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ABSTRACT
We consider the design of parametric curves from geometric
constraints such as distance from lines or points and tan-
gency to lines or circles. We solve the Hermite problem
with such additional geometric constraints. We use a family
of curves with linearly varying normals, LN curves, over the
parameter interval [0, u]. The nonlinear equations that arise
can be of algebraic degree 60. We solve them using the GPU
on commodity graphics cards and achieve interactive perfor-
mance. The family of curves considered has the additional
property that the convolution of two curves in the family is
again a curve in the family, assuming common Gauss maps,
making the class more useful to applications. We also re-
mark on the larger class of LN curves and how it relates to
Bézier curves.
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1. INTRODUCTION
Constraint-based sketching is a major design paradigm in

mechanical computer-aided design (MCAD): A rough sketch
is prepared by the user and is annotated with geometric con-
straints such as distance, angle, tangency, concentricity, etc.
The sketch is then instantiated to the precise specifications
implied by the constraints, and is interpreted as a profile.
The instantiation, by geometric constraint solving, enables
generic design, feature libraries, convenient redesign, and
design variation. Constraint solving is therefore of funda-
mental importance. Literature reviews include [17,11].

In Computer-Aided Geometric Design (CAGD), on the
other hand, curves are designed subject to constraints of in-
terpolating points, curve segments meeting with tangent or
higher-order continuity, and shape design subject to fairness
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criteria. For an introduction see, e.g., [7,16]. This different
way of constraint-based design of curves and surfaces has
a markedly different vocabulary with little or no overlap of
constraint operations familiar from MCAD. Algorithms for
approximation, matching continuity to various degree, etc.,
constitute a very different form of constraint solving and
with a different shape vocabulary.

MCAD style constraint solving typically restricts to the
shape vocabulary of points lines and circles, and to geomet-
ric and dimensional constraints between them. This restric-
tion is rooted in part in the absence of suitable techniques
for solving the algebraic problems that underlie more com-
plicated specifications. Extending the vocabulary of MCAD
constraint solvers, therefore, follows one of two strategies:
identifying a tractable class of shapes, or extending the al-
gebraic techniques needed to solve more complex sub prob-
lems. Our paper seeks to narrow the gap between MCAD
and CAGD employing both strategies: We focus on the class
of LN curves [20,22] that play an important role in convo-
lution, and we develop novel approaches to solving the al-
gebraic equation systems that arise, exploiting the GPU.
Elsewhere, we have shown how to include, in the solver vo-
cabulary, conic arcs [8] and Tschirnhaus cubic Bézier curves
[14]. There is also work by others on extending the vocab-
ulary, such as [5] that designs rational cubic Bézier curves
with monotone curvature. We refer the reader to the survey
[4] for additional information.

Minkowski sums have many applications, for example in
motion planning, NC machining, and in offset computations.
Curve and surface convolutions are often employed to com-
pute Minkowski sums. However, as noted in [19], the con-
volution of two rational curves is, in general, not a rational
curve. Therefore, the subclass of LN curves and surfaces
has received attention in the literature because they allow
an exact parameterization of their convolutions; [21]. This
is another motivation for our work.

We begin our paper with the usual preliminaries and defi-
nitions in Section 2, where we also review a characterization
of LN curves from the literature. Based on this charac-
terization, we explain how to solve the Hermite interpola-
tion problem with G1-continuity between consecutive inter-
polants. For the Hermite problem, cubic LN curves suffice
when no additional constraints are imposed and continuity
is G1. But when we stipulate that the interpolating arcs
be tangent to a given line or a circle, to be discussed in
Sections 3 and 4, quartic interpolants will be needed work-
ing with the normal form. This extended constraint prob-
lem is linear for an additional line tangency, owing to the



nature of the interpolants. When tangency to circles is re-
quired, however, the problem is strongly nonlinear. Non-
linear problems pose practical difficulties which we address
by exploiting the native graphics hardware, so allowing ef-
ficient solutions to problems that otherwise would demand
time-consuming iteration. We discuss this GPU approach
to solving the equation system and, in Section 5, report the
resulting performance. Section 6 shows how to use our curve
class for convolutions that result again in LN curves. Section
7 finally discusses how we can relax the requirements that
the parameter interval for the normal form be the interval
[0, u].

