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We present an approximation method for geodesic circles on a spheroid. Our approximation
curve is the intersection of two spheroids whose axes are parallel, and it interpolates four
points of the geodesic circle. Our approximation method has two merits. One is that the
approximation curve can be obtained algebraically, and the other is that the approximation
error is very small. For example, our approximation of a circle of radius 1000 km on the Earth
has error 1·13 cm or less. We analyze the error of our approximation using the Hausdorff
distance and confirm it by a geodesic distance computation.
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1. INTRODUCTION. Global navigation, on the seas and in the air,
approximates the earth’s surface as an oblate spheroid. Spatial databases, from
Microsoft and IBM, do likewise. Consequently, computing shortest distances and
shortest paths on spheroids are of practical interest. Given two points on the spheroid,
a shortest path between them is a geodesic, and geodesics constitute the basis for
defining distances on the surface. Likewise, a circle on a spheroid would appropriately
be defined as the locus of all points equidistant from a given point P, the centre of the
circle.
The mathematics of geodesics on the spheroid is well understood; e.g., [8,13,14,16].

However, computing geodesics is sufficiently complicated that approximations of
geodesics are of practical interest and are used in navigation algorithms.
The geodesy on spheroids has seen more recent development. Vector solutions for

great ellipses, azimuth angles and the intersection of two circle of equal altitude on
spheroids are presented in [4–6]. The intersection of two geodesic paths on the sphere
or the ellipsoid are calculated and approximated in [15,17]. The azimuth or arc length
of a great ellipse, loxodrome, and geodesic path are analyzed and compared in
[11,14,18]. Rollins presents an integral formula for the geodesic distance that is not an
improper integral [13].
Circles on spheroids arise as points at fixed distance from a given centre point. They

can be used when enclosing a region on the spheroid by a buffer of fixed distance.
A buffer could be used to define territorial water boundaries and is a generalization of
Euclidean offsets in the plane or in Euclidean 3-space. Such offsets would be defined
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as a (one-sided) envelope, on the surface of the spheroid, of a family of fixed-radius
circles centred on the boundary of the territory.
In this paper, we offer a particularly simple approximation of circles on the

spheroid. We represent the circles as intersections with a second spheroid whose
dimensions and coordinates are derived from the coordinates of the circle’s centre and
radius. This approximation is simple to compute and easy to evaluate using standard
intersection algorithms; e.g., [7,12]. We evaluate the quality of such an approximation
in this note.

2. PRIOR WORK AND DEFINITIONS. We consider the spheroid with
major axis a and minor axis b, centred at the origin with the minor axis on the z-axis:

S :
x2

a2
+ y2

a2
+ z2

b2
= 1 (1)

The point P=(x, y, z) on the surface of the unit sphere is usually represented
parametrically, using longitude λ and latitude ϕ, as:

x(λ, ϕ) = cos λ cos ϕ, y(λ, ϕ) = sin λ cos ϕ, z(λ, ϕ) = sin ϕ (2)
where we assume that the equator is the xy-plane and the point (1, 0, 0) is the
intersection of the null-meridian with the equator. The coordinates of the point P are
also the coordinates of the unit normal of the unit sphere at P. A point Ps=(xs,ys,zs)
on the spheroid has the unit normal:

N xs, ys, zs
( ) = xs

/
a2,

ys
/
a2,

zs
/
b2

( )
������������������������
x2s
/
a4 + y2s

/
a4 + z2s

/
b4

√ (3)

thus, we can parameterize the points of the spheroid; e.g, [9].
In [13] a simplified integral is derived for computing the geodesic between two

points on a spheroid numerically. The formulation depends on Clairaut’s constant
that is to be determined, also numerically, before the geodesic can be integrated.
Reference [16] proposes a method to compute the constant numerically.
The fact that a numerical computation is needed, coupled with the fact that the

eccentricity of the planet is slight, motivates approximating geodesics, and Kallay
gives an elegant solution in [9]. Kallay’s construction is as follows: Given two points
P1 and P2 on the spheroid with normals N1 and N2, consider the geodesic between
N1 and N2 on the Gauss sphere, a greatest circle. Using the inverse Gauss map,
this greatest circle is mapped to the spheroid and constitutes the approximate geodesic.
Kallay’s approximate geodesic can be shown to be a greatest ellipse on the spheroid,
that is, the intersection of the spheroid with a plane through the origin; [9]. This also
implies that the approximate geodesic can be extended and that a subdivision of the
approximate geodesic is also an approximate geodesic.
In this paper, we propose an approximation that samples the geodesic circle at four

