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Abstract

In this paper we present an approximation method for the convolution of two planar
curves using a pair of two cubic Bézier curves with linear normals (LN). We char-
acterize the necessary and sufficient conditions for two compatible cubic Bézier LN
curves to have the same linear normal map. Using this characterization, we obtain
the cubic spline approximation of the convolution curve. As illustration, we apply
our method to the approximation of a font where the letters are constructed as the
Minkowski sum of two planar curves. We also present numerical results using our
approximation method for offset curve and compare our method to previous results.

1 Introduction

We revisit the problem of computing the convolution of two curves, a prob-
lem with a long history that has delivered many interesting and elegant in-
sights[5,12,15,19,18,21,22]. Closely related is problem of computing Minkowski
sums and the special case of computing offsets. These problems have a local
and a global aspect. The local aspect involves finding points on the convolved
curve or on the offset curve, whereas the global aspect involves trimming parts
of the curve not on the outer boundary. Our approach employs cubic Bézier
curves with linear normals (LN) to approximate general curves. We coordi-
nate the approximation of the two curves to be convolved so that the local
convolution operation becomes trivial. Our study includes error bounds and
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derivations of conditions of nonsingularity of the approximants. A number of
examples illustrates our method.

There have been numerous studies on convolution, Minkowski sums, and off-
set computations[2–4,6,7,9,13,14,16,17,23,24], and we do not review them all.
Piegl and Tiller [20] develop algorithms to offset NURBS curves and surfaces
accounting for special cases such as circles. They use a curvature-guided sam-
pling approach and interpolate the resulting set of offset points. Ahn et al.[1]
approaches offsetting Bézier curves by approximating the circle with Bézier
curves of degree equal to the degree of the curve to be offset and gives error
bounds.

Lee et al.[15] study Minkowski sums of planar curves. Both the local and
global problem dimensions are explored. This paper introduces the notion of
compatible curve subdivisions, using segments for which the normals lie in
the same interval of directions. Sampoli [21] considers the Minkowski sum
of surfaces with linear normals (LN), proving that the Minkowski sum of
two LN patches of degree n is a rational surface of degree 2n. The paper
proposes to approximate general surfaces with a macro patch of LN surfaces
consisting of four triangular patches. In [22], Sampoli et al. extends the work
by considering the convolution of a rational LN surface with a rational Bézier
surface. They show that the resulting surface is rational. In [19], Peternell
and Steiner consider the Minkowski sum of 3D objects bounded by surfaces
permitting a quadratic approximation. At that level of generality, they prove
basic properties of Minkowski sum but rely on sampling to solve the global
problem.

Peternell and Odehnal [18] prove that quadratic Bézier surfaces are LN and
show how to reparameterize them making this property explicit. They consider
this problem in the context of convolution.

In this paper, we restrict to the curve case. Our approach is to approximate the
curves to be convolved by cubic LN curves to within a prescribed tolerance,
and then to compute the convolution. Let B be the base curve, C the curve
with which to convolve it. Our approximation is characterized by using pairs
of curves, one element approximating a part of B, the other approximating
a part of C, such that both approximants have the same normal map. This
makes the convolution of the two trivial.

As an application, we present a font approximation using our method. The
font is constructed by the Minkowski sum of two planar curves. Our method
can yields, within a prescribed tolerance, a cubic spline approximation of the
boundary of the Minkowski sum, which is the convolution of two curves. We
can find easily the local and global singularities of the cubic spline, and so
obtain the trimmed cubic spline approximation for the boundary of the font.
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Naturally, our method can be applied to approximate the offset of a planar
curve. We present the results of our approximation method for the example
studied by Lee et al.[14]

We present our material as follows: In Section 2 we review preliminaries and
sketch how to avoid singularities. In Section 3, we derive a simple charac-
terization of cubic Bézier LN curves and explain when those curves have a
singularity in the interval [0,1]. We also sketch how global singualrities can be
found. In Section 4 we derive conditions for two cubic LN curves to have the
same normal map. Such pairs simplify the convolution operation. In Section
5 we illustrate our method for a font approximation. The boundaries of the
font are convolutions of two planar curves for which we obtain the cubic spline
approximation. In Section 6 we apply our method to approximate the offset
of planar curves, and compare our results to other previous ones for the same
example.

2 Definitions and Preliminaries

We consider cubic Bézier curves whose control points are constructed from
three points b0, bm, and b3 by choosing two parameters δ0 and δ1, in (0, 1)
and defining the points

b1 = (1 − δ0)b0 + δ0bm

b2 = (1 − δ1)b3 + δ1bm

The cubic Bézier curve will have the control points b0,b1,b2,b3. The con-
struction is shown in Figure 1.

Fig. 1. Control point construction

By imposing specific constraints on the choice of δ0 and δ1, we will show that
the curves are LN and are not singular in the interior. In particular, we will
set
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τ 6∈ [0, 1]

δ0 =
2τ

3τ − 1

δ1 =
2(τ − 1)

3τ − 2

and prove that the resulting cubic Bézier curves are LN and nonsingular in
[0, 1]. When τ = ∞, the cubic curve becomes quadratic.

