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We present an approximation method of circular arcs using linear-normal (LN) Bézier
curves of even degree, four and higher. Our method achieves Gm continuity for endpoint
interpolation of a circular arc by a LN Bézier curve of degree 2m, for m = 2,3. We also
present the exact Hausdorff distance between the circular arc and the approximating LN
Bézier curve. We show that the LN curve has an approximation order of 2m + 2, for
m = 2,3. Our approximation method can be applied to offset approximation, so obtaining
a rational Bézier curve as an offset approximant. We derive an algorithm for offset
approximation based on the LN circle approximation and illustrate our method with some
numerical examples.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Offset approximation is an important task in CAGD. Over the last thirty years, many algorithms for offset approximation
have been proposed. These algorithms fall, roughly speaking, into one of three types: One is the approximation of offset
curves by Bézier or spline curves [18,17,20,29]. This approach achieves an approximation with the smallest number of curve
segments for a prescribed tolerance. But this approach does not have a closed form error bound.

The second approach focuses on the use of Pythagorean hodographs, that is, on the use of polynomial curves having
rational offsets. This elegant method was first proposed by Farouki and Sakkalis [12]. A vast corpus of this type of approxi-
mation methods, and of the properties of PH curves and Pythagorean normal (PN) vector surfaces, has been developed over
the years; e.g., [7,13,11,24,28,30,32]. The approach also generalizes to Minkowski Pythagorean hodograph curves which have
been elegantly used to compute the medial axis transform of a domain [8,21,23,26,33].

In the third approach, offsets are approximated based on circle approximations that use linear-normal Bézier curves. Lee
et al. [25] proposed such a circle approximation using quadratic Bézier curves. Quadratic Bézier curves are the LN curves of
least degree. Jüttler [19] introduced the concept of LN surfaces and developed an offset approximation using LN surfaces.
Moreover, in [5,6,31] useful properties of LN surfaces have been proved. Recently, Ahn et al. [2] proved the invariance of the
Hausdorff distance between two compatible curves under convolution if these curves have no cusp. This result provides an
exact error analysis of offset approximations based on LN circle approximations.

The approximation method presented in this paper approximates circles using LN Bézier curves of even degree. Specif-
ically, we present a Gm endpoint interpolation of circular arcs using LN Bézier curves of degree 2m, for m = 2,3. We also
derive the exact Hausdorff distance of the approximant and show that it has an approximation order of 2m + 2. We then
apply our circle approximation method to offset approximation, obtaining a rational Bézier curve as an offset approximant
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that has the same Hausdorff distance. We discuss the algorithm for our offset approximation method and illustrate it with
some numerical examples.

Our manuscript is organized as follows. In Section 2, we derive the circle approximation using LN Bézier curves of even
degree 2m for m = 2,3. In Section 3, the algorithm for offset approximation based on this circle approximation is developed.
We give some numerical examples in Section 4, and summarize our method in Section 5.

2. Circle approximation by LN Bézier curves of degree 2m

In this section we present the circle approximation using LN Bézier curves of even degree. For a given circular arc, the
approximating LN Bézier curve is obtained, in a manner similar to previous work on approximation by Bézier curves [4,1,9,
10,14,15,22,25].

Let c be a circular arc subtending the angle 2α < π ,

c(θ) = (
cos(θ), sin(θ)

)
, θ ∈ [−α,α]. (1)

The approximating Bézier curve p of degree 2m, m � 2, is defined by

p(t) =
2m∑
i=0

pi B2m
i (t) for t ∈ [0,1]

where pi , i = 0,1, . . . ,2m are the control points and B2m
i (t), i = 0,1, . . . ,2m are the Bernstein polynomials of degree 2m.

The following are the necessary and sufficient conditions for the Bézier curve p(t) of degree 2m to be a LN curve:

(a) p′(t) = w(t)(X(t), Y (t)) for some polynomial w(t) of degree 2m − 2 and linear functionals X(t) and Y (t);
(b) p′(t) · ((1 − t)n(0) + tn(1)) = 0 for all t ∈ [0,1], where n(t) is the rotation of p′(t) by a right angle (Eq. (18) of [31]),

and · is scalar product.

