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Abstract. The general goal of our research is the creation of a natu-
ral and intuitive interface for input and recognition of American Sign
Language (ASL) math signs. The specific objective of this work is the
development of two new interfaces for the Mathsignertm application.
Mathsignertm is an interactive, 3D animation-based game designed to
increase the mathematical skills of deaf children. The program makes
use of standard input devices such as mouse and keyboard. In this paper
we show a significant extension of the application by proposing two new
user interfaces: (1) a glove-based interface, and (2) an interface based on
the use of a specialized keyboard. So far, the interfaces allow for real-time
input and recognition of the ASL numbers zero to twenty.

1 Introduction

Deaf education, and specifically math/science education, is a pressing national
problem [1,2]. To address the need to increase the abilities of young deaf children
in math, we have recently created an interactive computer animation program
(Mathsignertm) for classroom and home learning of K-3 (Kindergarten to third
grade) arithmetic concepts and signs [3]. The program, currently in use at the
Indiana School for the Deaf (ISD), is a web/CD-ROM deliverable desktop appli-
cation aimed at increasing the opportunity of deaf children to learn arithmetic
via interactive media, and the effectiveness of hearing parents in teaching arith-
metic to their deaf children. The application includes 3D animated signers that
teach ASL mathematics through a series of interactive activities based on stan-
dard elementary school math curriculum. The user interacts with the application
and responds to questions using mouse and keyboard.

Based on feedback collected from ISD teachers, parents and students, and
from signers who have tested the application extensively, the current interface
presents various limitations.

1. Young deaf children of deaf parents are likely to know the signs for the
numbers but might not be familiar yet with the corresponding math symbols.
In this case, the children should be able to enter the answer to a problem
by forming the correct ASL hand shapes, rather than by pressing a number
key.

2. Deaf children of hearing parents use the application not only to increase
their math skills, but also to learn the correct signs for math terminology.
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Presently, the program does not allow the students to test and get feedback
on their signing skills since all interactive activities require responses in the
form of mouse clicks and/or keystrokes.

3. Hearing parents, undertaking the study of the ASL signs for math termi-
nology, can only test their ability to recognize the signs; they do not have
the opportunity to self test their ability to produce the signs correctly (it is
common for beginner signers to perform the signs with slight inaccuracies).

In an effort to improve on the current implementation of the program, we
propose two new user interfaces which allow for real-time hand gesture input
and recognition. Interface (1) uses an 18-sensors Immersion cyberglove [4] as the
input device. The user wears the glove and inputs an ASL number in response
to a particular math question (for instance, ’8’ in response to question’3+5=?’).
A pre-trained neural network detects and recognizes the number sign. The re-
sult is sent to the Mathsignertm application which evaluates the answer to the
question and gives feedback to the user.

Interface (2) (currently under development) is based on the use of a recently
developed human-computer communication method for keyboard encoding of
hand gestures (KUI) [5], and a specialized keyboard for gesture control [6]. The
KUI method allows for input of any hand gesture by mapping each letter key
of the keyboard to one degree of freedom of a 3 dimensional hand. Each hand
configuration is visualized in real-time by the use of a 3D hand model, and en-
coded as an alphanumeric string. Hand posture recognition and communication
with the Mathsignertm are implemented as in interface (1).

In Section 2 of the paper we present a brief overview of current approaches
in sign language input and recognition. In Section 3 we describe the two new
user interfaces in detail, and in Section 4 we discuss their merits and limitations,
along with future work. Conclusive remarks are presented in the last section.

2 Background

’Computer technology offers the opportunity to create tools that enable literacy
and learning in ways accessible to signing users’ [7]. In order to be effective, these
tools need to support sign language interfaces, i.e., ways of input, recognition,
and display of signing gestures.

Sign language input and recognition has been an active area of research dur-
ing the past decade. Currently, there are two main approaches to gesture input:
direct-device and vision-based input [8,9,10]. The direct-device approach uses
a number of commercially available instrumented gloves, flexion sensors, body
trackers, etc. as input to gesture recognition [11,12]. Some advantages of direct
devices, such as data gloves, include: direct measurement of hand and finger
parameters (i.e., joint angles, wrist rotation and 3D spatial information), data
input at a high sample frequency, and no line-of-sign occlusion problems. Disad-
vantages include: reduced user’s range of motion and comfort and high cost of
accurate systems (i.e., gloves with a large number of sensors –18 or 22–).
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Vision based approaches use one or more video cameras to capture images
of the hands and interpret them to produce visual features that can be used
to recognize gestures. The main advantage of vision-based systems is that they
allow the users to remain unencumbered. Main disadvantages include: complex
computation requirements in order to extract usable information, line-of sign
occlusion problems, and sensitivity to lighting conditions.

