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Figure 1. Skin deformation and retargeting

Abstract

In this paper, we present a new method to parameterize skin de
formation by skeletal posture. Given an example animatéiros
skin deformation, we extract signals over time by ICA(Inelegent
Component Analysis) and approximate it using RBF(RadiaiBa
Function) parameterized by joint angles(skeletal po¥tubeiring
the extraction step, the size of animation data are greatiyaed
into a set of signals which plays a role in virtual musclestttfer-
more, during the parameterization step using RBF, we caraget
simple and easy control of skin deformation. For given a urgart

of skeletal posture, we can find its corresponding set ofadsgby
RBF and then its amount of skin deformation by a simple matrix
multiplication quickly in a reduced dimension. Since skifai-
mation is represented by multiplications of matrices, we tcans-
fer the deformation into another skeletal and skin strctimply
without considering the input dimension of the deformatitata.

In these days, there are many virtual characters in inieeaehvi-
ronments, games for example. The method in this paper caragiv
easy interactive control not only for a realistic lookingacaicter but
also for its variants. According to our experiments, corara re-
target take place in real time. We show qualitative and qtzive
performance results for the control and retargeting.

CR Categories. 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation;

Keywords: skin deformation, parameterization of motion, inde-
pendent component analysis

1 Introduction
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Representing realistic skin deformation enhances thisrsalf vir-

tual characters which are shown frequently in interactiwéren-
ments, games for example. Skin deformation, in generalhlugs
degree of freedoms since it is influenced complicatedly leyntio-

tion of underlying structures such as skeletons and musdlbe
motion of a point on skin can be represented nonlinearly bgrsg
muscles and skeletons and considered as a multiple coupded s
tem of them. Those are the reasons that we have encountered th
difficulties to achieve realistic skin deformation.

Traditionally, well-trained artists spend a large amourtiroe and
effort to set up a realistic-looking character. Motion ecaptap-
proaches[Park and Hodgins 2006; Park and Hodgins 2008] with
a large number of markers on skin have greatly reduced such
an amount of effort and physical simulations for realistiosm
cles[Cordier and Magnenat-Thalmann 2000] have generated a
alistic motion of skin deformation. Those methods requitarge
amount of storage space or execution times and lack of deritno
skin deformation. Therefore, they have limitations to bpliag in

an interactive environment that requires particularlyiséia look-

ing characters such as games. In such an environment, aijiplis
generally require fast execution with small amount of datheasy
control method while generating a reasonable amount oisreal
Itis clear that these three kinds of requirements cannotbieeed
easily and have to be trade-off. In this paper, for given amation

of skin deformation, we present a new method to parametéreze
deformation by skeletal posture in order to represent tlieroea-

tion with small amount data and give an easy and fast control.

We assume that the animation data of skin deformation are-+rep
sented by a sequence of motions of points on skin over timighwh
can be obtained either by motion capture devices or by palysic
simulations for muscles with skinning. First, we extraalépen-
dent signals from the input data, which play role in virtualsoles
using ICA(Independent Component Analysis). The numbeatd d
can be greatly reduced since the number of signals are muadfesm
than the number of time frames of animation data. Each signal
a certain time instance is represented by a point on a curtle wi
respect to a time as well as by a point on a surface with respect
to its corresponding joint angles. Once we transform tharpar
ter space from a time into joint angles and approximate thiacel
using RBF(Radial Basis Function) with respect to joint asgwe
can parameterize the signals by their corresponding skeles-
ture. This method gives a fast control of skin deformatiorsimg-
ply specifying joint angles to generate skin deformatiomg&RBF
evaluation and matrix multiplications.



2 Related Work

e Skeletal subspace deformation [Magnenat-Thalmann et al.

1988]
e Pose space deformation [Lewis et al. 2000]

e Motion capture [Park and Hodgins 2006; Park and Hodgins
2008]

e Physical simulation [Cordier and Magnenat-Thalmann 2000]
For mathematical tools,

e |CA [Hyvarinen and Oja 2000]

e RBF [Buhmann 2003]

3 Parameterization of Skin Deformation

We assume that the example animation data of skin deformati®
represented by a sequence of motions of points on skin aver, ti
P(t) and their corresponding joint angl€xt).

3.1 Eliminating Rigid Motion of Skin Deformation

The skin deformation dat®(t) are influenced by their underlying
skeletal and muscular structures and can be partitionedaingid
body motionR(¢) and a non-rigid body motiof’(t).

P(t) =R(t) + X(t)

In this paper, we handle the nonlinear motion of the defoionat
X (t), but not the linear rigid motio (¢). In order to remove the
rigid motion, we represent the deformation in a local commtik

system,P(t), defined by its corresponding skeletal subspace such

that,
P(t)y=W '"P(t) = W 'R(t) + WX (t) = R(t) + X (t),

whereW is a transform matrix from a local to a world coordinates
and R(t) and X (¢) are the rigid and non-rigid motions in a local
coordinate system, respectively. Singé) are rotation and trans-
lation invariant over timeR(t) = R(0) = P(0) if we assume that
there is no non-rigid motion at the beginning of motions with
loss of generality. The non-rigid body motion can be defingd b
X(t) = P(t) — P(0). Remaining of this paper, we consider only
the non-rigid deformatiotX (¢) which can be described complicat-
edly as a combination of skeletal and muscular motions.