To find the approximate LN Bézier curve p(t) for the circular arc c(θ), we use condition (b) and set

ζ(t) = p′(t) · ((1 − t)n(0) + tn(1)
)
. (2)

Since the circular arc c(θ), θ ∈ [−α,α], is symmetric with respect to the x-axis, we make the approximating curve p(t)
symmetric by imposing y2m−i = yi , i = 0, . . . ,m. The approximating LN curve p(t) is a G1 endpoint interpolation of the
circular arc c(θ) if and only if

p0 = c(−α), p1 = p0 + u(m1 − p0),

p2m = c(α), p2m−1 = p2m + u(m1 − p2m) (3)

for some u > 0 where m1 = (secα,0). Let (x(t), y(t)) = p(t) and

ψ(t) = x(t)2 + y(t)2 − 1.

It is well known [4,1,16] that for k � 2 the approximate curve p(t) is a Gk endpoint interpolation of circular arc c(θ) if and
only if Eq. (3) holds and

diψ(t)

dti

∣∣∣∣
t=0

= 0, i = 2, . . . ,k. (4)

Since both curves c(θ) and p(t) are symmetric with respect to x-axis, it is sufficient to find the maximum of the function

φ(t) = ∣∣∣∣p(t)
∣∣ − 1

∣∣ = ∣∣√x(t)2 + y(t)2 − 1
∣∣

in the interval [0,1/2].
2.1. Circle approximation by quartic LN Bézier curves

In this section we construct a quartic LN Bézier curve p which is a G2 endpoint interpolation of the circular arc c(θ),
θ ∈ [−α,α]. By Eq. (3) and the symmetry of two curves p and c with respect to the x-axis, the control points of p are

p0 = (cosα,− sinα),

p1 = (1 − u)p0 + um1,

p2 = (1 − v)m0 + vm1,

p3 = (1 − u)p4 + um1,

p4 = (cosα, sinα), (5)
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Fig. 1. Quartic Bézier curve (blue) p with its control polygon (green) pi , i = 0, . . . ,4, which is a LN G2 endpoint interpolation of the circular arc (red) c of
angle 2α. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. u and v .

for some real numbers u > 0 and v , where m0 = (cosα,0), as shown in Fig. 1. By Eq. (2), we have

ζ(t) = 4 sin2 α(2u + 3v − 3)t(1 − t)(2t − 1).

Thus the quartic Bézier curve p(t) is LN if and only if

v = 1 − 2

3
u. (6)

By series expansion of ψ(t) near t = 0, we get

ψ(t) = 8u tan2 α
(
2u − cos2 α

)
t2 +O

(
t3).

Note that ψ(t) has zeros of order three at t = 0 and 1 if and only if

u = 1

2
cos2 α. (7)

Thus by Eq. (4), we get a quartic LN curve that is a G2 endpoint interpolation of circular arcs as follows (see Fig. 2).

Proposition 2.1. The quartic Bézier curve p(t) with control points given in Eq. (5) is a G2 LN endpoint interpolation of a circular arc if
and only if

u = 1

2
cos2 α and v = 1 − 1

3
cos2 α. (8)
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Fig. 3. dH (c,p) = ε(α) = (3+cos α)(1−cos α)3

8 cos α .

Proof. The quartic Bézier curve p(t) with the control points of Fig. 1 is a G2 LN endpoint interpolation of a circular arc if
and only if both equations (6) and (7) are satisfied. These equations entail Eq. (8). �

It follows from Eq. (8) that 0 < u, v < 1. All control points pi , i = 0, . . . ,4 are contained in the (closed) triangle �p0m1p4,
and so is the Bézier curve p(t). Thus the Hausdorff distance dH (c,p) can be obtained by

dH (c,p) = max
0�t�1

∣∣φ(t)
∣∣. (9)

Proposition 2.2. Let p be the quartic LN G2 endpoint interpolation of the circular arc c with control points as in Eq. (5) and satisfying
Eq. (8). The Hausdorff distance between c and p is

dH (c,p) = (3 + cosα)(1 − cosα)3

8 cosα

and its approximation order is six,

dH (c,p) = 1

16
α6 +O

(
α8).

Proof. Since

ψ(t) = 4 sin6(α)

cos2(α)
(1 − t)3t3(2 cos(α)2 + 9t sin2(α) − 9t2 sin2(α)

)

it has the maximum at t = 1/2. Thus we have

dH (c,p) = φ(1/2) = (3 + cosα)(1 − cosα)3

8 cosα
. (10)

By series expansion, we obtain

dH (c,p) = 1

16
α6 +O

(
α8),

whose approximation order is six. �
In Eq. (10) the Hausdorff distance dH (c,p) between the circular arc c of angle 2α and its quartic approximation p

depends only on the angle α. We denote it by ε(α), as shown in Fig. 3.

