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prove the invariance of the Hausdorff distance between two compatible curves under convolution. Using
this result, we obtain the exact Hausdorff distance between an offset curve and its approximation by our
method. We present the approximation algorithm and give numerical examples.
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1. Introduction

Offset curves and surfaces are widely used in many application
domains, such asmilling and layeredmanufacturing [1]. The offsets
of B-spline and NURBS curves are not rational in general; thus,
most CAD systems must rely on approximation techniques for
constructing and representing offsets [2,3].

In the last 30 years or so, work on spline approximations for
offsets, seeking to get smaller approximation errors, has focused
on curve and surface fitting [4,5], equi-volumetric offsets [6,7],
level set evolution [8], knot removal [9], and/or detecting singular
points [10,11]. Also known are two families of curves that have
exact rational offsets. One is the family of Pythagorean Hodograph
(PH) curves, and the other is the family of linear normal (LN) curves.

PH curves were first presented by Farouki [12]. Since then,
many approximation methods and properties of the PH curves
have been found [13–15] and these have been extended to
Pythagorean normal (PN) vector surfaces [16–18].

LN curves have the property that their convolution with NURBS
is rational. Quadratic Bézier curves are LN curves. Lee et al. [19]
presented an offset approximation based on a quadratic Bézier
approximation of circular arcs. Earlier, Lü [20] proved that the
offsets of quadratic Bézier curves are rational of degree six using
reparametrization. Recently, approximation schemes based on LN
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curves have been extended to LN surfaces, to approximate offset
surfaces [2,21,22].

In this paper, wemodify the approximationmethod of Lee et al.
[19]. They presented G0 and G1 end-point interpolation methods
for offsets. Our method yields a G2 end-point interpolation and is
based on an approximation of circular arcs using quadratic Bézier
biarcs. Our approximant is a rational Bézier curve of degree 3d− 2
or 5d− 4 when the initial curve is a Bézier curve or rational Bézier
curve of degree d, respectively. We also prove that the Hausdorff
distance between two compatible curves, a term defined later, is
invariant under convolution. Using this fact, we obtain the exact
Hausdorff distance between offset curves and our approximations
of them.We also explain an implementation of our approximation
scheme and give some numerical examples.

The remainder of this paper is laid out as follows. After some
preliminaries have been presented, in Section 2, we give the G2

end-point interpolation of circular arcs using quadratic Bézier
biarcs and derive the Hausdorff distance between two curves. In
Section 3, we prove the invariance of Hausdorff distance under
convolution and apply it to circle approximation. Then, we explain
our algorithm for offset approximation using quadratic Bézier
biarcs in Section 4, and present some numerical examples in
Section 5.We comment on our approximationmethod in Section 6.

2. Circle approximation using quadratic Bézier biarcs

Let c be a circular arc with angle 2α < π , e.g.

c(θ) = [cos(θ), sin(θ)] θ ∈ [−α, α]. (1)

http://dx.doi.org/10.1016/j.cad.2011.04.005
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Fig. 1. Piecewise quadratic Bézier biarc (blue) with its control polygon (magenta)
bi , i = 0, . . . , 4, which is a G2 end-point interpolation of unit circular arc of angle
2α.

Fig. 2. m =
cos(α)

4 (

cos(α)2 + 8 − cos(α)) > 0 iff α < π/2.

A quadratic Bézier biarc ca can be defined as

ca(t) =


2−

i=0

biB2
i (t) t ∈ [0, 1]

2−
i=0

bi+2B2
i (t − 1) t ∈ (1, 2]

where bi, i = 0, . . . , 4 are the control points and B2
i (t), i = 0, 1, 2

are the quadratic Bernstein polynomials [23]. Our approximation
method uses the quadratic Bézier biarc ca with the control points
b0 = [cos(α),− sin(α)],
b1 = (1 − m)[cos(α),− sin(α)] + m[sec(α), 0],
b2 = (1 − m)[cos(α), 0] + m[sec(α), 0], (2)
b3 = (1 − m)[cos(α), sin(α)] + m[sec(α), 0]
b4 = [cos(α), sin(α)],
where m is a real number in (0, 1), as shown in Fig. 1. Using the
fact [23,24] that the curvature κ(t) of the quadratic Bézier curve
with control points b0, b1, b2 satisfies