Let ∇b0 = bm − b0 and ∇b1 = b3 − bm. We define λ as the length ratio of
those two vectors, and define

κ =
3τ − 1

3τ − 2
· λ

With these quantities we then express the normal map explicitly and derive
conditions for two cubic Bézier LN curves to have the same normal map.

Consider the curve arc Ck where Sk is the unit normal at the left end of the
arc and Ek the unit normal at the right end of the arc. Two arcs C1 and C2 are
compatible if S1 = S2 and E1 = E2. We are interested in finding compatible
LN curves that have the same normal map.

When convolving nonsingular curves, the resulting curve may have cuspidal
singularities and self-intersections. We call the former a local singularity and
the latter a global singularity. Note that an individual LN curve segment can-
not have a global singularity. We will give conditions for the nonsingularity
of individual cubic LN curves in the next section. Later, we will show how
to avoid singularities in the convolution of two nonsingular, compatible LN
curves.

Because of the LN property, an individual curve segment cannot have a self-
intersection. Thus global singularities arise when two approximants of the
convolution intersect. There are several ways to discover such singularities.
We can enclose each curve segment within a convex polygon, using the convex
hull property. Such polygons can then be intersected to narrow the search
of candidates for intersection, so lowering the asymptotic complexity in the
number of approximants n. For example, using enclosing rectangles, we can
lower the intersection complexity from O(n2) to O(n log2(n) + J), where J is
the number of intersecting pairs; e.g., [10], Chapter 3.

A different approach would be to exploit the capabilities of graphics copro-
cessors (GPUs). Briefly, the approximant is rendered into the frame buffer, a
highly parallel operation that can be accomplished in the fraction of a second
in most cases, whereupon the intersections are read out by a pixel mask scan.
The details are routine. The potential issue with this approach is the fixed
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resolution of the rendering phase. It can be overcome by rendering at a scale
commensurate with the prescribed tolerance and, if necessary, re-rendering
critical areas at higher resolution, so “zooming in” to potential intersections.
See also [11].

3 Cubic LN Bézier Curves

We derive conditions for when a cubic Bézier curve is LN. Moreover, we give
conditions under which cubic LN Bézier curves do not have a cuspidal sin-
gularity. Note that since we assume that the curve is LN there cannot be a
self-crossing singularity since it would require the curve normal to turn more
than π.

Our construction of a cubic LN curve in Bézier form rests on a geometric
property involving the first and last curve point and the intersection of the
tangents to the curve at those end points.

Let three points b0, bm and b3 be given. We will find a cubic Bézier LN curve
b(t) = (x(t), y(t)) with the control points

[b0, ((1 − δ0)b0 + δ0bm), ((1 − δ1)b3 + δ1bm, b3]

for a suitable choice of δ0 and δ1. Thus, the curve is

b(t) = B3
0(t)b0 +B3

1(t)((1−δ0)b0+δ0bm)+B3
2(t)((1−δ1)b3+δ1bm)+B3

3(t)b3

where t is in [0, 1] and the Bn
i (t) are the Bernstein polynomials of degree n.

The derivative of b(t) is (x′(t), y′(t)) where each component polynomial is of
degree 2. Assume that the curve has a cusp; that is, assume that x′(t) and
y′(t) vanish simultaneously at t = τ :

x′(τ) = y′(τ) = 0

This condition is equivalent to

δ0 =
2τ

3τ − 1
and δ1 =

2(τ − 1)

3τ − 2
(1)

See also Figure 2. Evidently b(t) does not have a cusp in [0, 1] iff τ 6∈ [0, 1].
So, we should choose

τ ∈ (−∞, 0) ∪ (1,∞]

Note that for τ = ∞ or −∞ we obtain δ0 = δ1 = 2/3 which means that the
cubic LN curve is a quadratic Bézier curve in that case.
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Fig. 2. The cubic LN curve is determined from δ0 (red) and δ1 (green) after choosing
τ . The curve will be regular in [0, 1] iff τ ∈ (−∞, 0) ∪ (1,∞].

For τ in that range, δ0 and δ1 are both contained in [0, 1], so that the cubic
LN curve does not have any cusp, loop or inflection point is regular in [0, 1].

We prove next that this construction results in LN curves. By simple calcula-
tion,

b′(t)=−6(t − τ){(3τ − 2)(bm − b0)(1 − t) + (3τ − 1)(b3 − bm)t}
(3τ − 1)(3τ − 2)

Let ∇b0 = bm−b0 and ∇b1 = b3−bm. The tangent vector of b(t) is parallel
to

(3τ − 2)∇b0(1 − t) + (3τ − 1)∇b1t

or equivalently, the normal vector of b(t) is parallel to

(3τ − 2)n0(1 − t) + (3τ − 1)n1t (2)

where ni = R∇bi and R =







0 −1

1 0





 is a rotation by π/2. Clearly, the normal

vector is also parallel to

(3τ − 2) · N0 · (1 − t) + (3τ − 1) · λ · N1 · t (3)

where λ = |∇b1|
|∇b0| and Ni is the unit normal in the direction of ni.

Summarizing, we have
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Fig. 3. τ → 3τ−1
3τ−2 , for τ ∈ (−∞, 0) ∪ (1,∞]. The range is (1

2 , 2).

