are added for a smooth, noise-free appearance. (f) 

Using quadrilaterals to model projector pixels results in more 

noise due to inaccurate projector pixel modeling.  

(a) (b) (c)

(d) (e) (f)

target 

appearance zoom-in
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column of its neighbors), the metapixel’s position is not adjusted. 

Figures 7 and 8 show the results of regularization. 

5. IMPLEMENTATION DETAILS  

System Setup. Our setup consists of three 1400×1050 Optoma 

EP910 projectors and a Canon Digital Rebel XTi 10MP camera. 

The computer used contains four Dual core 3GHz processors. The 

camera-object distance is approximately 1m. The three projectors 

are placed near the camera also approximately 1m away from the 

object, oriented directly at the object to achieve super-imposed 

fields-of-projection (see Figure 1g). For one object, the total image 

acquisition time is about 1 hour, the projector-camera calibration 

process takes 10 minutes, the metapixel fitting optimizations 

complete in 3 minutes per projector, and the constrained 

optimization takes 1 hour. Once the base compensation image is 

computed, it takes less than one second on the CPU to compute the 

target compensation images for a new appearance. 

Metapixel Estimation. For the    images, we use   = 16 yielding 

256 unique patterns. Metapixels typically span 10-40 camera 

pixels. We ignore results for metapixels that converged to 

variances or positions far from the initial guess. Such failures occur 

for projector pixels falling on a surface fragment at a large grazing 

angle with respect to the camera or for sharp discontinues on the 

object’s surface. In these cases we revert to the initial guess 

obtained from the 3D model. The projector pixel still participates 

in appearance editing, but its compensation quality is lower. In 

practice, very few metapixels fail the fitting optimization. 

We use HDR imaging for capturing   in the metapixel acquisition 

stage during system setup. Since this image is used to compute the 

amplitude of the metapixels, HDR imaging assures higher accuracy 

by removing over and under saturation artifacts in the captured 

images. Hence, in Equation 1 both   and   – formed by the 

amplitude and the base image respectively – are in HDR.  

Also, concavities on the object’s surface negatively affect the 

fitting optimization of the metapixels only when the scale of the 

concavities is similar to the size of a projector pixel. With one-

megapixel projectors, this is not too common for table top size 

objects. Larger scale concavity is illustrated in our examples. 

Base and Target Image Computation. To obtain base images, we 

use a simple method for objects that do not deviate drastically from 

being Lambertian. Since our method does not require the base 

image to strictly contain only the albedo, we capture   at different 

exposures for each projector and form an HDR image for each 

projector. Then, we create a base image by taking the minimum 

pixel intensity at every pixel across the projector HDR images. 

This process removes most specularities which may arise from 

projector light illumination. To compute target images, we use 

Blender (http://www.blender.org), a 3D content creation suite. 

6. RESULTS AND DISCUSSION 

In this section, we provide some insight into the behavior of our 

algorithms as well as example appearance edits. 

Figure 8 shows the per-algorithm step impact. We start by directly 

placing the pixel intensity values from the    images into a multi-

projector light transport matrix  . Then, without any projector 

pixel modeling, denoising, or constraining of the optimization, we 

calculate    and use the resulting projector compensation images. 

The results show severe color and noise artifacts (Figure 8a). The 

color artifacts are due to overflow/underflow of projector 

intensities. Although we can clamp the intensities, the desired ratio 

of the color channel intensities would not be preserved, resulting in 

color artifacts. Next, we include the step of constraining the 

optimization to produce pixel intensity values within      . This 

removes the color clipping artifacts (Figure 8b). Subsequently, we 

incorporate the projector pixel modeling with elliptical Gaussians 

and obtain a better quality appearance (Figure 8c). Adding priority-

based regularization for the metapixels (Figure 8d) and smoothness 

constraints in the optimization of the compensation image results 

in a smooth and pleasing appearance (Figure 8e). As a comparison, 

we directly model the influence of a projector pixel by the 

corresponding patch of camera pixels (Figure 8f), typically 

forming a disc or quadrilateral, and find significantly more noise in 

this alternative solution due to inaccurate pixel modeling. 

Figure 9 demonstrates the accuracy of using our parallel algorithm 

in computing the constrained optimization. We varied the size of 

    between    ,      , and       pixels for the object 

shown in Figure 9a when solving the constrained optimization for 

the base target appearance (described in Section 5). Solving the full 

constrained optimization would equate to a single region 

encompassing the entire object in camera space. Figures 9b-d show 

synthetically created appearance edits for a portion of the base 

appearance. For all three     region sizes, no visual artifacts arise 

due to our parallel solving algorithm. 