2. PRELIMINARIES AND THE HERMITE
PROBLEM

We consider polynomial parametric plane curves K(t) =
[x(t), y(t)] where the coordinate functions are polynomials in
t with real coefficients. We consider a Hermite interpolation
problem that asks to interpolate a sequence of points Pk

in the plane with a set of parametric curve arcs Ck such
that consecutive arcs meet with tangent continuity at the
interpolated points. The tangent directions at the points are
prescribed. We requireG1-continuity, but not C1-continuity.

A parametric curve K(t′) is LN if there is a parameteriza-
tion t = s(t′) such that the curve normal at K(t) is −→q t+−→p ,
where −→q and −→p are vectors. In [20] it is proved that such
curves can be characterized by a rational function f(t) with
the following properties:

1. The curve is given by K(t) = [−ft,−f + tft].

2. The curve tangent, at K(t) has the equation f(t) +
tx+ y = 0.

3. The curve normal at K(t) is (t, 1).

In the following, we will work with LN curves for which the
function f is not rational.

Proposition 1. A non-rational degree three LN curve
K(t) solves the Hermite interpolation problem between the
origin [0, 0] with normal (0, 1) and the point [x1, y1] with
normal (u, 1) and is not singular in the closed interval [0, u]
if and only if

− 3y1
2x1

< u < −3y1
x1

.

Proof. Let f(t) = a0 +a1t+a2t
2 +a3t

3. The curve K(t)
interpolates the end points with the required tangents if and
only if

a0 = 0

a1 = 0

−2a2u− 3a3u
2 = x1 (1)

a2u
2 + 2a3u

3 = y1

The system (1) is linear since the normal (u, 1) is given at
the end point [x1, y1]. By algebra,

a2 = (−2ux1 − 3y1)/u2

a3 = (ux1 + 2y1)/u3

K(t) is singular at t∗ when ftt(t
∗) = 2a2 +6a3t

∗ = 0. Hence
t∗ = −a2/3a3 and

t∗ =
u

3
· 2ux1 + 3y1
ux1 + 2y1

.

We want to establish t∗ < 0 and t∗ > u to ensure that K(t)
has no singularity in [0, u]. The first inequality is established
from J = (2ux1 + 3y1)(ux1 + 2y1) < 0. With s = −y1/x1,
we obtain J = (u− 3/2s)(u− 2s) so that

J < 0 iff
3

2
s < u < 2s.

The inequality t∗ > u is established from

u

3
· 2ux1 + 3y1
ux1 + 2y1

> u

or, equivalently, (2ux1 + 3y1)(ux1 + 2y1) > 3(ux1 + 2y1)2.
This simplifies to (u− 3s)(u− 2s) < 0 which means

2s < u < 3s.

Now for u = 2s we obtain a3 = 0; i.e., the curve is quadratic
and has no singularity. Thus the nonsingular range is given
by

− 3y1
2x1

< u < −3y1
x1

.

QED.

Remark. Geometrically, the bound relates the tangent of
the turn angle α to the tangent of angle β. See also Fig.1.

Figure 1: Cubic Nonsingularity Condition:
1.5 tan(α) < tan(β) < 3 tan(α).

3. THE LINE TANGENCY PROBLEM

3.1 Line Tangency
We consider the Hermite interpolation problem for quartic

LN curves where, as additional constraint, a line L : mx +
y + b = 0 is given and the interpolant is to be tangent to
L. Since the (polynomial) cubic Hermite interpolant has no
additional degrees of freedom, a quartic LN curve is needed.
Again we choose the coordinate system such that the two
end points are [0, 0] and [x, y], and the respective normals
(0, 1) and (u, 1). The normal at the tangency to L is (m, 1),
and since the interpolant is LN, tangency must be at the
point K(m). The equations on the coefficients are therefore
the system (H1) augmented by the equation:

f(m) = b (2)

The equations are linear and determine the LN interpolant.
Note that the normal of line L, (m, 1), determines the pa-
rameter value m at which the curve must be tangent. The
correctness of the equation follows immediately from the
canonical tangent representation f(m) +mx+ y = 0.

3.2 Conditions for Nonsingularity
We will analyze when the quartic LN interpolant is non-

singular. Let [x1, y1] be the end point. From the equation
systems (1) and (2) we obtain

a3 =
−(2a2u

2 + 3ux1 + 4y1)

u3
, a4 =

a2u
2 + 2ux1 + 3y1

u4
(3)



So the derivative can be written as

K′(t) =

(
−2g4(t)

u4
,

2tg4(t)

u4

)
Where g4(t) = 6t2(a2u

2 + 2ux1 + 3y1)− 3t(2u3a2 + 3u2x1 +
4uy1)+a2u

4. If the discriminantD of the quadratic equation
g4(t) = 0 is negative, then the curve has no singularity in
the range [0, u].