distinguished points and constructs an axis-parallel spheroid that passes through those
four points. We note that for approximating circles on an oblate spheroid the
intersecting spheroid is prolate, and, conversely, if the circle of a prolate spheroid is
to be approximated, then the intersecting spheroid is oblate. The intersection of
the oblate spheroid and prolate spheroid then serves as an approximation of the
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geodesic circle. The approximation is remarkably accurate, even for highly eccentric
spheroids.
Let P be a point on the spheroid. For its latitude we use the reduced latitude β,

as shown in Figure 1 (left). It is related to the geodesic latitude ϕ by:

β = arctan
������
1− ε

√
tan ϕ

( )
, where ε =

������������
1− b/a

( )2√
is the eccentricity of the spheroid.

When following a path from P, the direction in which we head is quantified by α.
The angle α is the azimuth of geodesic path at the starting point P. It is the deviation
from the meridian through P, with zero the direction to the (north) pole. See also
Figure 1 (right). Rollins [13] presents formulae of proper integrals which solve the
direct and indirect problems for geodesic paths connecting two points or azimuth
headings.
The Clairaut constant is the cosine of the maximum reduced latitude of a geodesic

path,

c = cos βmax = cos β sin α, (4)
where α and β are the reduced latitude and azimuth along the geodesic path.
Sjoberg [16] gives a numerical method to determine the constant for a geodesic path
connecting two given points. He points out that, having determined the constant,
accurate relations between the latitude, azimuth and longitude can be computed at
any point along the geodesic.

3. APPROXIMATION OF GEODESIC CIRCLES. In this section, we
present our approximation of geodesic circles on a spheroid by a Spheroid-Spheroid
Intersection (SSI) curve. The geodesic circle on a spheroid S of radius r and centred at
the point x0=(x0,y0,z0)∊S is the set of points x=(x, y, z)∊S such that:

dg(x, x0) = r (5)
where dg(x, x0) is the geodesic distance between two points x and x0. For each point x
on the geodesic circle, there is a geodesic path connecting two points x and x0, which
has an azimuth α at the starting point x0, as shown in Figure 1. Thus each point x
depends on the heading azimuth α,

x = x α( ), 0 4 α 4 2π. (6)

Figure 1. Left: Normal angle ϕ and reduced latitude β. Right: Azimuth α at point P of the geodesic
path between two point P and Q.
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Figure 2 shows the geodesic circles on a spheroid obtained numerically by varying α
from 0 to 2π.
The geodesic circle is not a planar curve unless the centre x0 lies on the North or the

South Pole. The two lines x(0)x(π) and x
π

2

( )
· x 3π

2

( )
are orthogonal and skew. Thus

there are two parallel planes containing the lines. We call the distance between the two
parallel planes the thickness of the geodesic circle x(α). Figure 3 shows the parallel
planes with a bounding box of the required thickness.
Table 1 shows the thickness of a sample of circles on a spheroid with major axis

20 and minor axis 10. When decreasing the radius of the circle by one half, the
thickness decreases to almost 1/4, as shown in the table. The smaller is the radius of
geodesic circle, the closer the decreasing ratio is to one quarter.
In our approximation method, the approximation curve is the intersection of

the spheroid S with another spheroid S′ chosen to interpolate the geodesic circle

at the points x
kπ
2

( )
, where k=0, . . ., 3; see Figure 2. The new spheroid S′ is centred at

x1= (x1,y1,z1) and has the major and minor axes R/a and R/b:

S′ :
x− x1( )2
R/a

( )2 + y− y1
( )2

R/a
( )2 + z− z1( )2

R/b
( )2 = 1 (7)

Note that the ratio of the major and minor axes of S′ is inverse of that of S, as shown in
Figure 4. Thus, if S is oblate, then S′ is prolate and vice versa. If S is a sphere, then so is
S′. Both spheroids S and S′ are symmetric with respect to the plane through the three
points, x0, the centre of S′, and the origin. Thus the longitude λ0 of the point x0 is equal
to that of the point x1. Cutting the spheroids S and S′ by the ρz-plane of symmetry,
two ellipses E and E′ on the ρz-plane are obtained:

E :
ρ2

a2
+ z2

b2
= 1 and E′ :

ρ− ρ1
( )2

R/a
( )2 + z− z1( )2

R/b
( )2 = 1 (8)

where ρ =
���������
x2 + y2

√
and ρi =

���������
x2i + y2i

√
, i=0, 1, as shown in Figure 5.