Recently, researchers have started to develop gesture input systems that com-
bine image- and device- based techniques in order to gather more information
about gestures, and thereby enable more accurate recognition. Such hybrid sys-
tems are often used to capture hand gestures and facial expressions simultane-
ously [13].

Recognition methods vary depending on whether the signs are represented by
static hand poses or by moving gestures. Recognition of static signing gestures
can be accomplished using techniques such as template matching, geometric fea-
ture classification, neural networks, or other standard pattern recognition meth-
ods to classify the pose [14]. Recognition of dynamic gestures is more complex
because it requires consideration of temporal events. It is usually accomplished
through the use of techniques such as time-compressing templates, dynamic time
warping, Hidden Markov Models (HMMs) [15,16] and Bayesan Networks [17].

In this paper we are concerned with static or semi-static ASL gestures. The
goal is input and recognition of ASL numbers 0-20 which are represented by static
hand-shapes (numbers 0-9) and by hand gestures requiring a very limited range
of motion (numbers 10-20) [2,18]. To capture the hand gestures, we have chosen a
direct-device approach because research findings show that this approach yields
more accurate results [19]. The specialized keyboard of interface (2) is not a
whole-hand input device since the input is not derived from direct measurements
of hand motions, but from measurements of the motions (keystrokes) of a device
manipulated by the hand. However, the keyboard allows for intuitive and natural
input of hand gestures if we consider that the layout of the key sites corresponds
to the layout of the movable joints of the hand (see Figure 4). Thus, we can
think of the specialized keyboard as a ’semi direct’ input device.

3 Implementation

3.1 Interface (1): Glove-Based

This interface makes use of a light-weight Immersion cyberglove which provides
18 angles as inputs. The glove has two bend sensors on each finger, four abduction
sensors, and sensors for measuring thumb cross-over, palm arch, wrist flexion,
and wrist abduction. To recognize the sign gesture input via the glove, we have
used two approaches: (1) a basic metric measure in the space of the possible
glove configurations, and (2) neural networks.

Distance Metrics. For this approach, five signers used the glove to input the
ASL numbers 0-20 once. A stand alone program developed in C++ was used
to capture and store the hand-shapes for later comparison. During interaction
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within the Mathsignertm, the C++ application compares the distance measures
of the input gesture to the pre-stored ones. The distance measure is the classical
Euclidian metrics, where each of the two angles α and α′ is compared as:

dist =
√

(α − α′)2.

This test is performed for each angle. If the distance measures fall within the
sensitivity level, the hand shape is recognized. Based on the first-fail test, if
any distance measure is larger than the sensitivity level, the hand-shape is not
matched to any of the gestures in the training data set. The experimentally set
level was 30o. With this method, while speed of response was fairly high (20kHz),
recognition accuracy with unregistered users (i.e., users not represented in the
training data set) was low. This is due primarily to variations in users’ hand
size. The neural networks approach, described in the next section, provided a
better solution.

Neural Networks. This approach is based on the Fast Artificial Neural Net-
work Library, (FANN) [20] a freely available package from Sourceforge. This li-
brary supports various configurations of neural networks. We have experimented
with the following two configurations. The first one is based on a single neural
network for all signs, whereas the second one uses different neural networks for
different signs. The first configuration involves 18 neurons on the input and 21
on the output. The input neurons correspond to the input angles from the data
glove. The 21 output values define 1-of-21 possible hand gestures. While this
configuration yielded fairly accurate recognition results, it did not provide high
speed of recognition. The configuration described in the next paragraph provides
higher accuracy rate and real-time recognition.

This configuration is the standard complete backward propagation neural net-
work with symmetrical sigmoid activation function [20]. Instead of using one
neural network, it uses a set of networks (one per sign) with 18 input neurons
that corresponds to the 18 angles from the data glove. One output neuron for
each network determines whether the input configuration is correct (value close
to 1) or incorrect (value close to -1 because of symmetrical sigmoid function).
Each neural network uses two hidden layers of completely connected neurons,
each layer containing 25 neurons (see Fig. 1). The training error was set to
10−6 and training of all 21 neural networks for all the input sets was realized in
about 10 minutes on a standard laptop with 1.6 GHz Intel Pentium. The neural
networks were correctly trained after not more than 104 epochs.