Proposition 3.1 Given three points b0,bm,b3 that are not collinear and a
number τ ∈ (−∞, 0) ∪ (1,∞], the cubic Bezier curve with control points

[b0, ((1 − δ0)b0 + δ0bm), ((1 − δ1)b3 + δ1bm, b3]

is a regular LN curve in [0, 1], where δ0 and δ1 are given by (1).

4 Pairs of LN Curves With Polynomial Convolution

In this section we derive conditions under which a pair of cubic LN Bézier
curves has the same linear normal vector map. Such curves can be convolved
by adding the two function values. The linear normal vectors of such a pair of
cubic LN Bézier curves we search are

N0 · (1 − t) + κ · N1 · t

for all t ∈ [0, 1].

By Equation (3), the regular cubic LN curve satisfies

b′(t) ⊥ N0 · (1 − t) +
3τ − 1

3τ − 2
· λ · N1 · t (4)

for some τ ∈ (−∞, 0) ∪ (1,∞]. Using this fact we get the following lemma.
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(a) κ = λ, τ = ∞, [δ0, δ1] = [2/3, 2/3]

(b) κ = λ/2, τ = 0, [δ0, δ1] = [0, 1]

(c) κ = λ/3, τ = 1/6, [δ0, δ1] = [−2
3
, 10

9
]

Fig. 4. The blue cubic LN curve depends on the value κ and has the linear normal
vector N0 · (1 − t) + κ · N1 · t, shown by the yellow arrows. The control polygon of
cubic LN Bézier curve is drawn in red. The red vectors are the unit normal vectors
Ni, and the white vectors are the normal vectors ni, i = 0, 1. The green vector
is κ/λ times of n1 (right white arrow). The green line is passing through the end
points of n0 and (κ/λ)n1, and represents the linear normal map of the cubic LN
curve.
(a) the blue cubic LN curve is regular and is the quadratic Bézier case.
(b) the blue cubic LN curve has a singularity at t = 0, but it has no singularity in
the interior and has continuous unit tangent vector.
(c) the blue cubic LN curve has a cusp at t = 1/6.
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Lemma 4.1 The cubic LN Bézier curve b(t) is regular if and only if

b′(t) ⊥ N0 · (1 − t) + κ · N1 · t

for some κ ∈ (λ/2, 2λ).

Proof. Let b(t) be regular. Then τ ∈ (−∞, 0) ∪ (1,∞] and

3τ − 1

3τ − 2
= 1 +

1

3τ − 2
∈ (

1

2
, 2),

as shown in Figure 3. Putting

κ =
3τ − 1

3τ − 2
· λ,

by Equation (4) we have b′(t) ⊥ N0 · (1 − t) + κ · N1 · t and κ ∈ (λ/2, 2λ).

Conversely, let b′(t) ⊥ N0 · (1 − t) + κ · N1 · t for some κ ∈ (λ/2, 2λ). Then
Equation (4) yields κ = 3τ−1

3τ−2
· λ or equivalently

τ =







2κ−λ
3(κ−λ)

, (κ 6= λ)

∞, (κ = λ)
,

and Equation (1) yields

δ0 =
2

3

(

2 − λ

κ

)

and δ1 =
2

3

(

2 − κ

λ

)

. (5)

Since κ ∈ (λ/2, 2λ), we obtain δ0, δ1 ∈ (0, 1) and hence the cubic LN Bézier
curve b(t) is regular. 2

Consider two cubic LN Bézier curves bl(t) and br(t) having the polygons
[bl

0,b
l
m,bl

3] and [br
0,b

r
m,br

3], and let λl = |∇bl
1|/|∇bl

0| and λr = |∇br
1|/|∇br

0|.
Two planar regular curves bl and br are called compatible if their Gauss maps
are equal, i.e., N(bl) = N(br), where N(b) is unit normal vector field of b.
For more knowledge of compatible pair or Gauss map, refer to [15]. Now, we
present the sufficient and necessary condition for a pair of compatible cubic
LN Bézier curves bl(t) and br(t) to have the same linear normal vector map.

Proposition 4.2 Two compatible cubic LN curves bl(t) and br(t) have the
same linear normal vector map, i.e., b′

l(t) ‖ b′
r(t) for all t ∈ [0, 1] if and only

if
1

4
<

λr

λl

< 4. (6)

Furthermore, if b′
l(t) ‖ b′

r(t), then the convolution curve bl∗br can be obtained
by

(bl ∗ br)(t) = bl(t) + br(t).
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Proof. Let b′
l(t) ‖ b′

r(t) for all t ∈ [0, 1]. By Lemma 3.1,

b′
l(t) ⊥ N0 · (1 − t) + κl · N1 · t

for some κl ∈ (λl/2, 2λl) and

b′
r(t) ⊥ N0 · (1 − t) + κr · N1 · t

for some κr ∈ (λr/2, 2λr). Since b′
l(t) ‖ b′

r(t) for all t ∈ [0, 1], we have κl = κr.
Thus (λl/2, 2λl) ∩ (λr/2, 2λr) should not be empty, which is equivalent to
1
4

< λr

λl
< 4.