κ(0) =
area(△b0b1b2)

|1b0|
3

, κ(1) =
area(△b0b1b2)

|1b1|
3

where1bk = bk+1 −bk, we find the quadratic Bézier biarc ca with
a choice of m in Eq. (3) which is a G2 end-point interpolant of the
circular arc, as follows.

Proposition 2.1. For each m ∈ (0, 1), the quadratic Bézier biarc
ca having the control points in Eq. (2) is G2 continuous at t = 1.
Moreover, the quadratic Bézier biarc ca with the choice of

m =
cos(α)

4
(

cos(α)2 + 8 − cos(α)) (3)
is a unique G2 end-point interpolation of the circular arc c in
Eq. (1).

Proof. For each m ∈ (0, 1), the quadratic Bézier biarc ca(t), t ∈

[0, 2] is symmetric with respect to x-axis. Since the three points
b1, b2 and b3 are collinear, ca(t) is tangent continuous at t = 1.
Since the curvature κ(t) of ca(t) satisfies

κ(1−) =
area(△b0b1b2)

|1b1|
3

= κ(1) =
area(△b2b3b4)

|1b2|
3

= κ(1+),

so ca(t) is curvature continuous at t = 1. Also, by the
orthogonalities

ca′
(0) ⊥ [cos(α),− sin(α)], ca′

(2) ⊥ [cos(α), sin(α)],

ca(t) has the same tangent direction with c(θ) at both end-points.
Thus, the approximation ca(t) is aG2 end-point interpolation of the
circular arc c(θ) if and only if it satisfies

κ(0) =
area(△b0b1b2)

|1b0|
3

= 1 =
area(△b2b3b4)

|1b3|
3

= κ(2), (4)

which is equivalent to

4m4
− (1 − m)2 cos4 α = 0.

This quartic equation has two real roots

m =
cos(α)

4
(±


cos(α)2 + 8 − cos(α)),

and the choice of m in Eq. (3) is the only real root contained in
(0, 1), for 0 < α < π/2, as shown in Fig. 2. �

The Hausdorff distance dH(C1, C2) between two curves C1(t),
t ∈ [a, b] and C2(s), s ∈ [c, d] is defined [25,26] by

dH(C1, C2) = max

max
s∈[c,d]

min
t∈[a,b]

|C1(t)− C2(s)|,

max
t∈[a,b]

min
s∈[c,d]

|C1(t)− C2(s)|

.

We get the Hausdorff distance dH(c, ca) as follows.

Proposition 2.2. The Hausdorff distance between c and ca with the
choice of m in Eq. (3) is

dH(c, ca) = 1 − cos(α)+
1
4
sin2(α)(cos(α)−


cos2(α)+ 8).

Its approximation order is four.

Proof. Both curves c(θ) and ca(t) are symmetric with respect to
x-axis. It is sufficient to find the maximum of the function

ψ(t) = ||ca(t)| − 1| = |


x(t)2 + y(t)2 − 1|

in the half interval [0, 1], where [x(t), y(t)] = ca(t). Note that
ψ ′(t) = 0 if and only if

x′(t)x(t)+ y′(t)y(t) = 0.

Since

x′(t)x(t)+ y′(t)y(t) =
3
4
sin2(α)(cos(α)4 + 7 cos2(α)

+ 4 − cos(α)(cos(α)2 + 3)

cos(α)2 + 8) · t2(t − 1),

ψ(t) has critical points at t = 0, 1, and so it reaches the maximum
at t = 1. Thus, we have

dH(c, ca) = ψ(1) = 1 − cos(α)+
1
4
sin2(α)(cos(α)

−


cos2(α)+ 8).
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Fig. 3. dH (c, ca) = ϵ(α) = 1 − cos(α)+
1
4 sin2(α)(cos(α)−


cos2(α)+ 8).

