
COMMUNICATIONS OF THE ACM March 1997/Vol. 40, No. 3 49

Virtual Objects
RealWorld

Computing at the
intersection of

two realms.

Daniel G. Aliaga

THE TERM VIRTUAL REALITY USUALLY REFERS TO SYSTEMS THAT

generate a totally synthetic environment, in which the end user

is able to specify all the characteristics of the new environment.

A head-mounted display and an orientation and position tracker enable

the user to roam around the new virtual world, look up and down, and

walk into rooms that don’t physically exist. This capability allows users

to experience environments that are not yet created (e.g., architectural

walk-throughs) or position themselves in worlds they can never really

visit (e.g., exploring a surface at an atomic level).

in the

There are, however, situations in which the user
might want to remain in the real world and instead
of completely replacing the real world with a virtual
world, might wish to merge the virtual world with
the real world. An augmented reality system (see
Figure 1) employs a see-through head-mounted dis-
play and an image-generation system to present the
user with a world consisting simultaneously of vir-
tual and real objects. Such a system could allow an
architect to make actual-size modifications to an
existing building, a homeowner to decorate a real
house, or children to design and build virtual toys
that could be used simultaneously with real toys. Yet
another application could allow a doctor to view
ultrasound images of a fetus registered in place over
a pregnant woman’s womb [3]. The KARMA sys-

Figure 1. An augmented reality system. A see-through
head-mounted display is connected to an image-generation
system to present to the user a world consisting of both
virtual and real objects.

tem [5] uses an augmented reality system to assist
the user in performing 3D tasks. This system com-
bines an intent-based illustration system with a pro-
totype augmented reality system to explain simple
laser printer maintenance tasks.

Objects in the real world are affected by phe-
nomena such as gravity, friction, and collisions.
Future applications of merged virtual and real envi-
ronments might wish to model such phenomena;
otherwise, the interaction of the two worlds may
not be at all convincing. Significant work must be
done before a virtual environment convincingly
simulates these phenomena. Consider an office envi-
ronment where the user has a virtual notepad. The
merged environment would not be convincing if,
when the notepad is placed on the real table, it

apparently falls through the table. Similarly, in the
previous example of a homeowner decorating an
empty house, the homeowner might desire the
addition of a sliding door or venetian blinds. These
virtual additions should properly interact with the
surrounding (real) house.

VROC
The VROC (Virtual and Real Object Collisions)
system uses computational power readily available
today for modeling interactive collision detection
and collision response of moderately complex envi-
ronments containing both virtual objects and real
objects. A 3D mouse (or hand-held tracker) is pro-

vided so the user can grab and control the linear
and angular velocities of the virtual objects. The
system constantly performs collision detection and
computes a classical mechanics-based collision
response to model the interaction (e.g., collisions)
between virtual and real objects, as well as the
interactions among the virtual objects themselves.
Figure 2 presents an outline of the entire VROC
system.

Collisions
In order to maintain sufficient realism, 12 frames
per second is the minimum acceptable frame rate.
Thus a very fast collision detection method is nec-
essary. The collision detection method will deter-
mine which objects intersect and how they

intersect. This information is then passed on to
the collision response method, which alters the
trajectory of the objects according to the laws of
classical mechanics.

OVER THE LAST DECADE, MULTIPLE

approaches have been developed for
collision detection and collision
response. No single collision detec-

tion or collision response algorithm can be said
to be ideal. VROC uses a fast collision detection
algorithm for 3D polygonal (convex) objects.
The algorithm is based on Lin and Canny’s [9]
work (since the implementation of the VROC
system, the Lin and Canny collision detection
algorithm has been further enhanced and used in
larger scale environments [4]). A 3D polygonal

model approximates an object as a collection of pla-
nar patches, typically triangles, which together
form a 3D object. The algorithm provides efficient
collision detection by assuming that an object’s
position and orientation will not drastically change
from one frame to another (interframe coherency).
The algorithm maintains a list of the closest fea-
tures between all pairs of polygonal objects. A fea-
ture corresponds to either a face (2D polygonal
patch) or to one of its edges or vertices. When the
distance between the features is less than a mini-
mum tolerance value, the objects are considered to
have collided.