2.2. Circle approximation by a degree six LN Bézier curve

In this section we construct the degree six LN Bézier curve p that is a G2 endpoint interpolation of the circular arc c(θ),
θ ∈ [−α,α] (see Fig. 4). By Eq. (3) and the symmetry of the two curves p and c w.r.t. the x-axis, the control points of p are

p0 = (
cos(α),− sin(α)

)
,

p1 = (1 − u)p0 + um1,

p2 = m0 + w1(m1 − m0) + w2(p0 − m0),
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Fig. 4. Degree six Bézier curve p (blue) with its control polygon pi , i = 0, . . . ,6 (green). Here, p is a LN G3 endpoint interpolation of the unit circle arc c
(red) subtending the angle 2α. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

p3 = m0 + v(m1 − m0),

p4 = m0 + w1(m1 − m0) + w2(p6 − m0),

p5 = (1 − u)p6 + um1,

p6 = (
cos(α), sin(α)

)
, (11)

for real numbers u > 0, v, w1, and w2. By Eq. (2), ζ(t) is a polynomial of degree six and is given by

ζ(t) = sin2 α
(
2u + 5(w1 + w2 − 1)

)(
B6

1(t) − B6
5(t)

) − 2 sin2 α(2u − 2v + w1 + 3w2 − 1)
(

B6
2(t) − B6

4(t)
)
.

Thus ζ(t) ≡ 0 if and only if

w1 = 2

5
u − v + 1, w2 = −4

5
u + v. (12)

By series expansion of ψ(t) near t = 0, we have

ψ(t) = 12u tan2 α
(
3u − cos2 α

)
t2 + 4 tan2 α

(
cos2 α

(
10v + 18u2 + 12u − 10

) − 45uv − 72u2 + 45u
)
t3 +O

(
t4)

and so ψ(t) has zeros of order four at t = 0 if and only if

u = 1

3
cos2 α and v = 1 − 4

5
cos(α)2 + 2

5
cos(α)4, (13)

which implies the existence of a G3 LN endpoint interpolation of the circular arc c as follows.

Proposition 2.3. The sixth-degree Bézier curve p(t) with control points in Eq. (11) is G3 LN endpoints interpolation of the circular arc
c if and only if

u = 1

3
cos2 α, v = 1 − 4

5
cos2 α + 2

5
cos4 α,

w1 = 14

15
cos2 α − 2

5
cos4 α, w2 = 1 − 16

15
cos2 α + 2

5
cos4 α. (14)

Proof. The degree six Bézier curve p(t) with control points in Eq. (11) is a G3 LN endpoint interpolation of a circular arc if
and only if both equations (12) and (13) are satisfied. These equations yield Eq. (14). �

By Eqs. (13)–(14), for all α ∈ (0,π/2), 0 < u, v, w1, w2 < 1, and also

0 < w1 + w2 = 1 − 2
cos2 α < 1
15
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Fig. 5. u, v , w1 and w2.

as shown in Fig. 5. Thus all control points pi , i = 0, . . . ,6 are contained in the (closed) triangle �p0m1p6, and so is the
approximation curve p(t). Hence we can have the Hausdorff distance dH (c,p) easily, using Eq. (9) as articulated in the
following proposition.

Proposition 2.4. The Hausdorff distance is

dH (c,p) = (1 − cosα)4(5 + 4 cosα + cos2 α)

16 cosα

and the approximation order is eight,

dH (c,p) = 5

128
α8 +O

(
α10). (15)

Proof. The error function ψ(t) has zeros of order four at both endpoints

ψ(t) = 4

3
sin6 α tan2 αt4(1 − t)4ψ1(t)

where

ψ1(t) = 15 cos2 α
(

B4
0(t) + B4

4(t)
) + 3 cos2 α

(
11 − 6 cos2 α

)(
B4

1(t) + B4
3(t)

) + (
50 + 61 cos2 α + 26 cos4 α

)
B4

2(t).

Since ψ1(t) is positive on [0,1], increasing on [0,1/2) and decreasing on (1/2,1], it has the maximum at t = 1/2. Thus
ψ(t) is also the maximum at t = 1/2, and so

max
0�t�1

∣∣ψ(t)
∣∣ = ψ(1/2) = 1

256
sin6 α tan2 α

(
cos4 α − 6 cos2 α + 25

)
.