We visualize the residual errors from the constrained optimization 

to demonstrate the improvement in the ability to achieve a high-

resolution appearance as projectors are added to the system. Figure 

10a shows a photograph of an object (Figures 1e-f) whose 

appearance was edited to contain a checkerboard pattern. For each 

Fig. 9. Region Size Variation during 

Optimization. We show our parallel 

algorithm’s accuracy by varying the region 

   ’s size. No visual artifacts are produced in 

the resulting base appearance. a) Base image of 

patterned pedestal used for the optimization. b-

d) Close-ups of a resulting synthetically created 

base appearance with    ’s size varied amongst 

   ,      , and       pixels. 

b) c) d)

a)

Fig. 10. Visualization of Optimization Error. (a) Photograph 

of an object with a checkerboard pattern appearance. (b-d) Show 

the per region luminance residual error using 1, 2, and 3 

projectors respectively (larger error in red). Error reduction with 

more projectors indicates the ability to provide a higher-

resolution target appearance. The average normalized per-region 

residual error for 1, 2, and 3 projectors is 0.051, 0.014, and 

0.007, respectively (e.g., for a 0-255 color channel, the average 

errors are 12, 5, and 2). 

(a) (b) (c) (d) 
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of Figures 10b-d, we show the per region residual optimization 

error after computing compensation images via the constrained 

optimization (red is a large error, blue is a small error). From left to 

right, the figures use one to three projectors in the optimization. As 

the number of projectors increases, the overall optimization error 

decreases. In Figure 10b, the single projector is at a grazing angle 

with the right-half of the object resulting in large errors. In Figure 

10c, the added projector is also at a grazing angle with the right 

half of the object; the errors are mildly reduced. For Figure 10d, a 

third projector is positioned to illuminate the right half of the 

object resulting in an overall reduction of error. 

The improved resolution of appearance edits due to adding 

additional projectors to our system is empirically shown in Figure 

11. Here, another checkerboard pattern is applied to the same 

object used in Figure 9. In Figures 11a-d, we show visualizations 

of the similarity between the captured image    of the appearance 

edited object and the target image    (red is high similarity, blue is 

low similarity). We use a local sharpness metric   to measure the 

similarity of    to the high resolution reference   , 

  
             

   (                   )
                          

where    and    are small neighborhoods around a pixel in binary 

edge-detected    and    images containing at least one checker 

pattern respectively, and          is a function which returns the 

number of white pixels in a neighborhood  . Naïvely-generated 

compensation images (i.e., generated without any projector pixel 

modeling, smoothness constraints, or metapixel regularization as in 

Figure 8b) and compensation images generated using our method 

are compared for one and three projector cases (Figures 11a-d). We 

show a spatially varying value for   (normalized to 100), and the 

results show that using three projectors yields better appearance 

edits than a single projector. It is also shown that our method 

produces an improvement over the naïve approach when using 

either one or three projectors. Figures 11f-g compare    for a 

grazing angle case using compensation images generated by a 

naïve single projector approach and by our method. 

An analysis of the effectiveness of our base-scale decomposition 

scheme for target appearances is shown in Figure 12. In Figure 

12a, we altered a strip of an object’s appearance to that of a 

horizontal sinusoidal pattern (Figure 12b) of increasing frequency 

up the object. Figures 12c-f are thresholded photographs of the 

altered object using compensation images computed with different 

settings. In general, as the sinusoid’s frequency increases, the 

ability of our system to re-create the sinusoids decreases, resulting 

in aliasing artifacts. Figures 12c-d show the resulting appearance 

using a full constrained optimization of one and three projectors 

respectively with no base-scale decomposition (the sinusoidal 

pattern is used as the target appearance). When only one projector 

is used, aliasing begins at the limiting frequency content of one 

projector, labeled as    in Figure 12c (which is very close to 

theoretical maximum frequency content  ). The projector used is 

fronto-parallel to the left side of the strip, so a higher resolution is 

attained on the left side of the strip. With three projectors, the 

maximum frequency content attained increases, and aliasing begins 

at    (Figure 12d). Based on the sinusoidal pattern, we estimate 

         in this example. Figures 11e-f show the result of using 

our base-scale decomposition while varying the base image    to 

have different maximum levels of frequency content. In Figure 

12e, a high-pass filtered version of the target image (with cutoff set 

at   ) is used as   . The resulting quality is similar to that shown 

in Figure 12d for the full optimization. If instead    is low-pass 

filtered (with cutoff set at   ), the higher frequency content of the 

appearance is aliased (Figure 12f) and the best frequency content 

achieved more closely resembles the best possible with a single 

projector. Altogether, this analysis shows that the base-scale 

decomposition always yields similar quality as the full constrained 

optimization for frequency content at or below   , thus empirically 

verifying Section 3. Further, frequency content in the target 

appearance greater than    is attainable using the base-scale 

decomposition so long as    has the frequency content above   . 