Conversely, let 1
4

< λr

λl
< 4. Then (λl/2, 2λl) ∩ (λr/2, 2λr) is not empty. We

can take κ in the nonempty set. By Lemma 3.1,

b′
l(t) ⊥ N0 · (1 − t) + κ · N1 · t and b′

r(t) ⊥ N0 · (1 − t) + κ · N1 · t

for the same κ. Thus we have b′
l(t) ‖ b′

r(t) for all t ∈ [0, 1]. 2

Remark 4.3 For τ = 0, the cubic LN Bézier curve b(t) has a singular point
at t = 0. Even if the unit tangent vector T (t) does not exist at t = 0, we
can define the unit tangent vector at t = 0 using the one-sided limit T (0)+ =
limt→0+ T (t) which gives b(t) the continuous unit tangent vector, as shown
in Figure 4(b). By same construction, we obtain the (extended) linear normal
vector for all t ∈ [0, 1]. Therefore, we can expand Proposition 4.2 slightly
as follows. Two compatible cubic LN curves bl(t) and br(t) have the same
(extended) linear normal vector map, if and only if

1

4
≤ λr

λl

≤ 4. (7)

We illustrate our proposition. As shown in Figure 5(a), the start points bl
0

and br
0, end points bl

3 and br
3, and the unit normal vectors N0 and N1 (red

colored vectors) are given as follows:

bl
0 = [2.5,−1],br

0 = [2.5,−4], N0 = 〈−4

5
,
3

5
〉

bl
3 = [3.5, 5], br

3 = [2,−7

6
], N1 = 〈− 1√

2
,− 1√

2
〉

Then we have the mid-points bl
m = [.5, 1], br

m = [1,−2.5], and the ratios

λl = 5
√

2
4

≈ 1.77, λr = 5
√

2
9

≈ 0.786. Since λl and λr satisfy Equation (7), we

may choose κ in the interval [5
√

2/4.5, 5
√

2/2] ≈ [0.884, 1.57]. We take κ as

κ =
√

λl · λr =
5
√

2

6
≈ 1.18,
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(a) (b)

Fig. 5. Convolutions:
(a) Cubic LN Bézier curves bl(t), blue, and br(s), gold, and their convolution curve
bl ∗ br, red.
(b) Cubic LN Bézier curves bl(t), blue, and br(s), gold, and their convolution curve
bl ∗ br, red thick-lines, which has a cusp.
The control polygons are plotted by green color. The mid points bl

m and br
m are

the corner points of black polygons.

the geometric mean of λl and λr. By Equation (5), we have

[δl
0, δ

l
1] = [

1

3
,
8

9
], [δr

0, δ
r
1] = [

8

9
,
1

3
]

fixing the control polygons (drawn green) of the cubic LN Bézier curves. The
derivative vectors of the cubic LN Bézier curves bl(t) and br(t) are

b′
l(t) =

2(3t + 1)

3
〈6t − 3, t + 3〉

b′
r(t) =

−3t + 4

3
〈6t − 3, t + 3〉

and they are parallel for all t ∈ [0, 1], so that the normal vectors Nl(t) and
Nr(t) are also parallel at the same t ∈ [0, 1]. Hence we can obtain easily the
(red) convolution curve

(bl ∗ br)(t) = bl(t) + br(t)

and its (green) control polygon.

The convolution curve of two regular cubic LN Bézier curves may have a cusp
as shown in Figure 5(b). Here, the start points and the unit normal vectors
(red colored vectors) are given as follows:
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bl
0 = [−3,

3

2
],br

0 = [
7

2
,
−7

2
], N0 = 〈 2√

5
,

1√
5
〉

bl
3 = [1,

7

2
],br

3 = [
1

2
,
−5

2
], N1 = 〈−4

5
,
3

5
〉

We have bl
m = [−2,−1/2], br

m = [2,−1/2] and λl =
√

5 ≈ 2.24, λr =√
5

3
≈ 0.745, which satisfy Equation (7), and we choose κ in the interval

[
√

5/2, 2
√

5/3]. We take κ =
√

λl · λr =
√

5/3 ≈ 1.29, and then we have

[δl
0, δ

l
1] = [

4 − 2
√

2

3
,
12 − 2

√
3

9
] ≈ [.179, .948], [δr

0, δ
r
1] ≈ [.948, .179].

The derivative vectors are

b′
l(t) =

6t − 1 +
√

3

3
〈3(2 −

√
3)(2t + 1 +

√
3), 2(3 +

√
3)(t + 3 − 2

√
3)〉

b′
r(t) =

6t − 5 −
√

3

2
√

3
〈3(2 −

√
3)(2t + 1 +

√
3), 2(3 +

√
3)(t + 3 − 2

√
3)〉

They are parallel for all t ∈ [0, 1]. Thus we obtain the (red) convolution curve
(bl ∗ br)(t) = bl(t) + br(t), and its derivative

(bl ∗ br)
′(t) =

6t − 1 −
√

3

6
〈3(2t + 1 +

√
3), 2(9 + 5

√
3)(t + 3 − 2

√
3)〉.