By series expansion, we obtain

dH(c, ca) =
1
24
α4

+ O(α6)

whose approximation order is four. �

The Hausdorff distance dH(c, ca) between the unit circular arc c of
angle 2α and its quadratic Bézier biarc approximation ca with the
choice ofm in Eq. (3) depends only on the angle α. We denote it by
ϵ(α) and plot it in Fig. 3.

3. Hausdorff distance and convolution

In this section, we prove that the Hausdorff distance of two
regular compatible curves is invariant under convolution with the
same planar curve.

For the regular planar curve C(t) = [x(t), y(t)], t ∈ [a, b],
the unit normal vector field is definedbyN(C(t)) = [−y′(t), x′(t)]/
x′(t)2 + y′(t)2, and the graph of N(C(t)), t ∈ [a, b], is called the

Gauss map N (C). If two regular planar curves C1(t) and C2(s) have
the same Gauss map, then they are compatible.

If two compatible curves satisfy

C1
′(t) ‖ C2

′(s(t)) and ⟨C1
′(t), C2

′(s(t))⟩ > 0

for a reparametrization s = s(t), then the convolution curve C1 ∗ C2
is defined by

(C1 ∗ C2)(t) = C1(t)+ C2(s(t)),

as illustrated in Fig. 4. For more information about convolution
curves or Gauss maps, see, e.g., [19,27–30].

Let two regular planar curves b and p be compatible with no
inflection point and a range of the Gauss map of less than π . If q
Fig. 5. Convolution curves b ∗ p(u) and b ∗ q(u).

is an end-point interpolation of the planar curve p, and if q and b
are compatible, then there are reparametrizations t = t(u) and
s = s(u) satisfying

b′(u) ‖ p′(s(u)) ‖ q′(t(u)) (5)

for each u.
Let p̄(u) = p(s(u)) and q̄(u) = q(t(u)) for each u, and let Lp̄(u)

and Lq̄(u) be the tangent lines of p̄(u) and q̄(u), respectively. We
have the convolution curves

(b ∗ p)(u) = b(u)+ p(s(u)) = b(u)+ p̄(u)
(b ∗ q)(u) = b(u)+ q(t(u)) = b(u)+ q̄(u) (6)

as shown in Fig. 5. Their derivatives are (b∗p)′(u) = b′(u)+ p̄′(u)
and (b ∗ q)′(u) = b′(u)+ q̄′(u).

Lemma 3.1. Let two regular planar curves b and p be compatible
with no inflection point and with the norm of the Gauss map less than
π . If q is an end-point interpolation of the plane curve p, and if q and
b are compatible, then for each u

dH(Lp̄(u), Lq̄(u)) = dH(Lb∗p(u), Lb∗q(u)).

Proof. For each u, the tangent vectors of (b ∗ p)(u) and (b ∗ q)(u)
have the same direction, namely b′(u) + p̄′(u) and b′(u) + q̄′(u).
Thus, (b ∗ p)′(u) is parallel to (b ∗ q)′(u), and so they are parallel
to p̄′(u) and q̄′(u) by Eq. (5). Hence,

Lb∗p(u) ‖ Lb∗q(u) ‖ Lp̄(u) ‖ Lq̄(u).
Fig. 4. Convolution curve (C1 ∗ C2)(t) of the compatible curves C1(t) and C2(s).
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By Eq. (6), Lb∗p(u) and Lb∗q(u) are the translated lines of Lp̄(u) and
Lq̄(u), by b(u), as shown in Fig. 6. Hence,

dH(Lp̄(u), Lq̄(u)) = dH(Lb∗p(u), Lb∗q(u)). �

Proposition 3.2. If b, p and q satisfy the hypotheses of Lemma 3.1,
then

dH(p, q) = max
u

{dH(Lp̄(u), Lq̄(u))}.