During the elimination of rigid motion, we are implicitly geired
to partition a set of points on skin into sets of points, edoltuch

is defined by its corresponding skeleton. For each point, ae fi
a nearest bone then simply transform its coordinate intd@tme's
local coordinate (See Figure 2).

3.2 Extracting Virtual Muscle Signals

Without considering the non-rigid motioX (¢) of skin deforma-
tion, it is not probable to represent the delicate, complexion of
skin deformation realistically. We consider that the nigier mo-
tion of skin deformation is influenced by the motion of a ciertan-
derlying structure which is triggered by skeletal motiomatomi-
cally the main underlying structure between skeletal bamesskin
is muscles. In this paper, we take an ICA to extract the Miruss-
cular components and to analyze the input skin deformatiGA
is a mathematical method to separate multivariate signatsad-
ditive components assuming that they statistically independent
[Hyvarinen and Oja 2000]. In this paper, we consider thelomodf

Figure 2: Partition of points on skin by transforming their local
coordinate systems in order to eliminate rigid motion ofstéfor-
mation.

skin deformation(signals) are multiply coupled to motiafisnus-
cles, each of which is independent to each other muscles.

Assuming that a given observed signal at titriee represented by
a column vectox(t) = (z1(t),...,z.(t))" and its source signal
by s(t) = (s1(t),...,sk(t))”, ICA can represent(t) as

k
zi(t) = ai;s;(t) )
j=1

For a set ofn points on skin, in this paper, an input deformation
data overn frames can be represented by a matrix equation using
ICA such that

t) = As(t
9 2 4 g
whereX = [z ], A = [@i ], ANAS = [si5],,,,,- The

[],.xm represents a matrix whose dimensiomis m. In general,
the skin deformation data are represented by a motion ofraeve
thousands of points on skin and several hundreds of framéde wh
the number of source signals is within several tens accgtdiour
experimental result; that i; < m < n. During extraction of
virtual muscle signals, we can greatly reduced the numbeat#
from nm to nk + km.

3.3 Parameterization of Virtual Muscle

Input data of skin deformation described with respect tcetame
represented by a simple multiplication of matrices using.|G

this section, we present a method to parameterize the sformaa-
tion with respect to skeletal motion which has been a simles
most powerful control for character animation.

For a set of points on skin, we specify a set of bones that are in
fluencing the deformation. It is well known that there are aistn
four bones influencing the deformation of a point on skin [dan
2001]. This parameterization problem can be solved by fomdin
function between the source sigrfain Equation (2) and its corre-
= = T

sponding joint angl® = (Hl(t)7 . .701(t)) = [0:i,5],.m» Where

[ stands for the number of joints. An ordered pair of a sourgeadi
and a joint angl€s(t), 6(t)) is represented by a point {m + [)-
dimensional space. Once those points fortate projected onto



a [-dimensional space(skeletal space), they form points oman
dimensional graph.

We assume that the graph are smooth and continuous ovér the
dimensional skeletal space. In this paper, we use an RBptoxp
imate and finally to parameterize the-dimensional graph with re-
spectl-dimensional parameters such that

5@ = > w0 (177l
i=1

We use a quaternion to represent the rotation angle of a foint
and a thin plate functior(r) r%log(r) for the kernel func-
tion of RBF. The weightsv; ; can be represented by the matrix
W = [wi;],, v Which can be computed by a singular value
decomposition method for a standard linear least squatdepm
Once we obtairs; parameterized b§in Equation (3), we can rep-
resent motions of vertices on skin with respect to joint aadly a
simple substitution such that

@)

— —

x(0) = As(0). )

There has been done several research to parameterize sofion
vertices on skin by approximating. with respect ta®, which has
to be taken place directly in higher x m-dimensional parameter
space while ours indirectly in lower x k-dimensional space. Even
though the approximation problems are recognized as uatiard
mined linear system, the approximation in low dimensiomelce
can avoid over fitting problem and hence it generates a snsawth
face with respect to parameters.

4 Skin Deformation Retargeting

One of the contributions of the method in this paper is to jgl®a
simple way of mathematical analysis for skin deformatiorive@

two or more sets of skin deformation data, we can compare one
to another and transfer the difference between two intohemdiy
simple matrix computations. In this section, we show a samp-
ample to transfer a difference between two skin deformatiata

into another deformation (See Figure 3).

T=A55,5] AT
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U=A151R Bf ut
Yi=BiRi—————-——— >Yo = Ba2Rs

Figure 3: Overview of skin deformation retargeting: Finding the
skin deformatior> from Y1 which reflects the difference between
X7 and Xs.

Assume that two sets of skin deformatidh and X, with the same
skeletal structures but different muscular structuresnngk and
muscular characters’ deformation data with the same borathe
for example, and a set of the deformatiBnwith a different struc-
ture are given. The skin deformation retargeting problem loa
described as finding the deformati®dh from Y7 which reflects the
difference betweetX; and X».

