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a b s t r a c t

In this paper we derive a sequence of linear normal (LN) curves b2n of degree 2n which
are Gn endpoint interpolations of a circular arc and have approximation order 2n + 2. This
is an extension of the circle approximation method by LN Bézier curves given in Ahn and
Hoffmann (2014) to all even degrees. We also extend the circle approximation to an ellipse
approximation by Gn LN curves of degree 2n. An upper bound of the Hausdorff distance
between the ellipse and its LN approximation is obtained.We illustrate our results through
an LN approximation of convolution curves of ellipses and a spline curve.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Circle approximation methods using polynomial curves with high accuracy have been developed for the last thirty years
[1–3]. First, de Boor proposed the approximation of planar curves, including circles, using cubic Bézier curves. His method
achieved an approximation order of six [1]. Later, a number of circle or conic approximationmethods using nth degree Bézier
curves were presented. They achieved an approximation order of 2n, with various orders of geometric continuity Gk, where
2 ≤ n ≤ 5 and 1 ≤ k ≤ n−1 [2–11]. Remarkably, this development included Floater’s conic approximations by G2 quadratic
curves and by Gn−1 polynomial curves of all odd degrees n, achieving an approximation order of 2n [12,13].

Circle approximation using LN (linear normal) curves could play an important role in the field of offset approximation,
since an offset approximation method based on circle approximation by quadratic Bézier curves was presented by Lee
et al. [14]. The quadratic Bézier curve is an LN curve of minimum degree and so it has a rational offset [15,16]. An LN surface
was first devised in order to obtain rational offset surfaces [17]. Several methods of circle approximation using LN curves
with continuous curvature have been proposed in [18–20]. In particular, circle approximations using Gn LN Bézier curves
of degree 2n = 4 or 6 were presented in [18]. The motivation of this paper is to generalize circle approximation by Gn LN
curves to all even degrees.

In this paper we construct a sequence of LN polynomial curves of even degree 2nwhich are Gn endpoint interpolations of
circular arcs. Furthermore, we extend this Gn LN circle approximation to a Gn LN ellipse approximation. Using the formula for
sequences of LN polynomial curves, we obtain the exact Hausdorff distance between the ellipse and LN polynomial curves
and the approximation order 2n. Our results can be applied to offset approximation and to the approximation of convolutions
of spline curves and ellipses.

The remainder of this paper is organized as follows. In Section 2, some basic facts concerning circle approximation by
polynomial curves are presented. In Section 3, the sequence of LN polynomial curves which are Gn endpoint interpolations
of circular arcs is presented, and the Hausdorff distance and its approximation order are obtained. In Section 4, an extension
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of the Gn LN circle approximation to a Gn LN ellipse approximation is devised. In Section 5, we compare our method to
previous conic approximation methods, and in Section 6 an example is constructed that illustrates our method of LN ellipse
approximation through the approximation of font outlines defined by sweeping an ellipse along a spline curve. In Section 7,
we summarize our results.

2. Preliminaries for circle approximation

Let c be a circular arc subtending the angle 2α < π ,

c(θ ) = (cos(θ ), sin(θ )), θ ∈ [−α, α], (1)

and b2n be a polynomial plane curve of degree 2n,

b2n(t) = (x2n(t), y2n(t)), t ∈ [0, 1],

which is the approximation curve of the circular arc.
The Hausdorff distance between the circular arc c and its approximation curve b2n is

dH (c, b2n) = max
t∈[0,1]

|φ(t)|

where φ(t) =

√
x2n(t)2 + y2n(t)2 − 1, if the argument of the complex number x2n(t) + iy2n(t) is contained in [−α, α] for all

t ∈ [0, 1]. The irrational function φ(t) and the polynomial

ψ(t) = x2n(t)2 + y2n(t)2 − 1

have the same points satisfying φ′(t) = ψ ′(t) = 0. Since circular arcs are symmetric, it is suitable that the approximation
curve b2n is too. Thus x2n(1 − t) = x2n(t), y2n(1 − t) = −y2n(t), and

dH (c, b2n) =

{√
ψ+ + 1 − 1 (ψ+ ≥ ψ−)