Proof. For anyu0, Lp̄(u0) and Lq̄(u0) are parallel and are the tangent
lines of p̄(u) and q̄(u) at u = u0, respectively. Since p̄(u) and q̄(u)
are regular convex and the norms of their Gaussmaps are less than
π , we have

dH(Lp̄(u0), Lq̄(u0)) ≤ max{dH(p̄(u0), q̄), dH(p̄, q̄(u0))}.

Since dH(p̄(u0), q̄) = dH(p̄(u0), q) and dH(p̄, q̄(u0)) = dH(p,
q̄(u0)), we have

max{dH(p̄(u0), q̄), dH(p̄, q̄(u0))} = max{dH(p̄(u0), q),
dH(p, q̄(u0))} ≤ dH(p, q).

Thus, dH(Lp̄(u), Lq̄(u)) ≤ dH(p, q) for each u, so that

max
u

{dH(Lp̄(u), Lq̄(u))} ≤ dH(p, q). (7)

Conversely, assume that p̄(ũ) and q̄(û) are the points that
determine the Hausdorff distance between two curves p and q, i.e.,

dH(p, q) = dH(p̄(ũ), q̄(û)).

Since p and q are compatible and have no cusp, the two points p̄(ũ)
and q̄(û) satisfy

p̄′(ũ) ◦ (p̄(ũ)− q̄(û)) and q̄′(û) ◦ (p̄(ũ)− q̄(û))

as shown in Fig. 7. Thus, Lp̄(ũ) ‖ Lq̄(û) and so û = ũ. Hence,

dH(p, q) = dH(p̄(ũ), q̄(û)) = dH(Lp̄(û), Lq̄(ũ))

≤ max
u

{dH(Lp̄(u), Lq̄(u))}. (8)

Eqs. (7) and (8) yield

dH(p, q) = max
u

{dH(Lp̄(u), Lq̄(u))}. �

Theorem 3.3. If b, p and q satisfy the hypotheses of Lemma 3.1 and
b ∗ p and b ∗ q have no cusp, then

dH(b ∗ p, b ∗ q) = dH(p, q).

Proof. By Proposition 3.2 and by the regularity of b ∗ p and b ∗ q,

dH(p, q) = max
u

{dH(Lp̄(u), Lq̄(u))},

dH(b ∗ p, b ∗ q) = max
u

{dH(Lb∗p(u), Lb∗q(u))}.

By the Lemma 3.1,

dH(Lp̄(u), Lq̄(u)) = dH(Lb∗p(u), Lb∗q(u))

for each u. Therefore, we obtain

dH(b ∗ p, b ∗ q) = dH(p, q). �

The result of Theorem 3.3 can be used to find the Hausdorff
distance between an offset curveb∗rc and its approximationb∗rca
for the given planar regular curve b and offset distance r ∈ R,
where c is the unit circular arc compatible with b and ca is the
quadratic Bézier biarc approximation of c presented in Section 2.
Fig. 6. dH (Lp̄(u), Lq̄(u)) = dH (Lb∗p(u), Lb∗q(u)), for each u.

Fig. 7. Hausdorff distances dH (p, q) and dH (b ∗ p, b ∗ q).

Corollary 3.4. Let b be a planar regular curve with a norm of the
Gauss map less than π . Let c be the circular arc compatible with b
and ca the quadratic Bézier biarc G2 end-point interpolation. If b ∗ rc
and b ∗ rca have no cusp except possibly at the end-points, then

dH(b ∗ rc, b ∗ rca) = r · dH(c, ca). (9)

Proof. If b∗ rc and b∗ rca have no cusp including both end points,
then by Theorem 3.3 we obtain Eq. (9). Even if b ∗ rc and b ∗ rca
have a cusp at one or both end points, since the end points of b∗ rc
and b ∗ rca coincide, the assertion follows. �

In the thesis of the third author, Kim [31], similar results have been
obtained about quadratic Bézier curves. They are extended in this
work to regular curves.

