Mertivaiioen

e Visualization of large urban environments is a great
challenge for computer graphics
— An urban environment is a collection of buildings and roads
spanning a large area of land and arranged into neighborhoods
blocks, and parcels

Daniel G. Aliaga
Chris Hoffmann

Spring 2006

Department of Computer Science
Purdue University

Moiivaiion Meiivation

e Lafayette, Indiana e Indianapolis, Indiana

Meitivaiion on

e Rome, Italy

il

e Urban Planning

— What would a proposed neighborhood look like?
What would an area look like after population growth?
What would happen is we put a road here? (road planning)

Architectural designs wish to use common building blocks yet
have unique and interesting spaces; can we extrapolate a city
given a set of building block

Emergency Management e Reconnaissance and Rapid Prototyping

— Can we create a model of a very large urban space to train — Can we rapidly build a prototype of an (enemy) location from
emergency response personnel? aerial views?
Can we plan evacuation routes and suggest emergency

— Can we specify the most beneficial places from where to obtain
deployments?

ground views so as to build an urban model for soldier training
Can we prioritize policing and resource deployment? and other simulations?

Given an urban model struck by a disaster/attack, we can deploy — Ifan environment is changing, can we indicate from where we
an emergency-relief communication network? need the most updates?

Can we deploy approximate structural information, via a PDA,

rescuers using both the urban model and the emergency-relief

communication network?

J

Challenge’ Oyservations;

e Modeling large urban spaces typically requires rge urban environments exhibit significant repetition
significant manual effort, storage, and computation

— Similar structures are repeated at the global level; however, they
maintain individuality in local detail
e Dense urban areas are particularly difficult because th
are both very complex and very widespread e Widespread digital meta-data is available
— Size of the environment makes obtaining detailed structural - ngh—reso\gllon aerial views
information prohibitive, leaving us with only sparse information * e.g,, 6 inch/pixel

— City/county/parcel boundaries, road networks, basic building
information

* e.g., input to Google Maps

ApPprodch

J

Examples ChangingUrban Spaces X

e Perform an inverse urban modeling task by inferring the
2D layout of an existing environment

— Procedural methods have the advantage of exhibiting a high-
degree of detail amplification, e.g. using a small number of
parameters yields significant plausible details

e The resulting grammar allows us to

— create modifications to the existing urban environments, in the
style of the original

— determine the most representative areas and layouts

Example: Changing Urban Spa

Examples ChanginglUrban Spaces 2

Examples Simplifying Urban Spaces)

Forward-generating grammars (L-systems) for creating plants, cities,
and buildings

— Specify a grammar and few initial parameters, then “grow” the structure

Photogrammetric Reconstruction and IBMR

— Build a model from photographs (e.g., Facade, Lightfields, robot-based
acquisition)

Inspiration
— Epitomes and Vector Quantization
— Build-by-Number
— One paper: inferring plant L-system parameters from photographs
Thousands of parcels/buildings Dozens of parcels/buildings

Jierminologyand Assumpiions

e Parse

— From aerial views and meta-data, create a set of production
rules and a set of terminals

* e.g., string to grammar
e Derive

— Using the production rules, terminals, and a starting
configuration, create an urban layout
* e.g. grammar to string

lierminologyand Assumpiions

e Parcel
— consists of a piece of bounded land; might contain building
structures
e Block
— Collection of adjacent parcels; interior boundaries are all
imaginary; exterior boundary is a road; all parcels have access
to road (egress rule)
e Neighborhood
— Collection of blocks, separated by roads, and mostly of the same
classification (e.g. “residential”, “commercial”, “industrial”,
“downtown”, etc.)
e Region
— Collection of neighborhoods, usually separated by major roads

Jerminology andlAssumpiions;

e Production
— Given a region | neighborhood | block, partition by a road | boundary

« Assumptions (for now): regions are convex polygons, partitions are
polylines, production produces two children

e Terminal
— Is aparcel
— May or may not contain building contours

Meihodology,

1. Parsing

— How to parse aerial views and their metadata
2. Terminal Simplification

— Reducing the number of terminals

3. Production Simplification

— Reducing the number of productions

4. Novel Derivations

— Making new layouts

Meihodology,

m) ¢ 1. Parsing
— How to parse aerial views and their metadata
e 2. Terminal Simplification
— Reducing the number of terminals
e 3. Production Simplification
— Reducing the number of productions
e 4. Novel Derivations
— Making new layouts

L. Parsing

Parse aerial views in a top-down fashion to produce a
set of production rules for creating the urban layout

Existence Question
— Does such a grammar exist?