1 −

√
1 − ψ− (ψ+ < ψ−)

where ψ+ = maxt∈[0, 12 ]
ψ(t) and ψ− = −mint∈[0, 12 ]

ψ(t).
It is well-known [6,21] that for n ≥ 1 the approximate curve b2n of even degree 2n is a Gn endpoint interpolation of a

circular arc c(θ ) if

c′(−α) · b′

2n(0) > 0
diψ(t)
dt i

⏐⏐⏐⏐
t=0

= 0, i = 0, . . . , n. (2)

Furthermore, the approximation curve b2n is a linear normal curve if and only if

b′

2n(t) · ((1 − t)n(0) + tn(1)) = 0 (3)

for all t ∈ [0, 1], where n(t) is the rotation of b′

2n(t) by
π
2 , and · is the inner product [22].

Thus, by solving Eqs. (2)–(3) for n = 2, 3, Ahn and Hoffmann [18] provided the Gn LN circle approximation b2n(t) =∑2n
i=0bi,2nB2n

i (t) with the control points

b0,2n = (cosα,− sinα), for n = 2, 3

b1,4 =
1
2

(
cosα(3 − cosα),− sinα(1 + sin2α)

)
b2,4 =

1
3

(
3 − cos2α + cos4α

cosα
, 0
)

b1,6 =
1
3

(
cosα(4 − cosα),− sinα(2 + sin2α)

)
b2,6 =

1
15

(
29 − 20cos2α + 6cos4α,− sinα(5 + 4sin2α + 6sin4α)

)
b3,6 =

1
5

(
5 − cos2α + 6cos4α − 2cos6α

cosα
, 0
)

bi,2n = Rxb2n−i,2n for n = 2, 3, and n + 1 ≤ i ≤ 2n

where Bn
i (t) =

n!
i!(n−i)! t

i(1 − t)n−i and Rx is the reflection operator with respect to the x-axis. In this paper we extend the

formula b2n(t) = (x2n(t), y2n(t)) to all n ∈ N.
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3. Circle approximation by Gn LN curves of degree 2n

In this section we present the sequence of Gn LN circle approximation curves b2n(t) of degree 2n for n = 1, 2, . . .. By
solving Eqs. (2)–(3) degree by degree, the formulas for the LN Gn approximation curve b2n can be obtained as follows:

x2(t) = secα + sinα tanα{2t(1 − t) − 1}
y2(t) = sinα(2t − 1)
x4(t) = secα + sinα tanα{2t(1 − t) − 1 + sin2α(6t2(1 − t)2 − 2t(1 − t))}
y4(t) = sinα(2t − 1){1 + 2(sin2α)t(1 − t)}
x6(t) = secα + sinα tanα{2t(1 − t) − 1 + sin2α(6t2(1 − t)2 − 2t(1 − t))

+ sin4α(20t3(1 − t)3 − 6t2(1 − t)2)}
y6(t) = sinα(2t − 1){1 + 2(sin2α)t(1 − t) + 6(sin4α)t2(1 − t)2}

... .

From the list of formulas b2n for higher degree, we can guess the generalized formula for b2n for all even degrees as follows:

x2n(t) = secα + sinα tanα
n−1∑
i=0

ξi(t) (4)

y2n(t) = sinα
n−1∑
i=0

ηi(t) (5)

for t ∈ [0, 1], where

γn(t) =

(
2n
n

)
tn(1 − t)n

ξn(t) = (sinα)2n(γn+1(t) − γn(t))
ηn(t) = (sinα)2n(2t − 1)γn(t)

for n = 0, 1, . . .. Now, we show that all polynomial curves b2n(t) are linear normal and Gn endpoint interpolations of
the circular arc, and we present an upper bound of the Hausdorff distance between the circular arc and b2n, so that its
approximation order n + 2 can be obtained.