Figure 2. Spheroid S = x2

202
+ y2

202
+ z2

102
= 1 and the five geodesic circles centred at β0=0°, 30°,

60°, 80° and 90° with geodesic radius=2.
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We present the formulae of coefficients of the spheroid S′ as follows:
Proposition 3.1. The spheroid S′ in Equation (7) passing through four points,

x
kπ
2

( )
, k=0, . . ., 3, is unique unless the geodesic circle is centred at the North or

South Pole, and its coefficients are:

z1 =
A3/2− A0A2

( )
/ b/a

( )2
z
π

2

( )
− z 0( )

)
+ A1A2

}
if β0 = 0

{

0 if β0 = 0


 (9)

Table 1. Thickness of geodesic circles x(α) of radius r=2 centred at β0 for a=20 and b=10. The last row
represents the decreasing ratio of thickness when the radius decreases by half.

β0 0° 30° 60° 80°

r=2 2·84×10−1 9·90×10−2 1·30×10−2 1·18×10−3

r=1 7·39×10−2 2·44×10−2 3·21×10−3 2·93×10−4

r=0·5 1·87×10−2 6·08×10−3 8·01×10−4 7·32×10−5

r=0·25 4·68×10−3 1·52×10−3 2·00×10−4 1·83×10−5

dec. ratio 1
3·84 � 1

3·99
1

4·05 � 1
4·00

1
4·04 � 1

4·00
1

4·03 � 1
4·00

Figure 3. The geodesic circles (green) x(α) and our approximation curves (red) r(z) with the
bounding box (blue) for a=20, b=10, and geodesic radius r=2.
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ρ1 =
A1z1 + A0 if β0 = 0

x
π

2

( )2
+y

π

2

( )2
−ρ 0( )2− b/a

( )2
z 0( )2

}
/2A2 if β0 = 0

{
 (10)

R =
���������������������������������
a2 ρ 0( ) − ρ1
( )2+b2 z 0( ) − z1( )2

√
(11)

where:

A0 = b2 z π( ) − z 0( )( ) z π( ) + z 0( )( )
a2 ρ π( ) − ρ 0( )( )

2
+ ρ π( ) + ρ 0( )

2

A1 = − b2 z π( ) − z 0( )( )
a2 ρ π( ) − ρ 0( )( )

A2 = x
π

2

( )
cos λ0 + y

π

2

( )
sin λ0 − ρ 0( )

A3 = x
π

2

( )2
+y

π

2

( )2
+ b2

a2
z
π

2

( )2
− x 0( )2+y 0( )2+ b2

a2
z 0( )2

( )
(12)

Proof. Let the centre of the geodesic circle lie on the equator, i.e., β0=0. By

symmetry of the geodesic circle with respect to the equator, z1 and z
π

2

( )
are zero. Since

the ellipse E′ in Equation (8) interpolates the points (ρ(0), z(0)), we obtain Equation
(11). Substituting the point x(π/2) into Equation (7) and using:

x1 = ρ1cos λ0( ), y1 = ρ1sin λ0( ) (13)
and Equation (11), we have Equation (10).

Let β0≠0. Substituting the point (x(0), z(0)) into Equation (8), we obtain Equation
(11), and R depends on (ρ1,z1). Since E′ interpolates two points (ρ(0),z(0)) and (ρ(π),
z(π)), Equation (8) yields in this case:

a2 ρ 0( ) − ρ1
( )2+b2 z 0( ) − z1( )2= a2 ρ π( ) − ρ1

( )2+b2 z π( ) − z1( )2 (14)

Figure 4. The major and minor axes of the prolate (elongated) spheroid S′ are R/a=5·57 and
R/b=11·14 when a=20, b=10, β0=0◦, and r=2.
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which implies Equation (10), where ρ1 depends on z1. Inserting the point x(π/2) into
Equation (7) and using Equations (10), (11) and (13), we have:

b2

a2
z
π

2

( )
− z 0( )

( )
z1 + A2ρ1 −

A3

2
= 0 (15)

which is a linear equation of z1, since ρ1=A1z1 + A0 is too. Thus it can be solved easily
to yield Equation (9). □
The coefficients x1 and y1 are obtained by Equation (13) from Proposition 3.1.

