

Modeling 3D Urban Spaces Using Procedural and Simulation-Based Techniques

Computational Building Design

Peter Wonka

Arizona State University

CGA-Shape

Procedural Modeling of Buildings
 Pascal Mueller, Peter Wonka, Simon Haegler,
 Andreas Ulmer, Luc Van Gool.
 Siggraph 2006

Results: Shape Interaction

Mayan Architecture and Temples

Editing of CGA-Shape Grammars

 Interactive Visual Editing of Grammars for Procedural Architecture

Markus Lipp, Peter Wonka, Michael Wimmer Siggraph 2008

Overview

- Problem #1: no direct artistic control
 - Solution: instance locators
- Problem #2: text-based grammars
 - Solution: visual grammar editing

Direct Artistic Control!

Visual Rule Editing

Modeling Buildings from Floorplans

 Computer-Generated Residential Building Layouts

Merrell, Schkufza, Koltun Siggraph Aisa 2010

Design Overview

Learning Structural Relationships

- Train a probabilistic graphical model.
 - Compactly represents the structure of the data.
 - Bayesian Network
- Nodes probabilities
- Edges conditional dependencies
- Sample from conditional distributions
 - Use high level specifications

Bayesian Network

Metropolis Algorithm

Objective Function

$$f(\mathbf{x}) = \exp(-eta C(\mathbf{x}))$$
 eta Constant $C(\mathbf{x})$ Cost Function

- Each iteration, propose a new building layout \mathbf{x}^{\star}
- Accept with probability

$$\alpha(\mathbf{x}^*|\mathbf{x}) = \min\left(1, \frac{f(\mathbf{x}^*)}{f(\mathbf{x})}\right)$$

Proposal Moves

Slide a wall

$$d \sim \mathcal{N}(0, \sigma^2)$$

Slide the entire wall

Snap walls together

Split into two collinear walls

The Cost Function

Evaluates the quality of the layout

$$C(\mathbf{x}) = k_a C_a(\mathbf{x}) + k_d C_d(\mathbf{x}) + k_f C_f(\mathbf{x}) + k_s C_s(\mathbf{x})$$
Accessibility Dimension Floor Compatibility Shape Term Term Term Term Term

Floor Plan Optimization

Different Styles of Architecture

Tudor Craftsman

Procedural Extrustions

 Interactive Architectural Modeling with Procedural Extrusions

Kelly and Wonka ACM TOG

Example

Example

Example

Deforming Architecture

 Structure-Preserving Reshape for Textured Architectural Scenes

Marcio Cabral, Sylvain Lefebvre, Carsten Dachsbacher, George Drettakis

Geometry Reshape

piece = set of textured faces

one or several openings (portals)

User control

- User controls **few** vertices.
- System computes other vertices positions.

Trying to satisfy constraints

Reasonable behavior

Preserve wall angles

 Preserve contacts (e.g. pillars)

- Allow some flexibility in edge length
 - Long edges more flexible than short ones
 - As little change as possible

Geometry Reshape

Limitations and Future Work

- Portals must be compatible
- Detail tiles have strong limitations
- 3D models must have indexed textured faces
 - It is the case with most game models
- Self collision / Intersection
- Add feedback from texture rigidity constraints to geometry

Reshaping 3D Architecture

Pipeline

Finding the longest path

More Results

Masonry Building Design

 Procedural Modeling of Structurally-Sound Masonry Buildings Whiting, Ochsendorf, Durand Siggraph Asia 2009

Procedural Buildings for Simulation

structurally stable

- will look more realistic
- suitable for physical simulations
- react to external forces

Goals

Generate models that are structurally sound

- Inverse Statics
- Special case of brick structures
- Parametric Models as input

Related work structural analysis

analyze material stress

wrong physical model for masonry not deformable

geometric configuration

rigid block assemblage [Heyman 1995] linear constraint formulation [Livesley 1978, 1992; RING software]

Overview

procedural building generation

analysis method for masonry

inverse problem

Optimization loop

Typical Parameters

- building height
- thickness of columns, walls, arches
- window size
- angle of flying buttresses

performance

model	#blocks	#params	#iters	time/iter
Cluny	986	4 5 7 9	10 5 4 9	45.7 s 57.3 s 70.0 s 106.6 s
arch	10	2	6	0.1 s
Sainte Chapelle	486	3 5 7 10	4 9 6 8	12.5 s 26.5 s 29.3 s 40.1 s
tower	96	32	6	12.5 s
barrel vault	140	1	8	0.6 s

Instant Architecture
 Wonka, Wimmer, Sillion, Ribarsky
 SIGGRAPH 2003

- Input: Target building design
- Output: Textured 3D models of building facades

- Approach: Split grammars
 - Used instead of L-systems
 - L-systems simulate growth in open spaces (better for plants and road networks)
 - Buildings have stricter spatial constraints and their structure does not reflect a growth process

- Take Photograph
- Create abstraction

- Facade

 Subdiv("Y",3.5,0.3,1r){ firstfloor | ledge | floors}
- Floors → Repeat("Y",3){floor}

floor → Repeat("X",tile_width){ Tile }

Т	Т	Т	Т
Т	Т	Т	Т
Т	Т	Т	Т

• Tile → Subdiv("XY", ...){ Wall | Wall | ... | A | Wall | ... }

Synthesis of Mass Models

 Continuous Model Synthesis Merrell, Manocha SIGGRAPH Asia 2008

Inspired by texture synthesis

Approach:

- maintain adjacency constraints
 between boundary features (e.g. faces, edges, and vertices)
- create planes parallel to the faces of the example model that subdivide the space into basic components to generate novel models

Example

Applied to buildings

Applied to buildings

Free-form Architecture

Procedural Mesh Labeling