Proposition 3.1. The curve b2n is a linear normal curve.

Proof. Since ξ ′
n(t) = −(sinα)2n(2t − 1)µn(t) and η′

n(t) = (sinα)2nµn(t) where

µn(t) =
(n + 1)γn+1(t) − nγn(t)

t(1 − t)
for n = 0, 1, . . ., we have that

b2n
′(t) =

n−1∑
i=0

(sinα)2i+1µi(t) (− tanα(2t − 1), 1) (6)

and so b2n is a linear normal curve. □

Proposition 3.2. The curve b2n is a Gn endpoint interpolation of the circular arc c.

Proof. Eqs. (4)–(5) yield that ψ(i) = x2n(i)2 + y2n(i)2 − 1 = 0 for i = 0, 1 and for all positive integers n. Since
ψ ′(t) = 2(x2n(t)x′

2n(t) + y2n(t)y′

2n(t)), Eq. (6) yields that

ψ ′(t) = 2 (− sinα tanα(2t − 1)x2n(t) + sinα y2n(t))

(
n−1∑
i=0

(sinα)2iµi(t)

)
.

For all positive integers n, it holds that

− sinα tanα(2t − 1)x2n(t) + sinα y2n(t)

= −(tanα)2(2t − 1)

[
1 +

n−1∑
i=0

{
(sinα)2i+2γi+1(t) − (sinα)2iγi(t)

}]
.
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This sum is telescoping, and so

ψ ′(t) = 2
(
2n
n

)
(sinα)2n(tanα)2tn(1 − t)n(2t − 1)

(
n−1∑
i=0

(sinα)2iµi(t)

)
. (7)

Therefore, diψ(t)
dt i

⏐⏐⏐
t=0,1

= 0 for i = 0, 1, . . . , n, and so the curve b2n is a Gn endpoint interpolation of the circular arc c. □

Lemma 3.3. For all positive integers n,
n−1∑
i=0

(sinα)2iµi(t) > 0

in the closed interval [0, 1].

Proof. Since µn(t) is a function of t(1 − t) for n = 0, 1, . . ., using the transformation s = t(1 − t), we obtain

µn(t) = µ∗

n(s) =

(
2n
n

)
sn−1

{(4n + 2)s − n}

for s ∈ [0, 1
4 ].µ

∗

0(s) ≡ 2. Put s0 = 0 and sn =
n

4n+2 , n = 1, 2, . . .. For all positive integers n,µ∗
n(s) has a unique zero at sn in the

open interval (0, 1
4 ), and µ

∗
n(s) ≤ 0 in [0, sn] and µ∗

n(s) ≥ 0 in [sn, 1
4 ]. For all positive integers n and for all k = 1, . . . , n − 1,

in the interval [sk−1, sk]

µ∗

i (s)
{
≥ 0 (1 ≤ i ≤ k − 1)
≤ 0 (k ≤ i ≤ n − 1)

and in the interval [sn−1,
1
4 ], µ

∗

i (s) ≥ 0 for i = 1, . . . , n. Thus in the interval [sk−1, sk], k = 1, . . . , n − 1, we have that

n−1∑
i=0

(sinα)2iµ∗

i (s) =

k−1∑
i=0

(sinα)2iµ∗

i (s) +

n−1∑
i=k

(sinα)2iµ∗

i (s)

>

k−1∑
i=0

(sinα)2kµ∗

i (s) +

n−1∑
i=k

(sinα)2kµ∗

i (s)

= (sinα)2k
n−1∑
i=0

µ∗

i (s) = (sinα)2kn
(
2n
n

)
sn−1

≥ 0

by the telescoping sum. In the interval [sn−1,
1
4 ], it holds that

n−1∑
i=0

(sinα)2iµ∗

i (s) = 2 +

n−1∑
i=1

(sinα)2iµ∗

i (s) ≥ 2.