Once two objects have collided, a response must
be computed. The VROC system assumes that all
objects are rigid and have nearly inelastic proper-
ties. Furthermore, only a single point of contact
between a pair of objects is modeled (since all
objects used are convex, this is generally the case)
[10]. These assumptions simplify the collision
response computation. Based on the conservation of

50 March 1997/Vol. 40, No. 3 COMMUNICATIONS OF THE ACM

See-Through
Head-Mounted

Display

Collision Response

Collision Detection

Virtual World

Hand-held tracker

3D Model

Real World

(Images)

(Images)

User

Figure 2. Schematic of entire VROC system. The user employs
a 3D mouse (or hand-held tracker) to control the initial position
and velocities of the virtual world objects. Collision detection
and collision response is performed in the merged virtual and
real-world environment. Virtual imagery is combined with
real-world imagery in the see-through head-mounted display and
presented to the user.

linear and angular momentum, the new velocities
can be easily obtained:

m1 v̄1= m1v1 + R I1w̄1 = I1w1 + p1 x R
m2 v̄2 = m2v2 - R I2w̄2 = I2w2 + p2 x R

The variables m, I, v, w describe each object’s
mass, inertia tensor matrix, linear velocity and angu-
lar velocity. The p vector is the relative vector from
each object’s center of mass to the point of contact. R
is the impulse transfer vector (computed by invert-
ing the 15 x 15 matrix formed using these equa-
tions). Each object has its own elasticity coefficient.
In order to simulate (slightly) elastic collisions, the
computed R vector is scaled by the minimum of the
2 elasticity coefficients.

The collision detection and collision response
algorithms are combined to form a dynamics simu-
lation. This implies that all the computations must
be parametrized by time. The user must specify the
time step to use to go from one frame to the next
frame. The main problem with key-frame collision
detection is that objects with large velocities might
penetrate or pass through each other in one frame
transition. Given the maximum linear velocity and
a collision distance (largest distance at which two
objects are considered to have collided [8]), the
frame time step can be divided into internal time
steps such that the internal time steps are small
enough to guarantee that no two objects will totally
pass through each other. Furthermore, the exact

time of collision can be found by recursively subdi-
viding the internal time step (binary search).

Optimizations

SINCE OBJECTS HAVE CONTINUOUS MOTION, IT IS

possible to construct a sorted list of possible
collision times [9]. Given the distance
between two objects, the bounds on the maxi-

mum linear velocity and linear acceleration, it is pos-
sible to predict the earliest time at which an object
pair could collide. Since, in addition, objects have
angular velocities, a safe prediction requires the dif-
ference between the radius of the inscribed sphere and
the radius of the circumscribing sphere of each object
to be subtracted from the inter-object distance.

Collision checking must be performed on all

object pairs because it is not known which objects
will collide in an environment. This gives a maxi-
mum of n2 collision pairs, where n is the number of
objects. Fortunately, in the environments simulated
by the VROC system simulates, many of the objects
(virtual or real) are not expected to move (e.g., real-
world tables or monitors). These objects are consid-
ered static and no collision checking is done between
two static objects. For example, if an environment
uses 100 static objects to construct a desktop and
only one moving (dynamic) object, then only 100
object pairs are checked as opposed to the more than
10,000 pairs that would have to be checked other-
wise. The images in Figure 3 depict a merged virtual
and real environment.

COMMUNICATIONS OF THE ACM March 1997/Vol. 40, No. 3 51

Figure 3 (a) (b). This example shows a simple merged virtual and real environment. The figures are two frames from a VROC video
sequence where the user grabs a virtual ball and bounces it on a real staircase. Here we see a real miniature staircase with virtual
balls superimposed over the staircase. The wireframe lines represent where the system expects the edges of the staircase to be. The
user employs a 3D mouse to select one of the balls (a), pick it up and throw in on top of the stairs (b) (in the full video sequence, the
ball bounces on the staircase and collides with the other balls). The video sequence was recorded by placing a small camera in front
of the user’s left eye.

