

Urban Layouts and Road Networks

Daniel G. Aliaga
Associate Professor of Computer Science
Purdue University

Challenge

- Design and model realistic/plausible road networks and urban layouts
 - Road network: a graph of streets, avenues, and highways
 - Urban layout: a road network plus its dual graph of parcels, with each parcel divided into blocks

Contents

- L-system modeling
 - Procedural Modeling of Cities, Parish et al. 2001
- Example-based modeling
 - Image Analogies, Hertzmann et al. 2001
 - Example-based Urban Layouts, Aliaga et al. 2008
- Tensor-based modeling
 - Procedural Modeling of Streets, Chen et al. 2008
- Shortest path based modeling
 - Galin et al. 2010
- Layer-based topology preserving/changing transformations based on graph cuts
 - Lipp et al. 2011

Urban Layouts and Road Networks

- Procedural Modeling of Cities
 - Parish and Müller
- SIGGRAPH 2001

Procedural Modeling of Cities

- Input: Various image maps
 - Terrain elevation
 - Population density
- Output: Urban Model
 - System of highways and streets
 - Blocks and lots
 - Building geometry

- Approach
 - Road network: Extended Lsystems considering global goals and local constraints
 - Global: Street patterns and population density
 - Local: Land/Water/Park boundaries, elevation, crossing of streets

- Approach
 - Lots: Recursive subdivision algorithm along longest edges of lots

- Approach
 - Buildings: Parametric stochastic L-system
 - One building generated per lot
 - Three types of buildings: Skyscrapers, commercial, residential
 - Several modules are used: Extrusion, branching, termination

Procedural Modeling of Cities

- Approach
 - Facades: Division into simple grid-like structures
 - A layer is formed by two base functions and every layer defines a facade element
 - Stacked layers are used to generate facade textures
 - Each style texture defined manually (no grammars)

L-systems

- Generation of plants
 Prusinkiewicz, Lindenmayer; 1990
- Environment-sensitive
 Prusinkiewicz, James, Mech; 1994
- Interaction (Open L-System)
 Mech, Prusinkiewicz; 1996
- EcosystemsDeussen, et al.; 1998

Urban Layouts and Road Networks

- Image Analogies
 - Hertzmann, Jacobs, Oliver, Curless, Salesin
- SIGGRAPH 2001

Image Analogies

- Two-stage design framework for image modeling:
 - design phase: a pair of images, with one image purported to be a "filtered" version of the other, is presented as "training data"
 - application phase: the learned filter is applied to some new target image in order to create an "analogous" filtered result

Image Analogies

 Application to synthesis of novel aerial views of urban spaces by example

Urban Layouts and Road Networks

- Example-based Urban Layout Synthesis
 - Aliaga, Vanegas, Benes
- SIGGRAPH Asia 2008

ts

- Input: Example urban layout
 - Images (aerial view)+ Structure (streets, parcels)

- Input: Example urban layout
- Output: New synthesized urban layout that looks like the example layout

 Observation: Both image and structure information about the urban layout available

Courtesy of Google Maps

Image: aerial view

Structure: street + parcels

 Approach: Simultaneously synthesize structure and image

Structure: street + parcels

Input: Example urban layout

Characterize GIS vector data

Compute per-parcel imagery

Synthesize new streets

Generate new blocks and parcels

Produce new aerial view imagery

Output: A new synthesized urban layout

Urban Layouts and Road Networks

- Interactive Reconfiguration of Urban Layouts
 Aliaga, Benes, Vanegas, Andrysco
- IEEE CG&A 2008

Interactive Reconfiguration of Urban Layouts

- An editor providing tools to
 - expand, scale, replace and move
 - parcels and blocks of existing layouts
- Exploits connectivity and zoning of parcels

Interactive Reconfiguration of Urban Layouts

- Uses a solver to find a planar transformation for each tile that best accommodates the changes caused by the editing operations
- Two types of error:
 - Gap error + Deformation error

Urban Layouts and Road Networks

- Procedural Modeling of Streets
 - Chen, Esch, Wonka, Müller, Zhang
- SIGGRAPH 2008

- Observation
 - Relation between
 street patterns and
 tensor field

Tensor field patterns

- Tensor fields
 - Second order symmetric tensor fields
 - Eigenvectors of tensor values for two orthogonal families

- Tensor fields
 - Second order symmetric tensor fields
 - Eigenvectors of tensor values for two orthogonal families
 - Topology Singularities

- Tensor fields
 - Second order symmetric tensor fields
 - Eigenvectors of tensor values for two orthogonal families
 - Topology Singularities
 - Hyperstreamlines

- Tensor field design
 - Define basis fields Ti
 - Combine using radial basis functions

Input maps **W,F,H,P**

Tensor field Generation

tensor field **T**

Street Graph Generation

street graph **G**

3D Geometry Generation

city model

SystemPipeline

Example result

Urban Layouts and Road Networks

- Procedural Generation of Roads
 - Galin, Peytavie, Marechal, Guerin
- Eurographics 2010

 Overall goal is an interactive algorithm for generating a road connecting an initial and a final point that adapts to the characteristics of an input scene.

Contributions

- a class of parameterized and controllable cost functions that takes into account the different parameters/characteristics of the terrain
- an efficient method to compute a weighted anisotropic shortest path problem using an optimization over an implicit finite graph
- compact procedural models for representing roads, tunnels and bridges with a few parameters describing their geometrical characteristics

Continuous Cost Function

$$C(\mathbf{p}) = \int_0^T c(\mathbf{p}(t), \dot{\mathbf{p}}(t), \dot{\mathbf{p}}(t)) dt$$

$$C(\rho^*) = \min_{\rho \in \mathcal{P}} C(\rho)$$

Discretization of the Cost Function

$$c(\mathbf{p}, \dot{\mathbf{p}}, \ddot{\mathbf{p}}) = \sum_{i=0}^{i=n-1} \mu_i \circ \kappa_i(\mathbf{p}, \dot{\mathbf{p}}, \ddot{\mathbf{p}})$$

• Results:

Without or with bridges...

• Results:

Altering cost function parameters...

• Results:

Urban Layouts and Road Networks

- Interactive Modeling of City Layouts using Layers of Procedural Content
 - Lipp, Scherzer, Wonka, and Wimmer
- Eurographics 2011

Interactive Modeling of City Layouts

- Overall goal is an interactive city modeling system that is built on persistent editing operations that remain in the space of valid urban layouts.
- Editing system supports
 - Direct control and editing of procedural layouts
 - Combining urban layouts
 - Persistent changes

Result of "moving a street" using a naïve approach

 Result of "moving a street" using the proposed approach

Interactive Modeling of City Layouts

 Use graph-cut analogy to change the street topology by merging two different urban layouts

 Support multiple layers and use their merging to combine edits and obtain persistent changes

Interactive Modeling of City Layouts

- Results
 - Interactive system

Results

Various editing stages of an example layout