Proposition 2. If (3 −
√

3)s < u < (3 +
√

3)s, where
s = (−y1)/x1, then there exists at least one quartic LN curve
that is not singular in the interval [0, u].

Proof. Consider D < 0, that is, 4u4a2
2 + (20u3x1 +

24y1u
2)a2 + (27u2x2

1 + 72ux1y1 + 48y2
1) < 0. Using dD/da2,

the quadratic polynomial D(a2) has the minimum at a2 =
−(5ux1 + 6y1)/2u2 with the value 6u2x2

1 + 36ux1y1 + 36y2
1 .

Let

B0 =
6s− 5u

(2u2)/x1

and take a2 = B0, then D(a2) < 0 iff 6u2
1x

2
1 + 36ux1y1 +

36y2
1 < 0, or equivalently, u2− 6us+ 6s2 < 0. Factoring the

left-hand side, this means D(a2) < 0 iff (u− (3 +
√

3)s)(u−
(3−

√
3)s) < 0; that is, iff (3−

√
3)s < u < (3 +

√
3)s. So,

if D < 0, then we may choose

a2 ∈
(
B0 −

√
D1

2u2/x1
, B0 +

√
D1

2u2/x1

)
. (4)

where D1 = −2(u−(3−3)s)(u−(3+3)s) is the discriminant
of the quadratic equation D(a2) = 0. QED.

We can strengthen Proposition 2 to

Proposition 3. There is at least one quartic LN curve
that is not singular in the interval [0, u] iff (3−

√
3)s < u <

(3 +
√

3)s.

The proof proceeds by analyzing when the curve has a
singularity in the interval [0, u] and is omitted.

3.3 Implementation
In our implementation, the user draws interactively the

poly-arc [P0, Q0, Q1, · · ·Qn−1, Pn]. The segments [Qk, Qk+1]
are subdivided each by inserting a point Pk as explained
later. Now each point triple [Pk, Qk, Pk+1], 0 ≤ k < n,
defines a LN curve between Pk to Pk+1 with the respec-
tive normals perpendicular to the line segments [Pk, Qk] and
[Qk, Pk+1]. For each segment the user defines, in addition,
a line L to which the arc should be tangent.

The insertion of P2 · · ·Pn−1 implies that consecutive LN
arcs are G1-continuous. Insertion can place Pk as midpoint
between Qk and Qk+1, or by the ratio of turning angles.
In the latter case, let u be the distance u = d(Qk, Pk) and
v = d(Pk, Qk+1). Let αk be the complement of the angle
α′k = ∠Pk, Qk, Pk+1; i.e., αk = π − α′k. Then we require
v/u = |αk/αk+1|. The user may also modify the partition
of the segment [Qk, Qk+1] manually. An example of the two
schemata is shown in Figure 2.

Intuitively, line tangency can be used to manipulate the
parameter speed and with it the turning rate of of the curve
normal. Alternatively, it may represent an additional con-
tact constraint.

Figure 2: Quartic LN spline; midpoint division
above, angle ratio below.

4. THE TANGENCY TO A CIRCLE PROB-
LEM

4.1 Defining Equations
We exploited the LN property to find a linear equation

for the tangency to the given line. When tangency to a
circle is required, there is no a-priori parameter value at
which tangency would be achieved, thus the equations be-
come nonlinear. Let O = (Ox, Oy) be the center of the circle
and r its radius. We consider the radius a signed quantity,
indicating whether tangency should be on the convex or the
concave side of the arc. Let m be the parameter value at
which the interpolating LN curve is tangent to the circle,
and let K(m) = [x(m), y(m)]. Since m is unknown, we need
to formulate two equations. The first equation states that
the point K(m) is on the circle:

(x(m)−Ox)2 + (y(m)−Oy)2 − r2 = 0. (5)

Now the normal at K(m) is (m, 1), and it is either parallel or
anti-parallel to the radius (O,K(m)), depending on which
side the circle should lie. So

x(m)−Ox = m(y(m)−Oy). (6)

Recall the expressions for a3 and a4 from equation (3). Sub-
stitution into equations (5) and (6) yields two equations with
unknowns m and a2. The algebraic degree of equation (5) is
ten and of equation (6) is six, after this substitution. Note
that these are linear substitutions, so we do not raise the
algebraic degree of the two nonlinear equations. We need to
solve the system in order to satisfy the tangency constraint.