Implementation
The see-through head-mounted display used by the
VROC system was developed by the head-mounted
display research group at the University of North
Carolina at Chapel Hill Computer Science Depart-
ment in the spring of 1992. The head-mounted dis-
play was built (with off-the-shelf components) to
gain experience for a wide field-of-view model with
custom optics and CRT. It is an optical see-through
head-mounted display that uses a pair of 2-inch LCD

displays to project the computer-generated image
onto a pair of half-silvered mirrors (see Figure 4).
The user perceives a combined image of the real
world and the computer-generated world. In the
background of Figure 1 is a monitor displaying the
computer-generated image that the user sees super-
imposed on the real staircase.

The see-through head-mounted display is con-
nected to Pixel-Planes 5 [6]. Pixel-Planes 5 is a
high-performance, scalable multi-computer for 3D
graphics developed by the Chapel Hill Computer
Science Department. Pixel-Planes 5 has a front-end
of 10–40 Intel i860 processors. These general-pur-
pose processors are programmed by the user to per-
form application computations and interact with the
fast rendering hardware.

A portion of the VROC system runs on each
processor. Recall that the collision detection scheme
potentially requires a check to be performed
between all possible object pairs. These checks are
performed in parallel. Furthermore, each processor

will compute the collision response for the object
pairs it stores. The system is capable of achieving
frame rates of up to 30 stereo frames per second.
The multiple merged environments created with
VROC range, on the average, from 14 to 28 stereo
frames per second.

The set of object pairs that have to be checked for
collisions is constructed based on the static model of
the real world and on the set of virtual objects that
“coexist” with the real objects. The number of object

pairs is typically significantly less than n2,
where n is the number of objects in the
merged environment. The object pairs are
distributed in a round-robin fashion among
the multiple processors. Each processor will
construct its sorted list of possible collision
times. Consequently, each processor will only
have to instantiate a subset of the total num-
ber of objects. An object may reside on mul-
tiple processors, but few objects will exist on
all processors.

If an object pair is determined to be in col-
lision, the associated processor will compute
the collision response. Typically, each proces-
sor will only need to compute a single colli-
sion response. If other processors encounter a
collision, they will compute their own colli-
sion responses. Afterward, processors that

computed a collision response must broadcast the
new velocities to all processors that have a copy of
the objects involved in the collision. Hence, on
average, the collision response computations for
multiple simultaneous collisions across the system
take the same amount of time as one collision
response (though some additional time is needed for
the update messages sent between processors).

Real-World Models and Calibration

IN ORDER TO CREATE CONVINCING INTERACTIONS

between the virtual and real worlds, the com-
puter system must know exactly where the sta-
tic real-world objects lie; otherwise, visual

anomalies will occur (for example, virtual objects
might intersect or penetrate surrounding real
objects). This requires the creation of a precise model
of the real world (see Figure 5). For complex envi-
ronments, this is a time-consuming task. In addition
to creating a geometrical model of the real world,
the virtual objects that interact with the real objects
must be created with equally realistic colors and tex-
tures. New techniques are being explored for obtain-
ing real-world object models, such as 3D
reconstruction from range images [11], 3D scene
analysis [7], Plenoptics [1], among others.

52 March 1997/Vol. 40, No. 3 COMMUNICATIONS OF THE ACM

Figure 4. See-through head-mounted display. The images from a
pair of two-inch color LCD displays are projected onto a pair of
half-silvered mirrors placed in front of the user’s eyes. The user
perceives virtual imagery superimposed on real-world objects.

Proper calibration of the static real objects and
their computer-generated counterparts depends not
only on a properly measured model but also on:

• Compensation for the optical distortion generated
by the see-through head-mounted display.

• The approximate perspective computations used
for the virtual objects and computer models of
real objects.