Hence

dH (c,p) = φ(1/2) = ε(α) = (1 − cosα)4(5 + 4 cosα + cos2 α)

16 cosα

and by its series expansion, Eq. (15) follows. �
3. An application

The circle approximation algorithm with LN curves can be used to approximate curve offsets; [2,3,5,6,25,27,31]. In par-
ticular, Ahn et al. [3] showed that the Hausdorff distance between two planar compatible curves is invariant under the
convolution with a third compatible curve when their convolutions have no cusps. Using this result, we can give an explicit
error analysis of offset approximations that are based on our circle approximation. We sketch the offset approximation first.

Assume we are given a spline curve or Bézier curve whose offset curve is to be approximated. Without loss of generality,
we may assume that the given curve is a Bézier curve since spline curves can be subdivided into Bézier segments. For
the planar Bézier curve b(s), s ∈ [0,1] of degree d, its offset is br(s) = b(s) + rN(s), where the unit normal vector N(s) is
oriented by rotating the unit tangent vector T (s) of b(s) counter-clockwise by the angle π/2. The graph of N(s), s ∈ [0,1],
is a circular arc. If b(s) has no inflection point and the angle of the circular arc N(s), s ∈ [0,1], is less than π , then N(s) can
be approximated by a LN Bézier curve p(t) of degree 2m and the offset curve br(s) can be approximation by b ∗ p(t), where
the binary operator ∗ denotes the convolution of two compatible curves. Here b ∗ p(t) is a rational Bézier curve of degree
(2m + 1)d − 2m (see Table 1).
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Table 1
Offset approximation based on the circle approximation by LN Bézier curves of even degree for a given spline curve b of degree d.

Quadratic [25] Quadratic biarc [2] Quartic LN Sixth-degree LN

Gk endpoint interpolation G1 G2 G2 G3

Approximation order O(α4) O(α4) O(α6) O(α8)

Degree of rational curve b ∗ rp 3d − 2 3d − 2 5d − 4 7d − 6

Before approximating N(s), which is compatible with the circular arc c(θ) approximated by the LN Bézier curve p(t),
we will need to subdivide b(s). Now b(s) has no inflection points if and only if N(s) is a circular arc without cusps. Thus
b(s) should be subdivided at the inflection points. Also, the sufficient condition that the convolution b ∗ rc has no singular
point in the domain interior is that there is no point on the curve b(s) with the signed curvature κ(s) = −1/r, where r
is the offset distance. Thus, we should also subdivide at the points where κ(s) = −1/r. Subject to these subdivisions, the
invariance property of the Hausdorff distance, dH (b ∗ rc,b ∗ rp) = rdH (c,p), can be applied. Let I be the number of these
subdivisions, and let si ∈ (0,1), i = 1, . . . , I be the subdivision points. Set s0 = 0 and sI+1 = 1.

Now, for each segment, let αi be the half angle of the circular arc N(s), u ∈ [si, si+1]. We find the smallest positive
integer J i satisfying

ε

(
αi

J i

)
< TOL (16)

where TOL is the prescribed tolerance. Then each segment b(s), s ∈ [si, si+1], is subdivided into J i smaller segments. In all,
the curve is subdivided into

K =
I∑

i=0

J i

segments. The algorithm yields the segments (b ∗ rp)i, j of the offset approximation, for i = 0, . . . , I and j = 1, . . . , J i . Note
that the approximating method of this paper can be also be applied to NURBS curves using their subdivision into rational
Bézier segments.

ALGORITHM
input : Bézier curve b(s), offset distance r, tolerance TOL.
find si ∈ (0,1), i = 1, . . . , I satisfying κ(si) = 0 or −1/r.
set s0 = 0, sI+1 = 1.
for i from 0 to I do

subdivide b(s) into the segments [si, si+1].
let αi be the half angle of the circular arc N(s), s ∈ [si, si+1].
let J i be the smallest positive integer satisfying ε(

αi
J i

) < TOL.
find si, j , j = 0, . . . , J i such that

N
(
b(si, j)

) = j

J i
· N

(
b(si)

) +
(

1 − j

J i

)
· N

(
b(si+1)

)
.

for j from 1 to J i do
find the LN approximation p(t) which is compatible with b(s), u ∈ [si, j−1, si, j].
find t = t(s) satisfying b′(s) ‖ p′(t), u ∈ [si, j−1, si, j].
calculate (b ∗ rp)i, j(s) = b(s) + rp(t(s)), u ∈ [si, j−1, si, j].