Table 2 lists the coefficients (R/a, ρ1,z1) of spheroid S′ for a=20, b=10. Now, the
parametric equation of intersection of two spheroids S and S′ can be obtained
algebraically, which is our approximation curve for the geodesic circle.
Proposition 3.2. The approximation curve of the geodesic circle is:

x, y, z
( ) = X (z( ) cos λ0( ) − Y (z) sin λ0( ),X (z) sin λ0( ) + Y (z) cos λ0( ), z) (16)

for z(π)4z4z(0), where:

X z( ) = 1
2ρ1

b2

a2
z− z1( )2− a2

b2
z2 + a2 − R2

a2
+ ρ21

( )
(17)

Table 2. The coefficients (R/a, ρ1,z1) of the spheroid S′ when the geodesic circle centred at β0=0°, 30°,
60°, 80°, with radius r for a=20, b=10.

β0 0 30° 60° 80°

r=2 (5·57, 25·10, 0) (11·22, 21·69, 25·17) (17·70, 12·51, 43·40) (19·89, 4·34, 49·33)
r=1 (5·15, 25·03, 0) (10·98, 21·66, 25·04) (17·55, 12·50, 43·33) (19·76, 4·34, 49·26)
r=1/2 (5·04, 25·01, 0) (10·92, 21·65, 25·01) (17·51, 12·50, 43·31) (19·73, 4·34, 49·25)
r=1/4 (5·01, 25·00, 0) (10·90, 21·65, 25·00) (17·50, 12·50, 43·30) (19·72, 4·34, 49·24)

Figure 5. Two ellipses are the cross-sections of two spheroids S (blue) and S′ (red) with a plane
passing through the origin, x0 and the north pole. The geodesic circle x(α) is centred at (ρ0,z0) and
the spheroid S′ is centred at (ρ1,z1). The two ellipses have intersection points at x(0) and x(π)(green
points).
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Y z( ) = +

���������������������
a2 − a2

b2
z2 − X z( )2

√
(18)

Proof. Without loss of generality we assume the circle is centred on the 0-meridian.
Equivalently, we rotate the axes of x, y by angle λ0 with respect to the z-axis. Let
(X,Y,z) be the new coordinates.

x
y

( )
= cos λ0( ) − sin λ0( )

sin λ0( ) cos λ0( )
( )

X
Y

( )
(19)

Then the spheroids S and S′ in Equations (1) and (7) yield:

X 2 + Y 2 + a2

b2
z2 = a2 (20)

X − ρ1
( )2+Y 2 + b2

a2
z− z1( )2= R2

a2
(21)

Subtracting Equation (20) from Equation (21) we get Equations (17) and (18).
Therefore the assertion follows from Equations (17), (18), and (19), which is the
equation for the intersection of two spheroids S and S′. □
Let r(z)=(x(z),y(z),z), for z(π) 4 z 4 z(0), be our approximation curve. As an

example, we approximate several geodesic circles on the spheroid with a=20, b=10.
For the geodesic circles x(α) centred at β0=0° , 30° , 60° and 80°, with the radius r=2,
which are shown green in Figure 2, their approximation curves r(z) plotted by red
colour together, as shown in Figure 3.
We use the Hausdorff distance dH (x, r) to quantify the maximum difference

between two curves x(α) and r(z). The Hausdorff distance is widely used to measure
approximation error in Computer Aided Geometric Design, as a fair measure for the
distance between two curves or surfaces; e.g., [1–3,10]. We sample points along
the curves. For the sample points x(α), α=j°, j=0, . . .,M=180, we calculate the
Hausdorff distance numerically by:

dH x, r( ) = max
j=0,···,M

min
z π( )4z4z 0( )

x j˚
( )− r z( )∣∣ ∣∣ (22)

The resulting distance values dH (x, r) for the approximations of the geodesic circles,
centred at β0=0° , 30° , 60°, 80° and with radius r=2, 1, 0·5, 0·25, are shown
in Table 3. We observe that the approximation error decreases with ratios between
1

7·09 and
1

13·55.