• The latency introduced by the trackers, refresh
delay of the head-mounted display and the
graphics pipeline. This latency (or lag) causes
the virtual objects to apparently swim around
the real world.

EVEN THOUGH THE LATENCY IS ONLY ON THE

order of 60–150ms per frame, it is very
noticeable—especially with a see-through
head-mounted display. Consequently, the

illusion of virtual objects lying on real objects is less
convincing. Studies have shown that people regu-
larly turn their head at speeds above 300
degrees/second; in fact, fighter pilots turn their

heads at speeds in excess of 2,000 degrees/second.
Let’s consider a user turning his or her head at a rate
of 200 degrees/second with a total latency of only 50
milliseconds; thus the generated image will be off
by approximately 10 degrees. A typical head-
mounted display, with a field-of-view of 60 degrees,
will display the image shifted to one side by one-
sixth the display resolution.

Solving the calibration problem would improve
the apparent location of real objects from within the
see-through head-mounted display, thus enabling
precise collision responses and other feedback
(sound, force, tactile, etc.). Furthermore, virtual
objects could be accurately obscured (partially or
totally) by the real objects in front of them. For
example, Wloka [12] constructed a system capable
of resolving occlusion between virtual and real-world
objects using a (video) see-through head-mounted
display and depth inferred from stereo images.

So far we have assumed a static model of the real
world. This limits the range of possible environ-
ments. Removing this assumption is difficult. Infor-
mation about the movement of real objects could be

COMMUNICATIONS OF THE ACM March 1997/Vol. 40, No. 3 53

Figure 5 (a) (b). This example shows a close-up view of a merged virtual and real environment. The user’s hand is not visible in this
sequence. The user has thrown the virtual blue ball from a distance toward the real chair. The ball bounces off the multiple sides of
the chair, causing the balls resting on the chair bottom to disperse in various directions (a–b). In the video sequence, some of balls fall
off the chair while others, including the blue ball, come to rest on the chair bottom.

r In addition to creating a geometrical model of the real

world, the virtual objects that interact with the real objects must

be created with equally realistic colors and textures. r

obtained from a tracker placed in each of the moving
objects. The KARMA system [5] places individual
trackers on some of the dynamic real-world objects.
Unfortunately, this scheme is subject to the inaccu-
racies of the trackers but it is a potential solution.
Another approach would be to use imaging technol-
ogy and to continuously compute from a 2D camera
view of the world, the position and orientation of the
3D objects contained in it. In any case, this is cer-
tainly a difficult problem.

Feedback
How real the interaction of the virtual and real
worlds appears to the user is not totally dependent
on the visual cues from the head-mounted display.
Other sensory input, such as sound, is also needed
[2]. When two real-world objects collide, a specific
sound is produced dependent on the objects
involved. Similarly, when a virtual and a real object
collide, a different sound should be emitted. Stereo
or 3D sound would improve the realism of the
merged worlds. Current audio technology is
advanced enough to produce such effects reasonably
well.

A more important (and difficult to implement)
type of feedback is force feedback. The user may have
a large virtual object in his hand. It would be help-
ful if the user could feel when the virtual object’s
surface has collided with a real object. For example,
an application that allows the user to place virtual
furniture in an empty real room could give the user
force feedback when the virtual furniture being
placed hits a wall.

Force feedback is not only useful for virtual and
real-object interaction but also for user and virtual-
object interaction. The user may wish to touch and
feel the contours of a virtual object. The illusion of
realism would certainly be improved if users could
run their hands along the stairs of the environment
of Figure 3 and feel the presence of the virtual balls.
Another example is a sculpting environment—tac-
tile feedback is essential to provide an effective
sculpting tool.

Conclusion
The intent of VROC is to create an integrated sys-
tem to model the interaction of virtual and real
objects in a merged environment. A see-through
head-mounted display system is combined with a
graphics engine to present the merged environment
to the user while performing collision detection and
collision response computations. The observations
and lessons learned should benefit further research of
such systems.