Answer:

— Yes! It is exactly one production rule for each partition and
exactly one terminal for each parcel

The interesting work is in simplifying and compacting the
grammar so that it can be used in a flexible fashion

Example Aerial View T

Example Aeriall View I

ExamplerMetfadata ol

Example Metadaita T

ExatplesMetadatiaiils

Parsenliree

Urban
Layout

Production Rules: Meithodology,

e 1. Parsing
S— AL 1 ~regions — How to parse aerial views and their metadata
A—BE =) o 2. Terminal Simplification
L—>mN — Reducing the number of terminals
E:'C:? e 3. Production Simplification
Fogh — Reducing the number of productions
1 ik ~blocks e 4. Novel Derivations
N - oP — Making new layouts

~neighborhoods

P—-ar

(lower ca terminals)
(upper case = region|neighborhood|block)

2. Nerminal SifpliTicaiion Urban Dictionaries;

e Reduce the number of terminals
— Find a compact “dictionary” of urban structures
e Serves to
— make grammar more compact
— compress the data
* e.g. image compression
— prioritize the terminals
« e.g. guides which parcels should be captured in more detail

Sl

mplificaiioniPipeline Simplification Pipeline

New Model New Model

| cost-benefit metr

Instance —» Cluster Input Cluster

Dictionary

Estimate Select Dictionary - e | Select

Similarity Neighbors Similarity Neighbors

Simplification Pipeline

Tnsiancing

Increasing error (and smaller number of equivalence classes)

finsfancing| s, Clusteri

a) Instancing

1/eqg-classes

b) Clustering

instances/cluster

Lnsiancing

e Global redundancy is exploited by growing a bottom-up
hierarchy of equivalence classes

Clustering

e By combining instantiation with spatial clustering, we find
spatially compact sets of representative urban areas

Cluster A: large and unique
Cluster B: small and common

Tihstancing vs, Thsfancing-and-Clustering

Increasing cluster size (and smaller number of clusters)

Increasing error (and smaller nur alence classes)

Increasing cluster size (and smaller ni er of clusters) Increasing error

Example erminallSimplifications Meitihodology.

e 1. Parsing

— How to parse aerial views and their metadata
e 2. Terminal Simplification

— Reducing the number of terminals

Aﬂ&s i ..thg, m) ¢ 3. Production Simplification

Aerial images Meta-data) — Reducing the number of productions
e 4. Novel Derivations
— Making new layouts

el A g
Reconstruction Synthetic City

3, Production Simplification 3, Production Sirmplification

e Goal e Rule Clustering

— Find a set of representative “rules” of the urban environment that e Rule Canonization
can instantiate the same space, new spaces, and similar spaces

e Method
— Find a dictionary of “rules” to build-up the urban space, for
example:
« Discover the rules by analyzing the layouts
« Provide core rules that can represent all possible layouts

5y Production Simplificaiion

¢ Rule Clustering

Recallvher OriginaliProduction Rules:..

Full specification of the production rules

AliiernatieRulesNoatien

Eo > BBy
A0 — Em

- - 90
E;, > mB,
- - - o
|
A

Shape = letter; position = subscript; rotation = superscript

c B » S — Ay A0
Ay, = ByEg
B, —cc

S —>AA
A — BE | mE
B —cc
E—>BB|mB

Rules grouped based on similar shape but ignoring differences
in location and rotation

RulerShape: Similarity.

. AR 3 S > AA
EEpgE
B —cc
E - BB | mB
HEEENE ..