Therefore,
∑n−1

i=0 (sinα)
2iµ∗

i (s) > 0 in [0, 1
4 ], and so

∑n−1
i=0 (sinα)

2iµi(t) > 0 in [0, 1]. □

Proposition 3.4. For all positive integers n, the curve b2n lies outside of the circular arc c and the Hausdorff distance between c
and b2n is

dH (c, b2n) =
1

cosα

{
1 − cosα −

n−1∑
i=0

( 2i
i

)
22i+1(i + 1)

(sinα)2i+2

}
. (8)

Its approximation order is 2n + 2.

Proof. By Eq. (6) and Lemma 3.3, x2n(t) is increasing in the interval [0, 1
2 ] and decreasing in [

1
2 , 1], and y2n(t) is increasing

in [0, 1]. Thus, for all positive integers n the continuous curve b2n lies inside a (closed) rectangle

[x(0), x(1/2)] × [y(0), y(1)]

in the xy-plane. By Eq. (7) and Lemma 3.3,ψ(t) is increasing in [0, 1
2 ] and decreasing in [

1
2 , 1]. Thus maxt∈[0,1]|ψ(t)| = ψ( 12 ),

ψ(t) > 0 for all t ∈ (0, 1), and b2n lies outside of the circular arc c. Since dH (c, b2n) = x2n( 12 ) − 1 and

x2n(1/2) =
1

cosα
{1 −

n−1∑
i=0

( 2i
i

)
22i+1(i + 1)

(sinα)2i+2
},
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Fig. 1. Gn LN approximation of degree 2n of the circular arc (blue) of angle 2α =
π
3 for n = 1, 2, . . . , 7 (from red to green). (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. dH (c, b2n) for α ∈ (0, π/4], n = 1, 2, . . . , 7 (from top to bottom).

Eq. (8) follows. Using Taylor series expansion

1 −

√
1 − x2 =

∞∑
n=0

( 2n
n

)
22n+1(n + 1)

x2n+2

for x ∈ (−1, 1), we have that

dH (c, b2n) =

( 2n
n

)
22n+1(n + 1)

α2n+2
+ O(α2n+4)

and so the approximation order is 2n + 2. □

Fig. 1 shows the LN curves b2n of degree 2n for n = 1, 2, . . . , 7 which are Gn endpoint interpolations of the circular arc
of angle 2α =

π
3 . The graphs of the Hausdorff distances dH (c, b2n) between the circular arc c of angle α ∈ (0, π/4] and its

Gn LN approximation curves b2n, n = 1, 2, . . . , 7, are presented in Fig. 2. The sequence of Gn LN circle approximations of
degree 2n is extended to one for ellipse approximations in the following section.

4. Extension to ellipse approximations by LN curves

In this section, we find a sequence of LN curves of degree 2nwhich are Gn endpoint interpolations of an ellipse. A conic r
is represented in the standard rational quadratic Bézier form as

r(t) =
p0B2

0(t) + wp1B2
1(t) + p2B2

2(t)
B2
0(t) + wB2

1(t) + B2
2(t)
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where the conic r has the control points p0, p1, p2 and the weights 1, w, 1. We extend the sequence of LN circle approxima-
tion to that of LN conic approximation by

b2n(t) =

2∑
j=0

τj,n(t)pj (9)

with

τ0,n(t) =

n−1∑
i=0

λ0,i(t), τ1,n(t) = 1 −

n−1∑
i=0

λ1,i(t), τ2,n(t) =

n−1∑
i=0

λ2,i(t) (10)

for positive integers n ≥ 1, where

λ0,n(t) =
(sinα)2n(1 − t)

2(n + 1)t
{(n + 1)γn+1(t) − 2ntγn(t)}

λ1,n(t) = −(sinα)2n(γn+1(t) − γn(t)) (11)