Acknowledgments
I would like to thank Henry Fuchs, Gary Bishop,
and Dinesh Manocha for their patience and wisdom.
I would like to thank the many people who have
helped me throughout this project: Anselmo Lastra
for conferring with me regarding Pixel-Planes 5,
Rich Holloway for assisting with the see-through
head-mounted display hardware, and Rik Faith,
Mark Mine, Marc Olano, William Mark, Amitabh
Varshney, and Yunshan Zhu.

References
1. Adelson, E.H. and Bergen, J.R. The Plenoptic function and the ele-

ments of early vision. Computational Models of Visual Processing, M. Landy
and J.A. Movshon, Eds. The MIT Press, Cambridge, Mass., 1991.

2. Astheimer, P. What you see is what you hear—acoustics applied in
virtual worlds. In Proceedings of the IEEE Symposium on Research Frontiers
in Virtual Reality, (San Jose, Calif., Oct. 25–26, 1993), pp. 100–107.

3. Bajura, M., Fuchs, H., and Ohbuchi R. Merging virtual objects with
the real world: Seeing ultrasound imagery within the patient. Computer
Graphics (Proceedings of SIGGRAPH) 26, 2 (July 1992).

4. Cohen, J., Lin, M., Manocha, D. et al. I-COLLIDE: An interactive and
exact collision detection system for large-scale environments. In Pro-
ceedings of the Symposium on Interactive 3D Graphics (SIGGRAPH), (Mon-
terey, California, Apr. 1995), pp. 189–196.

5. Feiner, S., MacIntyre, B., and Seligmann, D. A knowledge-based aug-
mented reality. Commun. ACM 36, 7 (July 1993), 53–62.

6. Fuchs, H., Poulton, J., Eyles, J. et al. Pixel-Planes 5: A heterogeneous
multiprocessor graphics system using processor-enhanced memories.
Computer Graphics (Proceedings of SIGGRAPH) 23, 3 (July 1989), pp.
79–88.

7. Koch, R. Dynamic 3D scene analysis through synthesis feedback con-
trol. IEEE Transactions on Pattern Analysis and Machine Intelligence 15, 6
(1991), 556–568.

8. Lin, M. and Canny, J. A fast algorithm for incremental distance cal-
culations. In Proceedings of the IEEE International Conference on Robotics
and Automation (1991), pp. 1008–1014.

9. Lin, M. and Canny, J. Efficient collision detection for animation. In
Proceedings of the Third Eurographics Workshop (Cambridge, England,
Sept. 1992).

10. Moore, M. and Wilhelms, J. Collision detection and response for com-
puter animation. Computer Graphics (Proceedings of SIGGRAPH) 22, 4
(Aug. 1988), 289–297.

11. Turk, G. and Levoy, M. Zippered polygon meshes from range images.
Computer Graphics (Proceedings of SIGGRAPH Annual Conference Series,
July 1994), pp. 311–318.

12. Wloka, M. and Anderson, B. Resolving occlusion in augmented real-
ity. In Proceedings of the Symposium on Interactive 3D Graphics (SIG-
GRAPH), (Monterey, California, Apr. 1995), pp. 5–12.

Daniel Aliaga (aliaga@cs.unc.edu) is a Ph.D. candidate and
research assistant in the Department of Computer Science at the
University of North Carolina at Chapel Hill.

This work was made possible by grants from the National Science Foundation’s
Supercomputing Center for Science and Technology (ASC-8920219) and Advanced
Research Projects Agency (DAEA 18-90-C-0044, DABT 63-92-C-0048).

Permission to make digital/hard copy of part or all of this work for personal or class-
room use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage, the copyright notice, the title of the publication and
its date appear, and notice is given that copying is by permission of ACM, Inc. To copy
otherwise, to republish, to post on servers, or to redistribute to lists requires prior spe-
cific permission and/or a fee.

© ACM 0002-0782/97/0300 $3.50c

54 March 1997/Vol. 40, No. 3 COMMUNICATIONS OF THE ACM