4. Approximation method for offset curves and algorithm

In this section, we present a method for curvature continuous
offset approximation based on the circle approximation using
quadratic Bézier biarcs, and present our algorithm for the
approximation. Our method is a modification of Lee’s method [19]
which uses quadratic Bézier curves for circle approximation, while
our method uses quadratic Bézier biarcs to achieve G2 end-point
interpolation.
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Let b(u) be the given planar regular parametric curve such as a
B-spline or NURBS curve, u ∈ [b0, b1], and let r ∈ R be the offset
distance.

First, the given curve should be subdivided at the inflection
points, since a quadratic Bézier biarc cannot have inflection points.
Also, the curve b(u) should be subdivided at the points where the
signed curvature κ(u) is−1/r , so that the convolution b∗rc has no
cusp in the domain interior and Corollary 3.4 can be applied. Let N
be the number of these subdivisions, and ti ∈ (b0, b1), i = 1, . . . ,N
be the subdivision point. Put t0 = b0 and tN+1 = b1.

Now, for each segment, let αi be the half norm of the Gaussmap
N (b(u)), u ∈ [ti−1, ti]. We find the smallest positive integer Ki
satisfying

ϵ


αi

Ki


<

TOL
r

(10)

where TOL is the prescribed tolerance. Then each segment b(u),
u ∈ [ti, ti+1], is subdivided into Ki smaller segments. In all, the
curve is subdivided into
N−
i=0

Ki

segments. For each i, we find tij ∈ [ti, ti+1], j = 0, . . . , 2Ki
satisfying

N(b(tij)) =
j

2Ki
· N(b(ti))+


1 −

j
2Ki


· N(b(ti+1))

and compute the unit circular arc c(θ) and its G2 quadratic
biarc approximant ca(t), compatible with the segment b(u), u ∈

[ti,2j, ti,2j+2], j = 0, . . . , Ki−1. By Eq. (10) and the definition of ϵ(α),
we have

dH(c, ca) <
TOL
r
. (11)

For each i = 0, . . . ,N and j = 0, . . . , 2Ki − 1, we can obtain
the convolution curve (b ∗ rca)(u) = b(u) + ca(t(u)) using the
reparametrization t = t(u) satisfying

b′(u) ‖ ca′
(t)

in [ti,j, ti,j+1]. Since ca(t) is a quadratic Bézier curve, t(u) is rational
of degree d − 1 or 2d − 2, and (b ∗ rca)(u) is a rational curve of
degree 3d−2 or 5d−4, when b(u) is a B-spline or NURBS of degree
d, respectively [19].

For i = 0, . . . ,N and j = 0, . . . , Ki, all points (b ∗ rca)(ti,2j) lie
on the offset curve b ∗ rc. Let U be the set of all knots of the spline
b(u) in (b0, b1). For each j, if there is no knot in the open interval
(ti,j, ti,j+1), then (b ∗ rca)(u) is one rational Bézier curve segment
in the interval. But if there is a knot in the open interval (ti,j, ti,j+1),
then (b ∗ rca)(u) consists of two rational Bézier curve segments
in the interval. Thus, the total number of segments of (b ∗ rca)(u),
u ∈ [b0, b1] is

2
N−
i=0

Ki + m

where m is the number of knots in the open interval (b0, b1) that
are not equal to ti,j, i = 0, . . . ,N , j = 0, . . . , 2Ki.