λ2,n(t) =
(sinα)2nt

2(n + 1)(1 − t)
{(n + 1)γn+1(t) − 2n(1 − t)γn(t)}

for nonnegative integers n ≥ 0. This extension in Eq. (10) is inferred from Eqs. (4)–(5) using an affine transfor-
mation from the τ0τ2-plane to the xy-plane mapping a triangle with vertices (0, 0), (1, 0), (0, 1) to one with vertices
(secα, 0), (cosα,− sinα), (cosα, sinα), i.e.,(

x
y

)
= sinα

(
− tanα − tanα

−1 1

)(
τ0
τ2

)
+

(
secα
0

)
.

Note that τj,n(t) for j = 0, 1, 2 and n ≥ 1 is a polynomial of degree 2n and satisfies

τ0,n(t) = τ2,n(1 − t), τ1,n(t) = 1 − τ0,n(t) − τ2,n(t), (12)

and λj,n(t) for j = 0, 1, 2 and n ≥ 0 is a polynomial of degree 2n + 2.

Lemma 4.1. For all positive integers n, b2n is a linear normal curve.

Proof. Since

λ′

0,n(t) = (1 − w2)n(t − 1)µn(t)

λ′

1,n(t) = (1 − w2)n(2t − 1)µn(t) (13)

λ′

2,n(t) = (1 − w2)ntµn(t)

we have that

b′

2n(t) =

(
n−1∑
i=0

(1 − w2)iµi(t)

)
{(t − 1)p0 + (1 − 2t)p1 + tp2} (14)

and so b2n is a linear normal curve. □

Any point x ∈ R2 can be uniquely expressed in barycentric coordinates (τ0, τ1, τ2) with respect to the triangle p0p1p2
satisfying

x =

2∑
j=0

τjpj and
2∑

j=0

τj = 1 (15)

and a function fr : R2
→ R is defined by

fr(x) = τ 21 − 4wτ0τ2. (16)

Then the conic r satisfies fr(r(t)) = 0 [23]. The approximation curve b2n is a Gk endpoint interpolation of the conic r if

r′(t) · b′

2n(t) > 0 for t = 0, 1
difr(b2n(t))

dt i
= 0 for t = 0, 1 and i = 0, 1, . . . , k

[13].
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Proposition 4.2. The curve b2n(t) is a Gn endpoint interpolation of the conic r.

Proof. It follows from Eqs. (9), (12), and (15)–(16) that

fr(b2n(t)) = τ1,n(t)2 − 4w2τ0,n(t)τ2,n(t)

and it is easily checked that fr(b2n(t)) = 0 for all positive n and t = 0, 1. By Eq. (13),

d
dt

fr(b2n(t)) = 2

(
n−1∑
i=0

(1 − w2)iµi(t)

)

·

{
−(2t − 1)

n−1∑
i=0

λ1,i(t) − 2w2

(
−(1 − t)

n−1∑
i=0

λ2,i(t) + t
n−1∑
i=0

λ0,i(t)

)}
.

It follows from

−(2t − 1)
n−1∑
i=0

λ1,i(t) − 2w2(−(1 − t)
n−1∑
i=0

λ2,i(t) + t
n−1∑
i=0

λ0,i(t))

= −(2t − 1)
n−1∑
i=0

(1 − w2)n(γn+1(t) − γn(t)) + w2(2t − 1)
n−1∑
i=0

(1 − w2)n{γn+1(t)}

= −(2t − 1)

(
1 +

n−1∑
i=0

(1 − w2)n+1γn+1(t) − (1 − w2)nγn(t)

)
= −(2t − 1)(1 − w2)nγn(t)

that

d
dt

fr(b2n(t)) = −2

(
n−1∑
i=0

(1 − w2)iµi(t)

)
(2t − 1)(1 − w2)nγn(t). (17)

Thus
di

dt i
fr(b2n(t))

⏐⏐⏐⏐
t=0,1

= 0 for i = 0, 1, . . . , n,

and so b2n(t) is a Gn endpoint interpolation of the conic r. □

Lemma 4.3. If any continuous curve x : [0, 1] → R2 lies in the (closed) triangle △p0p1p2, then

dH (r, x) ≤
1

4w2 max
t∈[0,1]

|fr(x(t))| |p0 − 2p1 + p2|.

