Multimodal Annotation, Summarization, and Inference

Casey Kolderup
27 July 2006

Goals

• Note-taking system
 – Using Tablet PC
 – Personalized and intuitive
• Note review system
 – Search
 – Summary
• Note improvement
 – Semi-automatic
 – Discovery of inconsistencies

Challenges

• What other programs are lacking:
 – Video-centric organization
 – Organization with personalization
 – Search and Summarization

Approach

• Develop an application that uses summarization and suggestion to improve upon the current model of Tablet PC-based educational tools.

Note-Taking and Recording

Note Event Organization

User Input

Adjusted Weights

Initial Weights

Ranking

Searching and Reviewing

Note-Taking and Recording

Video File

VideoTAG

Notes

Annotations

Tags
Live Demonstration
- Annotating
- Searching
- Reviewing

Ranking
- Needed in order to summarize the information
- Score determined by the three note components: ink, text, and tags

Ranking
- Individual Ranking Calculation:

 \[
 I_i = k_1 \cdot W \cdot h + k_2 \cdot (\# \text{strokes}) \\
 I_w = (\# \text{chars}) \\
 I_r = \sum_{i}^{} T_i(t_i)
 \]

 - Note event raw score is average of these values

Ranking
- Raw score is not helpful over long-term because certain things can change:
 - Note-taking style
 - The amount of information covered in class
- As a result, summary of top \(n \) events would be lopsided

Adjustment
- Example local maximum

Adjustment
- Instead, rate score over a rolling window \(w \) using SNR
 - Examine a set of events \(w/2 \) time in either direction from the concerned event
 - Signal-to-noise ratio \(N \) is:

\[
N = 20 \log_{10} \frac{E}{A_W}
\]

- Where \(E \) is the raw score and \(A_W \) is the average score from the set of raw scores of all the events in the window \(w \).
Improvement

• What if summaries are not acceptable to the user?
• Predefined parameters like w are somewhat arbitrarily chosen, but may not supply satisfactory summaries to the user
• User must be able to supply feedback in order to allow some “flexibility” of ranking algorithm and personalize the summarized output

Improvement

• Note improvement
 – When reviewing a list of summarized events that have been marked as important, the user can manually flag an event as not belonging in the summary.
 – In order to continue using the ranking algorithm, the parameters w, $k_{1,2}$, and $c_{1,2,3}$ must be changed

Improvement

• Solution:
 – Separate events that have been marked important and events that must be not important into two sets, E_i and E_j.
 – The function:
 $$f(x,y,a) = \sum (E_i(x,y)-M(x,y))^2 + \sum (E_j(x,y)-0)^2$$
can be used for a “least squares” type optimization with the parameters k, c, and w and data consisting of the note events and previous correctly-generated summaries

Improvement

• Solution (cont):
 – The optimization function boils down to a system of equations which will be over constrained assuming a reasonable set of note events, so an approximate solution can be determined

What’s next?

• Implement the ranking and summarization
• Testing phase planned for Fall 2006
 – Record CS251 (Data Structures) lectures
 – Have students annotate lectures, give feedback