Finally, the rational spline curve (b ∗ rca)(u), u ∈ [b0, b1] is the
approximation of the offset curve (b ∗ rc)(u) and

dH(b ∗ rc, b ∗ rca) = r · dH(c, ca) < TOL

by Eq. (11) and Corollary 3.4. Also by Proposition 2.1, the approxi-
mant (b∗ rca)(u) is curvature continuous except for the cusps. The
signed curvature of (b ∗ rca)(u) interpolates that of (b ∗ rc)(u) at
u = ti,2j, i = 0, . . . ,N and j = 0, . . . , Ki. We present the algorithm
for G2 end-point interpolation of offset curve of given curve b(u)
using rational curve (b ∗ rca)(u).
ALGORITHM

input : b(u), [b0, b1], U , r , TOL.
find ti ∈ (b0, b1), i = 1, · · · ,N satisfying κ(ti) = 0 or
−1/r .
set t0 = b0, tN+1 = b1
for i from 0 to N do

subdivide b(u) into [ti, ti+1]

let αi be the half norm of N (b, [ti, ti+1])
let Ki be the smallest positive integer satisfying
ϵ(

αi
Ki
) < TOL

find tij, j = 0, · · · , 2Ki such that

N(b(ti,j)) =
j

2Ki
· N(b(ti))+ (1 −

j
2Ki
) · N(b(ti+1))

for j from 0 to Ki − 1 do
find the quadratic Bézier biarc approximation
ca(t) which is compatible with b(u), u ∈

[ti,2j, ti,2j+2]

let mi,j be the number of knots in (ti,2j, ti,2j+2) −

{ti,2j+1}

put si,j0 = ti,2j and si,jmi,j+2 = ti,2j+2

let si,jk be the elements of (U ∩ (ti,2j, ti,2j+2)) ∪

{ti,2j+1} for k = 1, · · · ,mi,j +1, in increasing order
for k from 0 to mi,j + 1 do

find t = t(u) satisfying b′(u) ‖ ca′(t), u ∈

[si,jk , s
i,j
k+1]

calculate (b ∗ rca)i,j,k(u) = b(u) + rca(t(u)),
u ∈ [si,jk , s

i,j
k+1]

end do
end do

end do

setm =

N−
i=0

Ki−1−
j=0

mi,j

output : N , Ki, mi,j, (b ∗ rca)i,j,k(u), s
i,j
k

5. Numerical examples

We apply our approximation method to examples that were
presented by Lee et al. [19], as shown in Figs. 8–10. The initial curve
b(u) in Figs. 8–10, is a uniform cubic B-spline, a cubic Bézier curve,
and a quadratic NURBS curve, to be offset by r = 0.5, 1 and 0.6,
respectively. They are all curvature continuous.

The cubic B-spline in Fig. 8 has four inflection points and two
points satisfying κ(u) = −1/r for r = 0.5. So, the curve is
subdivided into seven pieces b(u), u ∈ [ti, ti+1], i = 0, . . . , 6,
and N = 6. The cubic Bézier curve and the quadratic NURBS in
Figs. 9 and 10 have no inflection points and no points satisfying
κ(u) = −1/r for r = 1 and 0.6, so in that case N = 0.

In Fig. 8, there are three knots which are not equal to any ti,j, so
m = 3, in Fig. 9, there is no interior knot, m = 0, and in Fig. 10, at
most three knots are contained in some open interval (ti,j, ti,j+1),
thusm ≤ 3.

In the examples of Figs. 8 and 9,b is a cubic curve, and so (b∗rca)
is a rational curve of degree seven. In the case of quadratic NURBS,
(b ∗ rca) is a rational curve of degree six. Using our algorithm, we
get the approximant (b ∗ rca)(u) which is curvature continuous
except for the cusps, as shown in Fig. 8(c)–Fig. 10(c).