(Lemma 3.2 in [13].)

For all weightsw < 1, the following lemma can be proven in a manner similar to that of Lemma 3.3 since 1−w2 > 0, so
we omit the proof.

Lemma 4.4. For w < 1 and all positive integers n,
n−1∑
i=0

(1 − w2)iµi(t) > 0

in the closed interval [0, 1] .

Proposition 4.5. For w < 1 and all positive n, the Hausdorff distance between the ellipse r and its approximation curve b2n is
bounded as

dH (r, b2n) ≤
1

4w2 |p0 − 2p1 + p2|

(
1 − (1 + w)

n−1∑
i=0

( 2i
i

)
i + 1

(1 − w2)i

22i+1

)

·

(
1 − (1 − w)

n−1∑
i=0

( 2i
i

)
i + 1

(1 − w2)i

22i+1

)
, (18)

and its approximation order is 2n + 2.
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Fig. 3. The ellipse r (green), quartic approximation curves using the methods of Kovač and Žagar [24] (black), Hu [25] (red) and [26] (blue), our method
(magenta), and the quintic approximation curve (khaki) by Floater [13]. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Proof. By Eq. (14) and Lemma 4.4, for all positive integers n and weights w < 1,

0 ≤ τ0,n(t), τ1,n(t), τ2,n(t) ≤ 1.

Thus for all positive integers n and ellipse r, b2n is contained inside of the (closed) triangle p0p1p2. By Eq. (17) and Lemma 4.3,
fr(b2n(t)) is increasing in [0, 1

2 ] and decreasing [
1
2 , 1], and fr(b2n(t)) ≥ 0 for all t ∈ [0, 1]. Thus b2n lies outside the ellipse r.

Since maxt∈[0,1]|fr(b2n(t))| = fr(b2n( 12 )) and

λ0,n(1/2) =
1
2
λ1,n(1/2) = λ2,n(1/2) =

( 2n
n

)
n + 1

(1 − w2)n

22n+2 (19)

for n = 0, 1, . . ., we have

fr(b2n(1/2)) =

(
1 −

n−1∑
i=0

( 2i
i

)
i + 1

(1 − w2)i

22i+1

)2

− w2

(
n−1∑
i=0

( 2i
i

)
i + 1

(1 − w2)i

22i+1

)2

and Eq. (18) follows. By Taylor series expansion

1
1 +

√
1 − x

=

∞∑
n=0

( 2n
n

)
n + 1

xn

22n+1 ,

we have

1 − (1 + w)
n−1∑
i=0

( 2i
i

)
i + 1

(1 − w2)i

22i+1 = O((1 − w)n).

Since 1 − w and |p0 − 2p1 + p2| are O(s2) (refer to [13]), dH (r, b2n) = O(s2n+2), where s is the arc-length of the ellipse. □

5. Comparison to previous methods of ellipse approximation

In this section, we present an example to compare our approximation method to the previous approximation methods.
The example consists of an ellipse given by quadratic rational Bézier curve r(t) (green color) with the control points
(0, 0), (150, 120), (100, 0) which was used by Kovač and Žagar [24] and Hu [25]. This conic has the weight w =

5
6 , and

is illustrated in Fig. 3.
Floater [13] presented a conic approximation method using Gn−1 spline curves of any odd degree n with approximation

order 2n. The quintic approximation curve (khaki color) using that method for the given ellipse r has an upper bound of
Hausdorff distance 9.73 × 10−5, as seen in Fig. 3.