The algebraic problem is of degree 60 and therefore de-
manding. We expect that many of the roots of the bivari-
ate system are complex or out of the range of interest: We
are only interested in solutions where the circle touches the
curve in the parameter range, so that m ∈ [0, u]. Moreover,
from equation (4) we have an estimated range for the value
of a2 for a nonsingular solution. So, we seek an approach
that makes use of this information.

4.2 Solving the Equations
The two equations define implicit algebraic curves. Since

we have range estimates for the solution(s) of interest, we
can evaluate both curves using a continuation method such
as marching squares and so find approximate solutions. How-
ever, a sequential marching approach will be time-consuming,



so we seek to parallelize the computation and use the GPU
to carry it out. Given the algebraic degrees of the two curves,
accurate evaluation of the points (m,a2) requires some care.
We choose to evaluate the polynomials by first evaluating
the coefficients a3 and a4 followed by evaluating repeated
and common sub expressions. Next, we sample the values of
equation (6) on a grid in the domain of interest, by rendering

Φ(m,a2) = x(m)−Ox −m(y(m)−Oy) (7)

on a raster of size 1K by 1K pixels. Positive values of Φ are
rendered red, negative values black. Then, we render equa-
tion (5) in the same manner, with blue for positive and black
for negative values. Note that the two colors use separate
channels, so that the resulting raster has pixels that are red,
blue, black or cyan. Pixels that are at the boundary of both
curves and are therefore near the actual intersection of the
two curves are discovered by applying a local 2×2 mask and
selecting the center of the mask when the four pixels have
more than two colors. All this is done in parallel on the
graphics hardware. The resulting solution(s) can then be
refined to actual intersections using, say, Newton iteration.

Figure 3: Two solutions of a circle tangency (above)
and associated raster (below). The two solutions
are shown as white dots. The raster image has been
clipped.

5. IMPLEMENTATION AND RESULTS
We implemented our algorithms and experimented with

the constraints. We also timed the performance on a desktop
PC running Windows Vista (32bit) with the following con-
figuration: Intel Xeon X5460 CPU at 3.16GHz, 4GB main
memory, and an nVidia GeForce GTX 285 graphics card
driving a display with 2560x1600 pixels. The program was
run in release mode alongside other applications including
Outlook and web browser windows.

Single curves (three control points) allow interactive per-
formance at 60 frames per second (fps), both without ad-
ditional constraints (cubic arc) as well as for line tangency
(quartic arc). Since this is a linear problem, there is no GPU
involvement. Performance stayed the same, at close to 60
fps, when circle constraints are imposed. The nonlinearity
of the problem is compensated for by the rasterization in

parallel, by the GPU, using an accuracy of 1K by 1K pixels.
Newton iteration was not implemented. When interacting
with multiple segments, performance did not change.

We believe that those performance numbers can be more
than doubled in view of prior work in which we also ex-
tracted information from rasters of this size. To achieve
higher frame rates, the interaction between CPU and GPU
needs to be restructured in the implementation.

6. CONVOLUTION
So far, we have considered a subset of LN curves, not the

full set of LN curves. This smaller family of LN curves has
the following special property:

Proposition 4. For any two curves in the family of LN
curves, if they have the same Gauss map, then their convo-
lution curve is polynomial.1

We illustrate the property of the family of LN curves.
Consider two curves in the family, c1(t) and c2(t), satisfy-
ing that they start at [−1.5, 1] and [1,−0.1] with the com-
mon normals (− tan(π/3), 1). Assume that they end at
[0.5,2.7] and [3.1,1], respectively, with the common end nor-
mal (− tan(π/12), 1), as shown in figure 4. Let θ = π/3. Us-
ing rotation and translation, and Equation (1), we obtain the
cubic LN curves c1(t) = [x(t), y(t)] and c2(t) = [X(t), Y (t)]:(
x(t)
y(t)

)
=

(
cos θ − sin θ
sin θ cos θ

) (
−ft(t)

−f(t) + tft(t)

)
+

(
−1.5

1

)
(
X(t)
Y (t)

)
=

(
cos θ − sin θ
sin θ cos θ

) (
−Ft(t)

−F (t) + tFt(t)

)
+

(
1
−.1

)
for t ∈ [0, 1], where

f(t) = −2.2983t2 + .7081t3

F (t) = −.1993t2 − .5347t3.

