Simple Object Tracking

Radu Dondera
Tracking

- Major component in a number of Computer Vision applications
 - surveillance
 - intelligent user interfaces
 - driver assistance

- Definition
 - continuously computing object location
Specific interest: Distance Learning project

- install pair of cameras in physical classroom
- track the instructor in pairs of images acquired simultaneously by the cameras
- update the image of the virtual classroom according to triangulated head position

- add to the realism of the system
 - the instructor sees the back screen as a window to a new physical space
Simplification

- Tracking human faces is a non-trivial problem
 - several approaches have been proposed; ex. a rule-based method, neural networks, spatial masking with a kernel, etc.

- Solving a simpler task may provide insight and an approach to start from
 - tracking a small & regular red ball
 - also useful by itself in the Distance Learning project
 - can attach to instructor’s body
Simple Object Tracking (1)

- Detecting a colored ball in an image still isn’t a trivial problem: several papers (RoboCup)
- Approach: learn the “signature” of the ball and attempt to match it in the new image
 - signature can be the color histogram
 - main problem is high computational cost
 - can’t compute signature at every pixel
Simple Object Tracking (2)

- Solution: learn the “color” of the ball and only compute signature at pixels classified as having the ball color
- Learning the color
 - crude clustering of ball pixel colors
- Recognizing the color
 - can’t check color against all representatives
 - downscale color space and precompute match
Results

- Typical time for learning phase: 1.9 s
- Typical time for pixel classification: 0.07 s
- Typical time for object detection: 0.01 s
- Image size: 1024x768
- 2.00GHz, 2GB PC
Looking Forward (1)

- The presented approach will be applied to face tracking
 - determine interesting pixels based on color
 - group the interesting pixels into regions
 - compute the signature at pixels inside the regions
 - select pixel with signature closest to the learned signature as the center of the tracked object
Looking Forward (2)

- Problems & issues
 - the signature and colors need to be updated dynamically
 - re-clustering colors may be expensive
 - computing the signature for a large number of pixels may be expensive too
 - how to use locality properties
 - two images of the instructor are available
 - how to use both signatures/sets of colors
Thank you!