Rules grouped based on similar shape but ignoring differences
in location and rotation

e Similarity(A,B) =
— W,ShapeSim(A,B) + W,LocationSim(a,B) + W,PositionSim(A,B)
+ W, PartitionSim(A,B) + WTypeSim(A,B)

e Production rule clustering:
— Define each rule by a n-dimensional vector
— Perform k-means clustering to obtain k clusters of rules
— Choose a representative rule from each cluster

o Effectively “infer” the most popular/representative
production rule styles

Note: ???

RUlE Canonizaiion)

Reduce the full grammar to a more compact one using
only a small number of flexible yet powerful canonical
production rules

Consider triangles:

2N

RUle Canonizaiion!

Reduce the full grammar to a more compact one using
only a small number of flexible yet powerful canonical
production rules

Consider rectangles:

44

RUlerCanonizaiion)

e Reduce the full grammar to a more compact one using
only a small number of flexible yet powerful canonical
production rules

RUlerCanonizaiion)

e Reduce the full grammar to a more compact one using
only a small number of flexible yet powerful canonical
production rules

RUl2rCanonizaiion)

e Reduce the full grammar to a more compact one using
only a small number of flexible yet powerful canonical
production rules

RUl2rCanonizaiion)

e Reduce the full grammar to a more compact one using
only a small number of flexible yet powerful canonical
production rules

RUlE Canonizaiion) RilerCanenization:

e Reduce the full grammar to a more compact one using e Reduce the full grammar to a more compact one using
only a small number of flexible yet powerful canonical only a small number of flexible yet powerful canonical
production rules production rules

RUlerCanonizaiion) RUlerCanonizaiion)

e Reduce the full grammar to a more compact one using e Reduce the full grammar to a more compact one using
only a small number of flexible yet powerful canonical only a small number of flexible yet powerful canonical
production rules production rules

Rule Canonization Meihodology.

Reduce the full grammar to a more compact one using 1. Parsing
only a small number of flexible yet powerful canonical — How to parse aerial views and their metadata

production rules 2. Terminal Simplification
— Reducing the number of terminals

3. Production Simplification

— Reducing the number of productions
m) o 4. Novel Derivations

— Making new layouts

Peel Rectangular Triangular Create an
partition partition Island

Note: ???

INovell Derivaiions INovel Derivaiions

Given production rules and an initial structure, derive an e Need to support subset of affine transformations:
urban layout — Translation (e.g., “move a region”)

Examples: — Rotation (e.g., “re-orient a neighborhood”)

— Change original urban space — Scale (e.qg., “stretch/squish a block”)

— “Move a road” in the original urban space

— Fill a new region with an urban space similar to the original

— Grow an urban area

Jransiormaiions Observaiion: Scaling/Stresching EIT

e Translation

— Easy to handle B A E B Hm
e Rotation @ N m ~

— Easy to handle E

e Scale
— 277 H region H region V region V region
V split H split H split V split

Conclusion:
— V stretches handled by H partition
— H stretches handled by V partition

Example Derivaiions

e Original urban space
S —> AA
S - BEmE
S — ccBBmmB
S — cccececemmcec

A >HBE | mE
B —Vce
E -»"BB

E ->VmB
e Stretched urban space

S—> AA

S —» BEmE

S —» BEBEmMEmME

S — ccBBcecBBmmBmmB

S — cceceeccccccemmecmmcec Note: for simplicity, these

derivations are showing 1D
strings — data is really 2D

OriginallUrbaniSpace Original UrbaniSpace I

Original’UrbaniSpacer L

Originalivs, Sireiicned

Original UrbaniSpace I

Originaliy

DENo; Conclusions
e Urban Modeling is fun!

e Ability to be able to take views of an entire urban space
and make an editable model out of it is very enticing

e Similar to fractal-based compression, the key is to find a
good set of generators

— Fortunately, urban environments offer significant amount of
structure (and repetition) which we can exploit

uifireWork

Procedural Simplification
— Specify canonical procedural rules?
— Infer canonical procedural rules?

Obtain data for a larger/more-interesting set of cities
— Chicago, Rome, Paris, Cusco, etc.

Full Inverse Modeling
— Combine with Build-by-Numbers

Applications

— Road planning

— Growth algorithms
— Rapid prototyping