Their derivatives can be obtained as(
x′(t)
y′(t)

)
=

(
cos θ − sin θ
sin θ cos θ

) (
−ftt

tftt

)
(
X ′(t)
Y ′(t)

)
=

(
cos θ − sin θ
sin θ cos θ

) (
−Ftt

tFtt

)
.

The two cubic LN curves [x(t), y(t)] and [X(s), Y (s)] have
the same normal at t = s, since

y′(t)

x′(t)
=
Y ′(s)

X ′(s)
⇔ − sin θ + t cos θ

− cos θ − t sin θ
=
− sin θ + s cos θ

− cos θ − s sin θ

⇔ t = s

Thus the convolution curve is

(c1 ∗ c2)(t) = [x(t), y(t)] + [X(t), Y (t)]

=

[
−.5 + 2.4976t+ 1.9028t2 − .3004t3

.9 + 4.3260t− 1.6995t2 + .17346t3

]T

for t ∈ [0, 1]. Therefore we can see that the convolution of
any two curves containing the family of LN curves is poly-
nomial.

1For more about Gauss maps see [19].



Figure 4: A family of Cubic LN curves: The convo-
lution of two curves c1(t)(green) and c2(s)(red) in the
family of LN curves in this paper is also polynomial
curve c1 ∗ c2(blue).

7. GENERAL PARAMETER INTERVALS
We have restricted to LN curve segments that are over

the interval [0, u], the customary choice for CAGD. How-
ever, due to the nature of linear normals and the normal
form representation we adopted, as reviewed in Section 2,
the theory so derived is less flexible than it could be. If we
allow a general parameter interval, then we can work with a
larger family of LN curves. That is, the choice of a coordi-
nate system in which the curve begins at the origin with a
tangent in the positive x-direction constitutes a restriction.
We now remark on some of the consequences when relaxing
this assumption.

Assume that the curve arc is over the interval [u0, u1],
where u0 < u1, and consider the Hermite problem where
we are given the end points P0 = [x0, y0] and P2 = [x2, y2]
and the end tangents t0 and t2. We extend the lines defined
by the points and their tangents to obtain the intersection
P1 = [x1, y1], as shown in Figure 5 (left).

Figure 5: Left: Quadratic Bézier curve. Right: Cu-
bic control polygon construction

The quadratic Bézier curve defined by the three points is,
of course, an LN curve, although re-parameterization will be
necessary to make that fact explicit. Obtaining the normal
form of Section 2, moreover, requires that the parameter
interval be larger than [0, u1] and that the x-coordinates
satisfy P x

0 < P x
1 < P x

2 . For such (extended quadratic) LN
curves, the slope y′(t)/x′(t) will be linear. When extending
to cubic LN-curves, again with the larger interval [u0, u1],
the slope y′(t)/x′(t) of the nonquadratic curves will be frac-
tional linear. We can prove conditions under which such

cubic LN curves are nonsingular in the parameter interval.

Proposition 5. Let [P0, P1, P2] be defined as in Figure 5,
with P x

0 < P x
1 < P x

2 , and construct the cubic Bézier curve
with control points [P0, Q0, Q2, P2], where

Q0 = (1− r0)P0 + r0P1

and Q1 = (1− r2)P2 + r2P1.

We choose the partition values r0 and r2 such that, for some
t = τ , we have x′(τ) = y′(τ) = 0. This means that

r0 =
2τ

3τ − 1
and r2 =

2(τ − 1)

3τ − 2

Under these conditions, the resulting cubic Bézier curve is
LN. The curve degenerates to a quadratic curve when τ =
∞, i.e., when r0 = r2 = 2/3. Moreover, the cubic LN curve
has a singularity in the range [0, 1] iff τ ∈ [0, 1].

Thus, using this construction and choosing τ ∈ (−∞,−1)∪
(1,+∞), we obtain nonsingular cubic LN curves for the ba-
sic Hermite problem. Working in this larger class of LN
curves, we can also solve the constraint problems requiring
tangencies to given lines and circles with cubic curves.
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