end for
end for
set K = ∑I

i=0 J i .
output : I , J i , K , (b ∗ rp)i, j(s), si, j

4. Examples

In this section we consider three examples. Two examples were proposed by Lee et al. [25]. The first example is a cubic
Bézier curve (blue) with control polygon (gray) and offset distance r = 1, as shown in Fig. 6. The angle of the unit normal
vector N(s), s ∈ [0,1], is larger than π . Hence we need to subdivide until the error ε is less than the tolerance TOL. Fig. 6
shows the offset approximation based on a circle approximation using quartic LN Bézier curves with tolerance TOL = 0.1.
The offset approximation is achieved by two segments (green), i.e. m = 2. The subdivision point is marked by a small red
circle.
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Fig. 6. (a) Cubic Bézier curve (blue), control polygon (gray), offset curve (green) with offset distance r = 1, and an approximation (magenta) based on circle
approximation using quartic LN curve. One subdivision (small red circle) is needed with TOL = 0.1. (b) The number of control points of approximating
rational spline curves based on circle approximation using quartic or degree six LN curves. This achieves an error within TOL. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. (a) Cubic spline (blue) with three knots, control polygon (gray), offset curve (green) with offset distance 0.5, and approximation (magenta) based on
circle approximation using quartic LN curves. There are four inflection points (small green circle), two points (small gray circle) satisfying κ(t) = 1/r and
no other subdivision point for TOL = 0.1. (b) The numbers of control points of the approximating rational spline curve, based on circle approximation using
quartic or sixth-degree LN curves, which achieves the error within TOL. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

The second example is a cubic spline with control polygon (gray line segments) and with uniform knot vectors, and
offset distance r = 0.5, as shown in Fig. 7. This spline consists of four Bézier segments, has four inflection points (small
green circle), and has two points (small gray circle) at which the offset has cusps. For the tolerance TOL = 0.1, the offset
approximation, based on circle approximation using quartic LN Bézier curves, is achieved by ten segments.

The third example is the offset of the outline of font “S” whose height is about one hundred units. The offset distance
is five units. As shown in Fig. 8(a), the outline (blue curve) consists of an upper-side cubic spline, a lower-side cubic spline,
and six line segments. The upper and lower-side cubic splines consist of seven and six segments, respectively, that are G2

continuous at the junction points (small violet circle); see Fig. 8(b). Their control polygons are plotted with gray lines in
Fig. 8(a) and their curvatures are shown in Fig. 9. There are four inflection points on the outline curve. One of them is a
junction point on the upper-side cubic spline, so subdivision at that point is not needed. The other three inflection points
(small green circles) require subdivision. There are four points (small gray circles) at which the offset has a cusp. In all, nine
subdivision points are needed on each cubic spline. Using quartic LN circle approximation, the rational offset approximation
is obtained and the Hausdorff distance to the true offset is 0.0165 units. The offset curve (magenta) is constructed by twenty
rational Bézier curves of degree eleven, eight circular arcs, and six line segments, as shown in Fig. 8(b).

5. Conclusion and future work

In this paper we presented a method of circle approximation using LN Bézier curves of even degree 2m, m = 2,3, that
is, a Gm endpoint interpolation of circular arcs that has the approximation order 2m + 2. Our approximation method can be
applied to offset approximation which yields a rational Bézier approximation. Using the fact that the Hausdorff distance is
invariant under convolution, an error analysis for offset approximation based on our circle approximation using LN Bézier
curves can be obtained. We provided some numerical examples to illustrate our approximation method.

In Section 2, we presented the circle approximation by LN Bézier curve of degree 2m, only for m = 2,3. The same result
for m = 4 can be obtained by the same method in Section 2 as shown in Fig. 10. But we could not find the generalized
circle approximation by LN Bézier curve of all even degree 2m which has the approximation order 2m + 2. The problem of
seeking the generalized circle approximation is one of our future works. We also plan to find a sphere approximation using
curvature continuous LN Bézier surfaces which can be applied to offset surface approximation.
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Fig. 8. (a) The outline of the font character “S” consists of thirteen cubic Bézier curves (blue) with control polygon (gray) and six straight lines (blue). (b) The
exterior offset approximation based on circle approximation using quartic LN: Consecutive Bézier curves are G2 continuous at each junction point (small
violet circle). There are three inflection points (small green circle) that are not junction points and four points (small gray circle) satisfying κ(t) = −1/r.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. Curvature plots of (a) upper side of the G2 cubic spline consisting of seven segments, and (b) lower side of the G2 cubic spline of six segments.

Fig. 10. Eighth-degree Bézier curve (blue) p with its control polygon (green) pi , i = 0, . . . ,8, which is a LN G4 endpoint interpolation of the circular arc
(red) c of angle 2α. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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