Figure 13 demonstrates the improved quality of our appearance 

edits by comparing our method against previous multi-projector 

systems. These photos are sub-sections of the appearance in Figure 

14c. Figure 13a shows the resulting appearance edit using three 

superimposed projections but without constraining the pixel 

intensity values to       when solving the light transport matrix 

and thus in a manner similar to Wetzstein and Bimber [2007]; 

significant visual artifacts are present due to pixel value over/under 

flowing. By constraining the pixel intensity values to      , the 

visual quality is improved, but visual errors are still observed 

(Figure 13b). Our system minimizes visual artifacts and achieves 

more consistent colors (Figure 13c). 

In Figure 14, we show several altered objects demonstrating 

various appearances and capabilities of our system. These 

appearance edits include the effects of novel illumination and 

geometric and color edits. Some of these effects are dynamic 

which are better illustrated in our accompanying video. The 

dynamic appearances are achieved by quickly swapping between 

computed compensation images for each projector. Target 

appearances may also include view-dependent effects such as 

specular highlights and inter-reflections (e.g., Figure 1b). While 

these appearances are static (i.e., no viewer tracking), static view-

dependent effects are still compelling as shown in our video. 

Figures 14c-e show an example of non-additive appearance editing 

where the surface albedo’s color patterns are cancelled in addition 

to colors being edited. The inset next to Figure 14c shows the 

physical appearance of the patterned pedestal used in this example 

(i.e., not the same object as in Figure 1), on top of which a new and 

non-additive pattern was placed for the target appearance. 

Fig. 11. Visualization of Achieved Resolution. Visualization 

of our quality metric (higher means better) for grazing angles 

using (a) one projector naïve method; (b) one projector our 

method; (c) three projectors naïve method; and (d) three 

projectors our method. (e-g) Head-on: object photo, one 

projector naïve method, and three projectors our method. 

(e) (g) 

(a) (b) (c) (d ) 

 =13.7  =14.9  =20.5  =26.6 

(f) 
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7. CONCLUSIONS 

We presented a framework for fast high resolution appearance 

editing using multiple superimposed projections. Our solution 

builds upon multi-projector light transport and solves a constrained 

optimization which yields an appearance of the highest resolution 

possible. With our base-scale decomposition, the constrained 

optimization is done once, and later appearance modifications are 

done quickly by fast, runtime linear scaling operations. We also 

use an elliptical Gaussian model to obtain accurate, noise-free 

estimates of projector pixel centers, sizes, shapes, and interactions. 

Several compelling appearances are achieved. 

Limitations and Future Work 

Our approach is not without limitations and several interesting 

avenues of future work lay ahead. First, there is a loss of contrast 

as a result of the need to compensate for the weak presence of 

certain frequencies in the surface’s reflectance function. Hence, an 

item of future work is using optimal projector locations [Law et al. 

2010] and minor target appearance modifications [Law et al. 2011] 

in order to better accommodate desired alterations. Second, our 

method is not view dependent, despite yielding some convincing 

but static view-dependent effects (e.g., Figure 1b). While using 

head-tracking and special viewing devices is an option, we look to 

other auto-stereoscopic methods to generate compelling view-

dependent effects. Third, we are investigating how to support non-

Lambertian objects (e.g., using [Xu and Aliaga 2009]). Fourth, we 

are interested in incorporating de-pixelation and focus-

improvement algorithms (e.g., [Zhang and Nayar 2006]). Fifth, we 

would like to explore techniques to reduce preprocessing time. In a 

real world scenario, errors accumulate due to vibrations and drift; 

faster pre-processing would improve the practicality of our system. 
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APPENDIX A: Analysis of Image Decomposition 

When no base-scale decomposition is applied, the target 

compensation image    is given by 

            

where       Then, by considering      to be the  th row of  , 
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]. 

Assuming objects with no self-occlusion and no self-reflection, we 

can say that every pixel in the projector affects only one spatially 

contiguous area in the camera and vice versa. Hence, for both   

and  , every pixel   in    affects a single neighborhood denoted by 

  . Using           , the value of the accurate compensation 

image at pixel  ,       is given by 

              ∑                
 ∑                      

. 

Next, when using our approximation,    is given by  

   [

       

       

 
       

]    . 

Hence,  

      (∑                
)        . 

Now, recall that  

      ∑              
, 

where      are normalized weights (i.e., those of the elliptical 

Gaussian at that pixel). Thus,    is the image obtained by a low-

pass filtering of   .    will be exactly equal to    if there is no loss 

of information when low-pass filtering   . This can only happen if 

   is bandlimited by the maximum frequency that can be sampled 

by one projector. Higher frequencies have to be encoded in   . 

Fig. 14. Example Appearance Editing. (a) Original photograph of a vase. (b) The vase with two leaves added. (c-e) Patterned pedestal 

(photo of original in inset) with three appearances imparted on it. (f) Beethoven model with changed appearance (photo of original in 

inset). (g) Beethoven model with the head appearing lowered as in a nodding motion, however the actual object is unchanged. 

(d)(a) (b) (c) (g)(f)(e)
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