Let the matrixT : X3 — X be the transformation fronX; to

Xs, then
X = TX:
AS; = TA1S (5)
T = A38,8]Af,

whereM ™ stands for the Moore-Penrose pseudo inverse matrix of
M. Letn; andn. be the numbers of vertices; andks be the
numbers of independent signals, and andm. be the numbers

of frames in the deformation datd; and X, respectively. The
transformation matrif” can be obtained only #; = k2 andm, =

mg Without concerning the number of vertices andn.. It is easy

to makek: = k2 by specifying the same number of independent
signals as an input of ICA foX; and X,. OnceX; and X, have

the same numbers of signals, matricgsand S» have the same
numbers of rows. Furthermoré&,; and S. are parameterized by
joint anglesd as in Equation (3), we can always generate the same
number of columnsn in S; and.S2 by specifyingm sequences of
joint angles such that = m1 = meo.

Let the matrixU : Y1 — X1 be the transformation fror; to X1,
then

X, = Uvi
A1S, = UBR: (6)
U = ASR B

Letn}, k7, andm] be the numbers of vertices, independent signals,
and frames iy, respectively. Without concerning, andn’, the
Equation (6) can be also obtained onlyif = k¥ andm; = m/,
which can be achieved as easily as describe in the Equafion (5

Finally, we can obtain the desired deformatignsuch that

Yo

T'Y:

UTTUY:

BiR:1 S| AT A28:8 AT A1S1 R B B1 Ry
Ut Az Ss.

@)

The only required condition to obtain the deformation dataising
the Equation (7) is11 = n2. Without loss of generality, we assume
thatd, = ni1 —no > 0. Puttingd,, zero row vectors into the
bottom of A, satisfies the required conditien = n, while it does
not destroy any necessary conditions for computing ICAudse
inverse, and so on.

JH and Prof. Hoffmann, I'm not quite sure whether the abowatest
ment is true. We have to evaluate it by experiments.

The primary advantage of the method proposed in this se&ion
that we do not have to care of the numbers of vertices, fraames,
independent signals. They are easily achievable as dedcsibfar.

5 Experimental Result

In this section, we show several quantitive and qualitagivperi-
mental result for skin deformation. For a given skin modehahin
Figure 2, the deformation data are generated by bendingveibd
twisting wrist. The numbers of vertices on skin, frames, aooh-
puted source signals by ICA are 3,234, 100, and 7, respgctive
ICA can generate the signals withixx sec and the RMSE(Root
Mean Squared Error) is within 0.1 mm compared with the origi-
nal data (See Figure 4). The number of storage required to rep
resent the skin deformation is reduced fr8nx 3,234 x 100 to

3 x 3,234 x T+ 7 x 100 which is approximately 7.1% with respect
to the size of original data.

For a virtual character shown in Figure 5 wixx vertices and
yyyframes, ICA can generatzindependent signals withiwww
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Figure 4: (a) Original input deformation dataX and (b) their corresponding reconstructed data using ISAould be replaced with high
quality data. Prepare the files, JH.
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Figure 6: (a) Original input deformation dataX" and (b) their corresponding reconstructed data using IShould be replaced with high
quality data. Prepare the files, JH.

RMSE and their reconstructed skin deformations are shoviigin 6 Discussion and Future Work
ure 6.
In this paper, we presented a method to parameterize thedskin
formation with respect to skeletal motion using ICA and RB&
For our skin deformation retargeting, we generate two ctara ample skin deformation data obtained using motion captudéoa
models (a man and a woman) and generate two motions (one forphysical simulation are represented by a multiplicatiomefrices
skinny and other for muscular). Let the skin deformatioradat a using ICA, one of the matrices represents source signalsifor
skinny man beX;, the deformation for a muscular man e, and tual muscles. During this step, the number of required gota
the deformation for a skinny woman B&, we compute the skin represent the deformation is greatly reduced with smalluarhof
deformation for a muscular woman as describe in Sectiongusi  errors. The signals with respect to time are parameteriggdibt
Equation (7). The result is shown in Figure 7. angles of skeletal structure using RBF, which gives a sinbpie
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Figure7: Retargeting result of skin deformation. (a) The deformatiata for a skinny man, (b) the deformation data for a musaulan, (c)
the deformation data for a skinny woman, and (d) the compdédormation data for a muscular woman using skin defornmatiargeting.

Should be replaced with high quality data. Prepare the filds,

Figure5: Segmentation of a virtual character

powerful control of the skin deformation. The primary cdotition
of this paper is providing the skin deformation data with ahma
matical analysis way. Given multiple sets of skin deforioatiwe
formulate the difference between the deformation and feartke
difference to another deformation data using simple matixpu-
tations.

Since we concerned the deformation as a motion triggeredhdoy t

motion of underlying structure between skin and skeletbe,sig-
nals computed so far are considered as muscles. In conmahtio
animation softwares, the skin deformation can be conttalising
simple parameters of muscles, bulging rate for example. -How
ever, to alter a single signal is not directly meaningful tamge
the shape of local skin deformation. Hence, we cannot expect
local change only with a single signal rather with a combarabf
signals which is turned out to be extremely difficult.
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