Table 3. The Hausdorff distance dH (x, r) between the geodesic circle x(α) and our approximation curve
r(z) for a=20, b=10.

Β0 0° 30° 60° 80°

r=2 1·59×10−3 4·55×10−4 8·56×10−6 1·34×10−7

r=1 2·25×10−4 3·90×10−5 7·26×10−7 9·86×10−9

r=0·5 2·90×10−5 3·93×10−6 7·14×10−8 8·29×10−10

r=0·25 3·65×10−6 4·36×10−7 7·78×10−9 7·96×10−11

dec. ratio 1
7·09 � 1

7·94
1

11·68 � 1
9·00

1
11·80 � 1

9·18
1

13·55 � 1
10·42
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4. QUALITY OF APPROXIMATION FOR GEOGRAPHIC
APPLICATIONS. In this section, we use our method to find geodesic circles
on the earth’s surface. Customarily, the earth is considered an oblate spheroid with
axes a=6378·137 km and b=6356·7523 km. We computed the thickness of the
geodesic circles of radius r=1000 km, 500 km, 250 km, 125 km, a measure of the non-
planarity, shown in Table 4. The decreasing ratios are between 1/3·96 and 1/4·00, and
the smaller is the radius of geodesic circle, the closer the decreasing ratio is to a
quarter, as was the case for the highly eccentric spheroid in Table 1.
For the geodesic circles centred on the equator (β0=0°) and with radii r=1000*

125 km, the Hausdorff distance measuring the approximation error for our curve r(z)
is 1·13 cm or less, as shown in the middle column of Table 5. Also, for the geodesic
circle centred at β0=45°, the Hausdorff distance is 0·54 cm or less, as shown in the
third column of Table 5. The approximation accuracy is remarkable.
The decreasing error ratios are between 1/7·83 and 1/10·38, and the smaller is the

radius of the geodesic circle, the closer the decreasing ratio is to 1/8, similar to the
results in Table 3.

Table 4. Thickness of the geometric circle of radius r=1000 km, 500 km, 250 km, 125 km, and centered at
β0=0°, 45°, on the earth, a=6378·137 km and b=6356·7523 km.

β0 0° 45°

r=1000 km 5·22×10−1 2·60×10−1

r=500 km 1·32×10−1 6·55×10−2

r=250 km 3·30×10−2 1·64×10−2

r=125 km 8·25×10−3 4·11×10−3

dec. ratio 1
3·96 � 1

4·00
1

3·96 � 1
4·00

Table 5. Hausdorff distance dH (x, r) on the earth (a=6378·137 km and b=6356·7523 km).

β0 0° 45°

r=1000 km 1·13×10−5 5·40×10−6

r=500 km 1·44×10−6 5·20×10−7

r=250 km 1·81×10−7 5·50×10−8

r=125 km 2·27×10−8 6·25×10−9

dec. ratio 1
7·83 � 1

7·98
1

10·38 � 1
8·81

Table 6. The maximum difference max
04ς4π

dg x0, r z( )( ) − r
∣∣ ∣∣ between the radius r and the geodesic distance

dg(x0, r(z)) from approximation curve r(z) to the centre x0.

β0 0° 45°

r=1000 km 1·13×10−5 5·40×10−6

r=500 km 1·44×10−6 5·20×10−7

r=250 km 1·81×10−7 5·50×10−8

r=125 km 2·27×10−8 6·28×10−9
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To confirm our numerical results, we compute the geodesic distance dg(x0, r(z))
from the approximation curve r(z), z(π)4z4z(0) to the centre x0. For the sample
points:

z = z ς( ) = z 0( ) + z π( )
2

+ z 0( ) − z π( )( ) cos ς( )
2

(23)

Figure 6. On the earth, (a=6378·137 km and b=6356·7523 km), for β0=0°(left column), 45°(right
column), and r=1000, 500, 250, 125 km (from top to bottom), the error function as Equation (23).
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ζ=( j −0·5)π/M, j=1, . . ., M, we plot the error function dg(x0, r(ζ)) − r as shown in
Figure 6. The fact that the maximum differences max

04ς4π
dg x0, r z( )( ) − r
∣∣ ∣∣ in Table 6 are

the almost same as the Hausdorff distances dH (x, r) in Table 5 corroborates the values
of Table 6.
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