Thus the convolution curve bl ∗ br has a singular point at τ = (1 +
√

3)/6 ∈
(0, 1) and we can see that this convolution curve has a cusp, as shown in
Figure 5(b). By Equation (1) or by simple calculation of the control points
bi = bl

i + br
i , i = 0, · · · , 3 and bm = bl

m + br
m, we also have

[δ0, δ1] = [
4 + 2

√
3

3
,
12 + 2

√
3

9
] ≈ [2.49, 1.72].

Using [δ0, δ1], we can present the necessary and sufficient condition for the
convolution curve bl ∗ br having cusp as the following proposition.

Proposition 4.4 The convolution curve (bl ∗ br)(t) = bl(t) + br(t) is also
cubic LN curve, and it has a cusp in (0, 1) if and only if one of δ0 and δ1 is
not in the open interval (0, 1).

Proof. Since bl(t) and br(t) have the same linear normal vector, the convolu-
tion curve (bl ∗ br)(t) = bl(t) + br(t) also has the same linear normal vector.
It has a cusp in (0,1) if and only if it has a cusp at τ ∈ (0, 1). By Equation
(1), τ ∈ (0, 1) is equivalent to δ0 /∈ (0, 1) and to δ1 /∈ (0, 1). Thus the cubic
LN curve bl ∗ br has a cusp in (0, 1) if and only if one of δ0 and δ1 is not in
the open interval (0, 1). 2
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(a) (b) (c)

Fig. 6. (a) The skeleton curve constructed by Bézier curve of degree nine. (b) The
cross-section of pen shaped ellipse (c) Minkowski sum

TOL = 1

t ∈ [ti−1, ti] d
p

H
+ d

q

H

[0, .0985] 6.91 × 10−2

[.0985, .151] 1.08 × 10−1

[.151, tA] 7.15 × 10−1

[tA, .526] 9.95 × 10−2

[.526, .632] 5.42 × 10−2

[.632, .710] 1.22 × 10−1

[.710, .877] 2.66 × 10−1

[.877, .935] 2.30 × 10−2

[.935, 1] 2.89 × 10−2

TOL = 10−1

t ∈ [ti−1, ti] d
p

H
+ d

q

H

[0, .0985] 6.91 × 10−2

[.0985, .122] 3.80 × 10−3

[.122, .151] 3.23 × 10−3

[.151, .225] 4.13 × 10−2

[.225, tA] 7.71 × 10−2

[tA, .526] 9.95 × 10−2

[.526, .632] 5.42 × 10−2

[.632, .663] 4.65 × 10−3

[.663, .710] 6.81 × 10−3

[.710, .800] 6.63 × 10−3

[.800, .877] 7.36 × 10−3

[.877, .935] 2.30 × 10−2

[.935, 1] 2.89 × 10−2

TOL = 10−2

t ∈ [ti−1, ti] d
p

H
+ d

q

H

[0, .0435] 6.29 × 10−3

[.0435, .0985] 9.82 × 10−3

[.0985, .122] 3.80 × 10−3

[.122, .151] 3.23 × 10−3

[.151, .187] 2.07 × 10−3

[.187, .225] 1.47 × 10−3

[.225, .276] 1.99 × 10−3

[.276, .306] 3.87 × 10−4

[.306, tA] 3.06 × 10−3

[tA, .399] 3.85 × 10−3

[.399, .438] 4.37 × 10−4

[.438, .526] 2.25 × 10−3

[.526, .583] 3.29 × 10−3

[.583, .632] 9.34 × 10−4

[.632, .663] 4.65 × 10−3

[.663, .710] 6.81 × 10−3

[.710, .800] 6.63 × 10−3

[.800, .877] 7.36 × 10−3

[.877, .916] 3.55 × 10−3

[.916, .935] 1.52 × 10−3

[.935, .952] 1.35 × 10−3

[.952, 1] 6.56 × 10−3

Table 1
The left columns of each tables is t’s range of the ninth-degree Bézier curve p(t). p

has an unique inflection point at p(tA) of tA = .349.

The proposition provides a simple check for local singularities when convolving
with our method.

5 Application I. Approximation of Convolution Curves

We approximate the convolution curve using our method by pairs of LN cubic
Bézier curves.
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(a) (b) (c)

(d) (e) (f) (g)

(h) (i) (j) (k)

Fig. 7. (a) The convolution curves (green) of cubic LN curves pa ∗ qa and their
control polygons (magenta). The result comprises 26 cubic Bézier curves achieving
a tolerance within TOL = 10−1. It has six cusps.
(b) The construction of a font character using the trimmed convolution approxi-
mation.
(c) The font ’H’ with two segments of the cubic Bézier curve to close both ends of
the font.
(d)-(i) The cubic LN approximants (green) that have a cusp, and their control
polygons (magenta).
(j)-(k) The cubic Bézier approximation (green) of half ellipse (red), and their
control polygons (magenta).