Table 1 was first presented by Lee et al. [19]. They implemented
the approximation methods of Cobb (Cob), Elber and Cohen (Elb
and Elb2), Tiller and Hanson (Til), an extension of Hoschek and



1016 Y.J. Ahn et al. / Computer-Aided Design 43 (2011) 1011–1017
Fig. 8. (a) Uniform cubic B-spline (blue) curve b(u) and its control polygon
(magenta). The inflectionpoints (small green circles) satisfyκ(u) = 0 and thepoints
where the offset has a cusp (small khaki circle) satisfy κ(u) = −1/r for r = 0.5.
(b) The offset curve(green) b ∗ rc and its approximation (magenta) b ∗ rca , for
TOL = 0.1. (c) The signed curvature κb∗rc(u) (green) and κb∗rca (u) (magenta). U =

{u1, u2, u3} is interior knot vector in (b0, b1). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Wissel’s method (Lst and Lst2), and their method (Lee). They also
compared the results obtained from these methods as shown in
Table 1, which shows the number of control points for the error
within the given tolerance TOL. Later, Piegl and Tiller[9] added the
result from their method (P&T ). The last column in Table 1 is the
results by our approximation method.

The numbers in Table 1 show that the methods of Lst , Lst2,
Lee and P&T are better than our method. But our method has
some merits which other methods do not have, e.g., G2 end-point
interpolation of offset curves and a-priori error analysis.

6. Conclusions

In this paper, we showed that the Hausdorff distance between
two compatible curves is invariant under convolution when these
have no cusp in their domain interior. Using this fact and the circle
approximation by quadratic Bézier biarcs, we presented a method
for G2 end-point interpolation of offset curves by rational Bézier
curves.

Our approximation method has two merits. One is that
a-priori error analysis can be obtained due to Theorem 3.3,
so we can determine the number of subdivisions needed to
Fig. 9. (a) Cubic Bézier (blue) curve b(u) and its control polygon (magenta). (b) The
offset curve (green)b∗c(u) and its approximation (magenta)b∗ca(u), for TOL = 0.1.
The true Hausdorff distance is 1.44×10−2 . The (red) arrows are unit normal vectors
at end points and subdivision points. (c) The signed curvature κb∗c(u) (green) and
κb∗ca (u) (magenta). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 10. (a) Quadratic NURBS (blue) curve b(u) which represents unit circle
and its control polygon (magenta). (b) The offset curve(green) b ∗ c(u) and its
approximation (magenta) b ∗ ca(u), for TOL = 0.1. (c) The signed curvature
κb∗c(u) (green) and κb∗ca (u) (magenta). U = {u1, u2, u3}. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version
of this article.)

achieve an approximation within a prescribed error tolerance.
The other advantage of our method is that the curvature of our
approximation interpolates the curvature of the offset curve for all
subdivision points and both end points.

In future work, we plan to consider circle approximations using
LN curves of high degree with high order of contact at both end
points. Based on this approximation and using Theorem 3.3, high-
order approximation of offset curves by rational curves could be
obtained.
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Table 1
Number of control points of spline approximant curves with their errors less than
given tolerance TOL for the offset curve of (a) cubic B-spline in Fig. 8, (b) cubic Bézier
curve in Fig. 9, and (c) quadratic NURBS in Fig. 10. Piegl and Tiller (P&T )[9] did not
present the result in (c).

TOL Cob Elb Elb2 Til Lst Lst2 Lee P&T Our method

(a)

10−1 28 19 22 25 16 31 78 19 120
10−2 73 57 55 67 48 49 92 33 162
10−3 208 174 190 202 84 94 120 56 232
10−4 637 417 550 640 138 166 176 101 330
10−5 1846 1357 1690 1918 240 277 302 179 568

(b)

10−1 10 11 13 10 7 10 22 6 29
10−2 31 24 25 31 13 19 29 9 43
10−3 94 74 97 97 19 31 43 15 71
10−4 316 216 247 322 31 46 71 25 113
10−5 865 974 769 886 50 88 127 43 183
TOL Cob Elb Elb2 Til Lst Lst2 Lee Our method

(c)

10−1 17 13 11 9 9 9 25 49
10−2 33 53 27 9 13 17 49 73
10−3 129 69 123 9 24 33 73 97
10−4 513 261 299 9 46 65 121 169
10−5 1025 524 1019 9 98 117 199 289
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