Kovač and Žagar [24] presented a quartic G1 endpoint interpolation of conic for the weight w satisfying
√
4
√
2 − 5 <

w <
√
2
√
2 − 1, and that method yields a f quartic approximation (black color) of the given ellipse with an upper bound

of the Hausdorff distance 4.37 × 10−2. Hu [25] found another quartic G1 endpoint interpolation (red color) of conic whose
upper bound is 3.56 × 10−4, as shown in Fig. 3.
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Fig. 4. Upper left: the skeleton curve (green) q and ellipses (red) r. Upper right: the convolution curve (blue) q ∗ r. Lower left: the convolution curve
(magenta) q ∗ b2 . Lower right: the trimmed curve. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

The approximation method by Hu [26] gives the best L2 approximation of a conic by G1 Bézier curves of any degree n. For
the given ellipse, the quartic approximation curve (blue color) has the L2 distance 4.53 × 10−2 in Fig. 3.

Our method yields a Gn endpoint interpolation of the ellipse by LN Bézier curves of any even degree 2n with the upper
bound of the Hausdorff distance given in Eq. (18). Fig. 3 shows the quartic Bézier curve (magenta color) whose upper bound
of the Hausdorff distance is 1.44.

Our LN Bézier approximation is not as tight as the other approximation curves. For instance, in Fig. 3 the other
approximation curves cannot be visually distinguished from the original ellipse. However, our LN Bézier approximation
has the merit that it yields a rational offset, which is not the case for any of the other methods.

6. Application

In this section we present an application of our approximation method. The application consists of the approximation
of the convolution curves of a spline curve and of ellipses. Only our method of LN approximation of ellipses can yield the
rational offsets. The other methods that were compared in the previous section cannot.

As shown in Fig. 4, the LN ellipse approximation b2 of degree four can be used to approximate the boundaries of a
Minkowski sum, here the outline of the letter ‘‘B’’ in some font. (For more information about Minkowski sums we refer
to [27–29].)

An ellipse r (red color) whose long and short axes lengths are 2 and 0.6 units, respectively, moves along a skeleton curve q
(green color) which is C2 continuous except for one cusp and is composed of five cubic Bézier curves with the control points

(7.344, 9.756), (7.164, 4.32), (4.572, .774), (3.126, .135), (1.68,−.504), (1.38, 1.764), (2.88, 4.026), (4.38, 6.288),
(7.68, 8.544), (10.005, 8.907), (12.33, 9.27), (13.68, 7.74), (8.388, 4.104), (16.128, 3.096), (9.9,−2.88), and (6.408, 1.62).

The boundaries of Minkowski sums can be obtained from the convolution curve q∗ r (blue color) of the two curves q and
r [27], which is not a rational curve. Using our method for the G2 quartic LN approximation b2 of the ellipse, we obtain the
convolution curve q ∗ b2 (magenta color) which approximates q ∗ r, the outline of font B. Since the curve q is C2-continuous
except for one cusp, the approximation curve q ∗ b2 is G2-continuous except for cusps and discontinuous points, as shown
in Fig. 4. Since b2 is a quartic LN curve, the convolution q ∗ b2 is a rational curve of degree eleven. Finally, the outline of font
(magenta color) can be obtained by the trimming curve q ∗ b2, as shown in Fig. 4.
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7. Summary and conclusion

In this paper we found a sequence of LN curves b2n of degree 2nwhich are Gn endpoint interpolations of a circular arc and
have approximation order 2n + 2. We presented an extension of the circle approximation to the ellipse approximation by
Gn LN curves b2n of degree 2n, and obtained the Hausdorff distance dH (r, b2n) between the ellipse r and the LN curve b2n. We
also illustrated that the Gn approximation of the convolution curves of ellipses and a spline curve can be obtained in rational
form using our method of Gn LN ellipse approximation.
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