Let two planar curves be given. One is a Bézier curve of degree nine, p(t) with
t ∈ [0, 1], whose control points are (.2, 6.6), (8.9,−1.8), (7.2,−15.8), (−43.4, 41.8),
(70.8,−41.3), (−29.6, 30.4), (20.9, 20.0), (−6.1, 4.1), (8.2,−7.8), and (9.1, 3.8),
as shown in Figure 6(a). The other is an ellipse q(s) whose major and minor
axes are 1.4 and 0.6, rotated by an angle of π/6, as shown in Figure 6(b). Let
the ellipse move along the Bézier curve. Their Minkowki sum defines a font
character ’H’ as shown in Figure 6(c). The Bézier curve p(t) is the skeleton
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curve and the ellipse q(s) is the cross section of pen. We use the pair of cubic
LN Bézier curves pa and qa to approximate the convolution curve p ∗ q.

In constructing the approximation, we use a divide and conquer method. The
curve should be subdivided first at singular points and inflection points, since
an approximating cubic LN Bézier curve should not have those points. The
ninth-degree Bézier curve p(t) has an unique inflection point at t = tA ≈ 0.349,
at which the curve should be subdivided first.

If the subdivided segment p(t), t ∈ [a, b] is C1-continuous and has neither
singularity nor inflection point, then arg(p′(t)) is monotone increasing or de-
creasing, where arg(·) is the angle (or argument) of the vector p′(t) considered
as a complex number. Also, if the Gauss map of the segment p(t), t ∈ [a, b] is
of length greater than π, then the segment is subdivided at the points t = ti,
i = 1, · · · , k − 1, where k is the smallest integer satisfying

arg(p′(b)) − arg(p′(a))

k
< π

and ti is the point satisfying

arg(p′(ti)) = arg(p′(a)) +
i

k
(arg(p′(b)) − arg(p′(a))).

For this reason, p(t) is subdivided at t = .151, .632 and .877.

Now, we find the segment q(s), s ∈ [si−1, si] which is compatible with p(t),
t ∈ [ti−1, ti], and approximate them simultaneously by a pair of cubic LN
curves pa and qa having the same linear normal map. If two curve segments
p(t), t ∈ [ti−1, ti] and q(s), s ∈ [si−1, si] do not satisfy Equation (7), then by
Remark 3.3, there is no pair of (extended) regular cubic LN curves pa and qa

with the same normal map. Then they should be also subdivided. We can see
the asymtotic behavior of the ratios λl or λr of curve segments p and q as
follows.

Remark 5.1 The ratio λ of any planar polynomial curve, Bézier or spline,
converges to 1 quadratically as its length goes to zero, i.e.,

λ − 1 = O(s2),

where s is the arc-length parameter.

We present the proof in the Appendix.

In whole process of this approximation, any two curve segments p(t), t ∈
[ti−1, ti] and q(s), s ∈ [si−1, si] always satisfy Equation (7), and so there is at
least one pair of (extended) regular cubic LN curves pa and qa. As the error
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measurement we use the sum of two Hausdorff distances

dH(p,pa) + dH(q,qa),

instead of dH(p ∗ q,pa ∗ qa). It is easier to calculate than dH(p ∗ q,pa ∗ qa)
directly.

If the error is larger than the prescribed tolerance, the curve segments p(t),
t ∈ [ti−1, ti] and q(s), s ∈ [si−1, si] should be subdivided. We have considered
the subdivision points as one of the following points:

(a) at tj and sj such that
arg(p′(tj)) = arg(q′(sj)) = (arg(p′(ti−1)) + arg(p′(ti)))/2,

(b) at tj and sj such that
arg(p′(tj)) = arg(q′(sj)) = arg(p(ti) − p(ti−1) + q(si) − q(si−1)), or

(c) at tj and sj such that

arg(p′(tj))= arg(q′(sj))

=
dH(p,pa) · arg(p′(tM)) + dH(q,qa) · arg(q′(sM)

dH(p,pa) + dH(q,qa)
,

where tM and sM is the point at which the Hausdorff distances dH(p,pa)
and dH(q,qa)) occur.

For our font example we have used subdivision method (c). The subdivisions
of the curves are needed until the error is less than the prescribed tolerance.

As shown in Table 1, the number of subdivisions needed to achieve the toler-
ances TOL = 1, 0.1 and 0.01 are 6, 12 and 21, respectively. Figure 7(a) shows
the the approximate cubic Bézier spline pa ∗qa of the convolution curve p ∗q

for TOL = 10−1. The approximation has six cusps, and we plot the Bézier
curves having the cusps and their control polygons in Figures 7(d)-(i).

The intersection points of cubic Bézier curves can be found easily, we can
obtain the trimmed cubic spline, as shown in Figure 7(b). At both end of the
font, there are two half ellipses. We approximate them by cubic Bézier curves
using Floater’s spline approximation method of conic section[8]. The cubic
approximant is G1 interpolation of ellipse at both end points and at the middle
point of the ellipse, as shown in Figures 7(j)-(k), and their approximation
errors are 8.81 × 10−3 and 1.03 × 10−2, in order. Finally, we obtain the font
after the whole process of approximations, as shown in Figure 7(c).
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6 Application II. Approximation of Offset Curves

In this section we apply our method to the approximation of offset curves. We
will use convolution with a circle and proceed as in Application I.