The detection of one sign was, on the same computer, performed at the rate
of about 20Hz . The accuracy rate with registered users was 90%.The accuracy
rate with three unregistered users was 70%. The relatively poor performance
for unregistered users is probably due to the small training set of the neural
network.

Sign detection is described by the following pseudocode. It is important to
note that the signs 0-10 are represented as a single sign, while numbers greater
than 10 are represented as a sequence of two signs.
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Fig. 1. The neural network has 18 inputs in the input layer, two hidden layers with 25
neurons, and 1 output neuron. This network recognizes one sign.

1. Load all trained neural networks a[i].
2. Until the end of the simulation

(a) Read the data from the data glove
(b) for (i=0;i<10;i++) process the data with the a[i].

Remember the index of the maximum.
(c) If the maximum is greater than 10, read the following sign and process

it in the same way. The two signs define the number.
(d) Send the recognized number to the Mathsignertm.

3. Destroy networks, free memory

Training. The training data set was provided by five signers. Each signer input
the hand shapes corresponding to ASL numbers 0-20 three times. The training
data set for each number is composed of 3×5 correct signs and 15 incorrect signs.
The training set for each number includes the 15 ASL handshapes corresponding
to that number, and 15 randomly selected ASL configurations corresponding to
different numbers (provided by the same signers).

Communication with Mathsignertm. Continuous communication between
the cyberglove (or the specialized keyboard, for interface (2)) and the
Mathsignertm application (developed in Macromedia Director MX) was imple-
mented using a built-in Lingo function that allows access to the system ’clip-
board’. After sign recognition occurs, the C++ application formats and copies
the number corresponding to the ASL hand gesture to the ’clipboard’.

Fig. 2. Schema of the system, left; screenshot of the Mathsignertm with arrow pointing
to the button (and hand icon) used to input the sign answer, right
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Within Mathsignertm, the value retrieved from the ’clipboard’ is displayed
to the student. To submit an answer to a mathematical question, the student
has two options. The student can mouse-click on one of four possible answers,
only one being correct; or the student can press the ’Use Hand’ button and
submit the signing gesture corresponding to the answer (see Fig. 2). Upon
submission of the answer, the 3D avatar signs whether the student’s response
is right or wrong. A video illustrating the use of interface (1) is available at
http://www2.tech.purdue.edu/cgt/I3/mathinterface/.

3.2 Interface (2): Keyboard-Based

This interface makes use of a recently developed keyboard-based method for in-
put, modelling, and animation of hand gestures (KUI) [5]. KUI is based on the
realization that a hand gesture path requires the same number (26) of parame-
ters as the letters of the English alphabet, thus, via keyboard input, it is possible
to enter any hand pose in real-time. By touching a letter key, the user rotates
the corresponding joint of a 3D hand a pre-specified number of degrees around
a particular axis. The rotation ’quantum’ induced by each keystroke can be eas-
ily changed to increase or decrease hand configuration precision. The keystrokes
corresponding to particular hand poses are recorded and reduced to alphanu-
meric compact codes; the codes can be used for hand gesture recognition, or as
keyframes to produce animation sequences. Figure 3 shows the ASL handshapes
for numbers 8-10 produced with the KUI method, and their corresponding al-
phanumeric codes (the rotation ’quantum’ was set to 10 degrees for finger flexion
and 5 degrees for finger abduction).

Fig. 3. Alphanumeric codes for ASL numbers 8-10

Recently, the KUI method was developed into a more powerful technique by
the realization of a specialized, reconfigurable keyboard whose layout approxi-
mates the projection of the hand joints locations on a plain [6]. The keyboard is
shown in Fig. 4.

With this keyboard, the signer inputs a hand gesture by mimicking the fingers’
motion of a hand guiding another hand placed under it. The hand configuration,
represented by the alphanumeric code, is visualized in real-time in a floating
window. When the user is satisfied with the hand-shape, she/he clicks on the
’hand button’ (see Fig. 2) in the Mathsignertm application. The alphanumeric
code is converted to joint angles and recognition and communication with the
Mathsignertm are achieved as in interface (1). For this interface, the training
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Fig. 4. Alphabetical code for the hand joints, left; specialized keyboard, center; position
of hand over keyboard, right

data set was provided by five signers who used the specialized keyboard to input
ASL number configurations 0-20 three times.

