Video Image Segmentation with Graphical models

Jieyu Zhao
Outline

- Fundamentals
- Deterministic Methods
- Stochastic Methods
- Some Results
- Conclusions
Video Image Segmentation

Goal: to label the image regions with salient homogeneous properties, such as color, texture, motion or spatio-temporal structures.

The labeling algorithms based on graphical models become popular in recent years.

- Deterministic and stochastic
Deterministic Algorithms

- Belief Propagation, which infers marginal probabilities at the nodes of the graph by exchanging of messages initially designed on trees and later generalized

- Minimum Graph Cut, popular deterministic method maps the image segmentation task into a Max-Flow/Min Cut problem

- Other related approaches, such as normalized cut
Stochastic Algorithms

Mainly based on the Gibbs sampler, a Markov chain Monte Carlo algorithm

- Markov random field approaches
- random walk and diffusion approaches
- the Potts models, the Swendsen-Wang method.

Stochastic approaches are usually powerful but time-consuming
Representation

image represented with a weighted graph, vertices reflect the states of image pixels and weighted edges represent the relationship between pixels.

4-neighbour structure, weights represent the similarities.

Segmentation ~ Min Cut
Maximum flow / Minimum cut

“Max flow”: maximize the sum $\sum u f(u,t)$

“Min cut”: Delete the "best" set of edges to disconnect t from s, with the smallest capacity
A weighted graph -- material flowing through the edges (railways, water pipelines)

Maximum flow: maximize the sum $\sum u f(u,t)$
A cut is a node partition \((S, T)\) such that \(s\) is in \(S\) and \(t\) is in \(T\).

\[
\text{capacity}(S, T) = \text{sum of weights of edges leaving } S.
\]
a min cut

Cut capacity = 28 ⇒ Flow value ≤ 28

Flow value = 28
Max-flow min-cut theorem: The value of the max flow is equal to the capacity of the min cut.

Augmenting path theorem: A flow f is a max flow if and only if there are no augmenting paths.

The following are equivalent:

(i) f is a max flow.
(ii) There is no augmenting path relative to f.
(iii) There exists a cut whose capacity equals the value of f.
Augmenting path = path in residual graph.

- Increase flow along forward edges.
- Decrease flow along backward edges.

Flow $f(e)$.
Edge $e = v \rightarrow w$

original graph

residual graph

"Undo" flow sent.
$w \rightarrow v$
Image Segmentation Using Min Cut

- Calculating weighted graph
- Setting some seed points, automatically or interactively
- Max Flow Algorithm

Tends to have small and biased segmentation
Improved by the normalized cut:

\[N_{\text{cut}}(A, B) = \frac{\text{cut}(A, B)}{\text{volume}(A)} + \frac{\text{cut}(A, B)}{\text{volume}(B)} \]
History of Worst-Case Running Times

<table>
<thead>
<tr>
<th>Year</th>
<th>Discoverer</th>
<th>Method</th>
<th>Asymptotic Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1951</td>
<td>Dantzig</td>
<td>Simplex</td>
<td>$E^2 V U \uparrow$</td>
</tr>
<tr>
<td>1955</td>
<td>Ford, Fulkerson</td>
<td>Augmenting path</td>
<td>$E^2 V U \uparrow$</td>
</tr>
<tr>
<td>1970</td>
<td>Edmonds-Karp</td>
<td>Shortest path</td>
<td>$E^2 V$</td>
</tr>
<tr>
<td>1970</td>
<td>Edmonds-Karp</td>
<td>Max capacity</td>
<td>$E \log U \left(E + V \log V \right) \uparrow$</td>
</tr>
<tr>
<td>1970</td>
<td>Dinitz</td>
<td>Improved shortest path</td>
<td>$E V^2$</td>
</tr>
<tr>
<td>1972</td>
<td>Edmonds-Karp, Dinitz</td>
<td>Capacity scaling</td>
<td>$E^2 \log U \uparrow$</td>
</tr>
<tr>
<td>1973</td>
<td>Dinitz-Gabow</td>
<td>Improved capacity scaling</td>
<td>$E V \log U \uparrow$</td>
</tr>
<tr>
<td>1974</td>
<td>Karzanov</td>
<td>Preflow-push</td>
<td>V^3</td>
</tr>
<tr>
<td>1983</td>
<td>Sleator-Tarjan</td>
<td>Dynamic trees</td>
<td>$E V \log V$</td>
</tr>
<tr>
<td>1986</td>
<td>Goldberg-Tarjan</td>
<td>FIFO preflow-push</td>
<td>$E V \log \left(V^2 / E \right)$</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>1997</td>
<td>Goldberg-Rao</td>
<td>Length function</td>
<td>$E^{3/2} \log \left(V^2 / E \right) \log U \uparrow$ (EV^{2/3} \log \left(V^2 / E \right) \log U \uparrow$</td>
</tr>
</tbody>
</table>
Stochastic Algorithms

- Markov random field approaches
- Potts model, Swendsen-Wang method
- Random walk and diffusion approaches
Markov random fields

Positive:

\[P(f) > 0, \forall f \in F \]

Markovian: state only depends on neighbors

\[P(f_i \mid f_{S - \{i\}}) = P(f_i \mid f_{N_i}) \]

Homogenious: probability independent of positions of sites
Markov-Gibbs Equivalence

GRF -- global property (the Gibbs distribution)

MRF -- local property (the Markovianity)

The Hammersley-Clifford theorem, the equivalence of these two:

F is an MRF on S with respect to N if and only if F is a GRF on S with respect to N.
Gibbs distribution:

\[P(f) = \frac{e^{-E(f)/T}}{\sum_{f \in F} e^{-E(f)/T}} \]

where \(E \) is the energy function, \(T \) is the temperature.

(a) maximization of the posterior probability in the Bayesian framework

\(\leftrightarrow \) (b) minimization of the posterior energy function of a MRF

\(\leftrightarrow \) (c) minimization of the energy in a stochastic recurrent network
Ising/Potts Models

Ising model has a choice of two possible spin states at each lattice point
Potts models have $q>2$ possible states:

$S_1, S_2, S_3, S_4, \ldots S_q$
Segmentation with Potts Models
Swendsen-Wang method

SW method speeds up the time-consuming process by flipping the color of all vertices in one or all clusters simultaneously.
My Work

- Add external fields for segmentation
- Working at low temperature or deterministically
- Noisy video image segmentation

Probability is given by:

\[
P_G(x \mid \beta, V) = W(\beta, V)^{-1} \exp\left(\sum_{i \in S} x_i^t V + \frac{1}{2} \beta \sum_{j \in N(i)} x_i^t x_j\right),
\]

EM algorithm developed to estimate the model parameters
Random Walk Methods

Labels:
L1, L2, L3

Weights: in [0,1]

\[w_{ij} = \exp \left(-\beta (g_i - g_j)^2 \right) \]
Probability of reaching L1

Probability of reaching L2
Probability of reaching L3

Segmentation results
My Work

- Make it fast, local and limited steps
- Reduce noise while keeping edges
- Apply to facial feature extraction

the random walkers eliminate the noise and keep the mutually connected feature pixels from vagueness

like morphology filters but it does not need to define a structural element in advance
Conclusions and Future Work

- Graphical models are powerful and ideal for image segmentation
- Choice of the deterministic and stochastic algorithms, trade-off
- To make them more robust and develop some applications
Thank You!