Let p be a planar curve and r be the offset distance. We approximate p and
cr by two compatible cubic Bézier curves pa and ca

r , where cr is the circular
arc of radius r and centered at origin, and is compatible with pa. As an error
measurement, we use

dH(p,pa) + r · dH(c, ca) (8)

instead of dH(p ∗ cr,p
a ∗ ca

r), where c is the unit circular arc compatible to
cr, and ca is its cubic LN approximation of c by our method. The Hausdorff
distance dH(c, ca) can be obtained directly as follows:

Proposition 6.1 Let c be the unit circular arc with angle 2α < π, and ca be
its cubic LN Bézier approximation having the linear normal map

n(t) = N0 · (1 − t) + κ · N1 · t

The Hausdorff distance between circular arc c(t) and its cubic LN approxima-
tion ca(s) is

dH(c, ca) =



























|‖ca(s1)‖ − 1|, (κ ∈ [1
2
, 1 − sin α] ∪ [ 1

1−sin α
, 2])

max{|‖ca(s1)‖ − 1|, |‖ca(s2)‖ − 1|}
(κ ∈ (1 − sin α, 1

1+sin α
) ∪ (1 + sin α, 1

1−sin α
))

|‖ca(s2)‖ − 1|, (κ ∈ [ 1
1+sinα

, 1 + sin α])

where

s1 =
−B +

√
B2 − 4AC

2A
, s2 =

−B −
√

B2 − 4AC

2A
. (9)

and

A =(κ − 1)3 + 4κ(κ − 1) sin2 α

B =2(κ − 1)2 + κ(−5κ + 3) sin2 α (10)

C =−(κ − 1)2 + κ2 sin2 α.

We give the proof of the proposition in the appendix.

As an example, we approximate the r-offset of the cubic Bézier curve using
Equation (8) and Proposition 6.1, as shown in Figure 8(a), which was pre-
sented by Lee et. al. in [14]. The data in Table 2 is from Lee et. al. [14] and
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(a) (b)

Fig. 8. (a) The cubic Bézier curve (blue) and its control polygon (black).
(b) For the tolerance TOL = 10−2, our approximation curve pa ∗ ca

r is the green
cubic spline, and its control polygon (magenta) has 16 control points.

TOL Cob Elb Elb2 Til Lst Lst2 M2 Piegl/Til our method

10−1 10 11 13 10 7 10 22 6 10

10−2 31 24 25 31 13 19 29 9 16

10−3 94 74 97 97 19 31 43 15 28

10−4 316 216 247 322 31 46 71 25 43

10−5 865 974 769 886 50 88 127 43 79

Table 2
Our method adapts the divide and conquer method, and uses dH(p,pa)+r·dH(c, ca)
for the error measurement. The column of M2 is from the method of Lee et. al. [14]

Piegl and Tiller [20]. We added our approximation results in the last column
of the table. For the tolerance TOL = 10−2, our method required four sub-
divisions and, using the pair of cubic LN Bézier curves pa and ca

r , yielded a
cubic spline with 16 control points, as shown in Figure 8(b).

Acknowledgements: This work was supported in part by National Research
Foundation of Korea Grant funded by the Korean Government(KRF-2008-
313-C00120). Additional support is by NSF Grants CPATH CCF-0722210
and CCF-0938999, DOE award DE-FG52-06NA26290, and by a gift from Intel
Corporation.

18



References

[1] Y. J. Ahn, Y. S. Kim, and Y. Shin. Approximation of circular arcs and offset
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Appendix

We now prove Remark 5.1 and Proposition 6.1. The following proves Remark
5.1.

Proof. Let b(t) be a planar polynomial curve, and b∗(s) = b(t(s)) be the
reparametrization of the arc-length parameter s. Then b∗(s) has the Taylor
series near s = 0 as follows

b∗(s) = b∗(0)+T ·s+κ·N · s
2

2
+· · · = b∗(0)+T ·(s+O(s3))+κ·N ·(s

2

2
+O(s3))

where T and N are unit tangent and unit normal vectors at s = 0, and κ is
the curvature at that point. The derivative is

db∗(s)

ds
= T · (1 + O(s2)) + κ · N · (s + O(s2)).

Let consider the curve b in the interval [0, s]. Then the vector form of tangent
lines at both end points 0 and s are

b∗(0) + T · t and b∗(s) + {T · (1 + O(s2)) + κ · N · (s + O(s2))}t′.

The latter tangent line is

b∗(0) + T · {s +O(s3) + (1 +O(s2))t′}+ κ ·N · {s2

2
+O(s3) + (s +O(s2))t′}.

Thus at t′ = − s
2

+ O(s2) and at t = s
2

+ O(s3), they have the intersection
point

bm = b∗(0) + T · (s
2

+ O(s3))

so

∇b0 =bm − b∗(0) = T · (s
2

+ O(s3))

∇b1 =b∗(s) − bm = T · (s
2

+ O(s3)) + κ · N · (s
2

2
+ O(s3))

and

‖∇b1‖ =

√

(
s

2
+ O(s3))2 + κ2(

s2

2
+ O(s3))2 =

s

2
+ O(s3)

Thus we have

λ − 1 =
‖∇b1‖
‖∇b0‖

− 1 =
s
2

+ O(s3)
s
2

+ O(s3)
− 1 = O(s2)

2
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Fig. 9. The range of (α, κ) for s1 and s2 ∈ (0, 1), in the α, κ-plane,
(α, κ) ∈ (0, π/2) × [1/2, 2].
s1 ∈ (0, 1) ⇔ κ ∈ (1

2 , 1
1+sin α

) ∪ (1 + sin α, 2) (bounded by red curves).

s2 ∈ (0, 1) ⇔ κ ∈ (1 − sin α, 1
1−sinα

) (bounded by blue curves).