4 Discussion

Both interfaces have their own merits and limitations. The main advantage of
interface (1) lies in allowing the user to input signs in a natural way, without in-
termediary devices. Another merit is high speed of sign recognition and accuracy
rate. One drawback is the high cost of the cyberglove due to the large number
of sensors required to input the hand gesture with precision. Currently, the cost
of the glove is a major obstacle to immediate dissemination of the program to
parents and children for testing at home, and for future commercialization of
the application. We are investigating more affordable types of gloves available
on the market (http://www.vrealities.com/glove.html) or created by researchers
specifically for input of signing gestures [21,22].

The main advantage of interface (2) is the low cost of the keypad. In addition,
even if interface (2) is still under development, we anticipate higher accuracy
level since variation in hand size is not an issue. The main drawback is that the
specialized keyboard is not a true direct input device like the glove. While input
of finger flexion (pitch rotations) is fairly natural and intuitive, input of fin-
ger abduction (yaw rotations) and wrist rotation and translation (position and
orientation of the hand in 3D space) requires a certain degree of learning, ab-
straction, and practice. The research team is currently working on development
of a new hand shaped keyboard which has an ’anatomical cradle’ to support the
hand, and which allows for more intuitive input of fingers’ yaw rotations.

Presently, a limitation of both interfaces is that recognition is restricted to
ASL numbers 0-20. In order to enable the user to answer any math question
included in the application, input and recognition need to be extended to in-
clude numbers 1-1000, decimals, fractions, and the finger-spelling alphabet. In
addition, one characteristic of ASL numbers is that they are signed in different
ways depending on their meaning (i.e., numbers used to describe quantities–
cardinals–, numbers for monetary values, numbers associated with tell-time ac-
tivities, etc.) [23]. For instance, for dollar numbers 1-9, the number hand-shape
is associated with a twisting motion (wrist roll) to indicate dollars. In future
implementations of the interfaces, the recognition system will consider these
variations.
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Many aspects of the interfaces still need to be tested and improved. A compar-
ative evaluation of the interfaces will be carried out in Fall 2006 at ISD with deaf
children, parents, and ASL teachers. Besides assessing the usability of the in-
terfaces, the full-scale evaluation will address the problem of signer-independent
recognition. An ideal sign recognition system should give good recognition ac-
curacy for signers not represented in the training data set [24]. Inter-person
variations that could impact sign recognition include different signing styles, dif-
ferent sign usage due to geographical and social background, and fit of gloves.
Many works report that recognition accuracy for unregistered signers decreases
severely (by 30- 40%) when the number of signers in the training set is small, and
when the signs involve significant, continuous movement [24]. For interface (1),
we are concerned with the problem of degradation of recognition accuracy due
to fit of the gloves, but we anticipate good recognition results considered that
many of the signs are static or involve minimal motion. Studies show that recog-
nition accuracy for unregistered signers is relatively good when only hand shapes
and/or limited motion are considered [25]. So far, three unregistered signers have
used interface (1); recognition accuracy was 70%.

5 Conclusions

The interfaces presented in this paper are still to be considered prototypes since
many of their features are only at a first stage of development. But in spite of
their limitations, they are, to our knowledge, the first sign language interfaces
specifically designed for input and recognition of ASL signs for mathematics.
One interface includes an 18-sensor cyberglove as the input device, and makes
use of neural networks for sign recognition. The other interface uses a specialized
keyboard for input of signing gestures, and neural networks for recognition.

Many applications to math and science education of the Deaf are conceivable
using these interfaces, even at this stage of development. Applications to Virtual
Environments are easy to envision. For example, future work involves adapting
the glove-based interface for navigation and gesture input/ recognition within
an Immersive Virtual Learning Environment that we have recently developed
for deaf children [26].

In conclusion, research findings show that automatic analysis of Sign Lan-
guage gestures has come a long way, and current work can successfully deal
with dynamic signs which involve movement and which appear in continuous se-
quences [24]. However, much remains to be done before sign language interfaces
may become commonplace in face to face computer human interaction. Aspects
of gesture recognition that need further investigation and attention are build-
ing signer-independent recognition systems, and addressing the most difficult
aspects of signing, such as grammatical inflections and mimetic signs, and non-
manual signals (NMS). While interpretation of NMS in conjunction with gesture
recognition is fundamental for understanding sign language communication in
general [27], it is not so important for ASL mathematics. Therefore, considered
that most ASL mathematics signs are represented by static or semi-static signs,



78 N. Adamo-Villani et al.

and do not rely greatly on NMS, we believe that the realization of a natural
American Sign Language interface for mathematics is a goal achievable in the
near future.
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