Fig. 10. The circular arc(red curve) and its cubic LN approximation (blue curve)
with the control polygon(green). The Hausdorff distance occurs at s1(small red
circle) or s2 (small green circle). From left to right, (α, κ) = (π

4 , 1.5), (π
6 , 0.6), and

( π
12 , 1.8), respectively.

Next, we prove Proposition 6.1 as follows.

Proof. With out loss of generality we assume that the circular arc of angle
2α < π is given by

c(s) = (cos s, sin s), s ∈ [−α, α].
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For the linear normal vector

n(t) = [cos α,− sin α](1 − t) + κ · [cos α, sin α]t

the cubic LN approximation curve is

ca(s) =
∑

ciB
3
i (t)

with the control points

c0 = [cos α,− sin α], c1 = [cos α,− sin α](1 − δ0) + [sec α, 0]δ0

c2 = [cos α, sin α](1 − δ1) + [sec α, 0]δ1, c3 = [cos α, sin α]

where

δ0 =
2

3

(

2 − 1

κ

)

, δ1 =
2

3
(2 − κ) (11)

from Equation (5), since the unit circular arc c has λ = 1. Let f(s) = ‖ca(s)‖−
1 and g(s) = ca′(s) ◦ ca(s). f ′(s) = 0 ⇔ g(s) = 0. Then we have

g(s)= ca′(s) ◦ ca(s) =

(

2
∑

i=0

3∆ciB
2
i (t)

)

◦
(

3
∑

i=0

ciB
3
i (t)

)

=
3

5

(

3 · tan2 αδ2
0 − 2 · 2 sin2 α(1 − δ1)

)

B5
1(t)

+
3

10

(

3 · (2 sin2 αδ0(1 − δ1) + δ0δ1 tan2 α)

+6 · (−2 sin2 α(1 − δ0)(1 − δ1) + tan2 αδ0(δ1 − δ0)) − 2 sin2 αδ1

)

B5
2(t)

+
3

10

(

2 sin2 αδ0 + 6 · (2 sin2 α(1 − δ0)(1 − δ1) + tan2 αδ1(δ1 − δ0))

+3 · (−2 sin2 αδ1(1 − δ0) − δ0δ1 tan2 α)
)

B5
3(t)

+
3

5

(

2 · 2 sin2 α(1 − δ0) − 3 · tan2 αδ2
1

)

B5
4(t),

where ∆ci = ci+1 − ci, i = 0, 1, 2. By Equation (11), we get

g(s) =
12 tan2 α

κ2
· s(1 − s) ·

[

(2κ − 1)
(

(κ − 1)2 − κ2 sin2 α
)

−
(

(7κ − 5)(κ − 1)2 + κ(13κ2 − 14κ + 3) sin2 α
)

s

− (κ − 1)
(

(2κ − 7)(κ − 1)2 + κ(23κ − 13) sin2 α
)

s2

+ 3(κ − 1)2
(

(κ − 1)2 + 4k sin2 α
)

s3
]

It can be factorized as

12 tan2 α

κ2
· s(1 − s) · (3(κ − 1)s − 2κ + 1) · [As2 + Bs + C]
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where the coefficients A, B and C satisfy Equation (10).

Then f(s) =
√

ca(s) ◦ ca(s) − 1 has the local extremum at

0, 1,
2κ − 1

3(κ − 1)
, s1, s2

where s1 and s2 are in Equation (9). Since the first three critical points
0, 1, 2κ−1

3(κ−1)
for κ ∈ [1/2, 2] cannot lie in the open interval (0, 1), we can ig-

nore them. Moreover, by a simple calculation,

0 < s1 < 1 ⇔ κ <
1

1 + sin α
or κ > 1 + sin α,

and

0 < s2 < 1 ⇔ 1 − sin α < κ <
1

1 − sin α
,

as shown in Figure 9. Thus the Hausdorff distance between the circular arc c

and its cubic LN approximation ca is

dH(c, ca) =



























| ‖ca(s1)‖ − 1 |, (κ ∈ [1
2
, 1 − sin α] ∪ [ 1

1−sin α
, 2])

max{| ‖ca(s1)‖ − 1 |, | ‖ca(s2)‖ − 1 |}
(κ ∈ (1 − sin α, 1

1+sin α
) ∪ (1 + sin α, 1

1−sin α
))

| ‖ca(s2)‖ − 1 |, (κ ∈ [ 1
1+sin α

, 1 + sin α]).

2

For (κ, α) = (π/4, 1.5), only s2 is inside of the interval (0,1), for (κ, α) =
(π/6, 0.6), both of s1 and s2 are in (0,1), and (κ, α) = (π/12, 1.8), only s1 is
in (0,1), as shown in Figure 10.
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