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Figure 1: Skin deformation and retargeting

Abstract

In this paper, we present a new method to parameterize skin de-
formation by skeletal posture. Given an example animation set of
skin deformation, we extract signals over time by ICA(Independent
Component Analysis) and approximate it using RBF(Radial Basis
Function) parameterized by joint angles(skeletal posture). During
the extraction step, the size of animation data are greatly reduced
into a set of signals which plays a role in virtual muscles. Further-
more, during the parameterization step using RBF, we can geta
simple and easy control of skin deformation. For given a userinput
of skeletal posture, we can find its corresponding set of signals by
RBF and then its amount of skin deformation by a simple matrix
multiplication quickly in a reduced dimension. Since skin defor-
mation is represented by multiplications of matrices, we can trans-
fer the deformation into another skeletal and skin structure simply
without considering the input dimension of the deformationdata.
In these days, there are many virtual characters in interactive envi-
ronments, games for example. The method in this paper can give an
easy interactive control not only for a realistic looking character but
also for its variants. According to our experiments, control and re-
target take place in real time. We show qualitative and quantitative
performance results for the control and retargeting.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation;

Keywords: skin deformation, parameterization of motion, inde-
pendent component analysis

1 Introduction
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Representing realistic skin deformation enhances the realism of vir-
tual characters which are shown frequently in interactive environ-
ments, games for example. Skin deformation, in general, hashigh
degree of freedoms since it is influenced complicatedly by the mo-
tion of underlying structures such as skeletons and muscles. The
motion of a point on skin can be represented nonlinearly by several
muscles and skeletons and considered as a multiple coupled sys-
tem of them. Those are the reasons that we have encountered the
difficulties to achieve realistic skin deformation.

Traditionally, well-trained artists spend a large amount of time and
effort to set up a realistic-looking character. Motion capture ap-
proaches[Park and Hodgins 2006; Park and Hodgins 2008] with
a large number of markers on skin have greatly reduced such
an amount of effort and physical simulations for realistic mus-
cles[Cordier and Magnenat-Thalmann 2000] have generated are-
alistic motion of skin deformation. Those methods require alarge
amount of storage space or execution times and lack of controls for
skin deformation. Therefore, they have limitations to be applied in
an interactive environment that requires particularly realistic look-
ing characters such as games. In such an environment, applications
generally require fast execution with small amount of data and easy
control method while generating a reasonable amount of realism.
It is clear that these three kinds of requirements cannot be achieved
easily and have to be trade-off. In this paper, for given an animation
of skin deformation, we present a new method to parameterizethe
deformation by skeletal posture in order to represent the deforma-
tion with small amount data and give an easy and fast control.

We assume that the animation data of skin deformation are repre-
sented by a sequence of motions of points on skin over time, which
can be obtained either by motion capture devices or by physical
simulations for muscles with skinning. First, we extract indepen-
dent signals from the input data, which play role in virtual muscles
using ICA(Independent Component Analysis). The number of data
can be greatly reduced since the number of signals are much smaller
than the number of time frames of animation data. Each signalat
a certain time instance is represented by a point on a curve with
respect to a time as well as by a point on a surface with respect
to its corresponding joint angles. Once we transform the parame-
ter space from a time into joint angles and approximate the surface
using RBF(Radial Basis Function) with respect to joint angles, we
can parameterize the signals by their corresponding skeletal pos-
ture. This method gives a fast control of skin deformation bysim-
ply specifying joint angles to generate skin deformation using RBF
evaluation and matrix multiplications.



2 Related Work

• Skeletal subspace deformation [Magnenat-Thalmann et al.
1988]

• Pose space deformation [Lewis et al. 2000]

• Motion capture [Park and Hodgins 2006; Park and Hodgins
2008]

• Physical simulation [Cordier and Magnenat-Thalmann 2000].

For mathematical tools,

• ICA [Hyvärinen and Oja 2000]

• RBF [Buhmann 2003]

3 Parameterization of Skin Deformation

We assume that the example animation data of skin deformation are
represented by a sequence of motions of points on skin over time,
P(t) and their corresponding joint anglesΘ(t).

3.1 Eliminating Rigid Motion of Skin Deformation

The skin deformation dataP(t) are influenced by their underlying
skeletal and muscular structures and can be partitioned into a rigid
body motionR(t) and a non-rigid body motionX (t).

P(t) = R(t) + X (t)

In this paper, we handle the nonlinear motion of the deformation
X (t), but not the linear rigid motionR(t). In order to remove the
rigid motion, we represent the deformation in a local coordinate
system,P (t), defined by its corresponding skeletal subspace such
that,

P (t) = W
−1P(t) = W

−1R(t) +W
−1X (t) = R(t) +X(t),

whereW is a transform matrix from a local to a world coordinates
andR(t) andX(t) are the rigid and non-rigid motions in a local
coordinate system, respectively. SinceR(t) are rotation and trans-
lation invariant over time,R(t) = R(0) = P (0) if we assume that
there is no non-rigid motion at the beginning of motions without
loss of generality. The non-rigid body motion can be defined by
X(t) = P (t) − P (0). Remaining of this paper, we consider only
the non-rigid deformationX(t) which can be described complicat-
edly as a combination of skeletal and muscular motions.

During the elimination of rigid motion, we are implicitly required
to partition a set of points on skin into sets of points, each of which
is defined by its corresponding skeleton. For each point, we find
a nearest bone then simply transform its coordinate into thebone’s
local coordinate (See Figure 2).

3.2 Extracting Virtual Muscle Signals

Without considering the non-rigid motionX(t) of skin deforma-
tion, it is not probable to represent the delicate, complex motion of
skin deformation realistically. We consider that the non-rigid mo-
tion of skin deformation is influenced by the motion of a certain un-
derlying structure which is triggered by skeletal motion. Anatomi-
cally the main underlying structure between skeletal bonesand skin
is muscles. In this paper, we take an ICA to extract the virtual mus-
cular components and to analyze the input skin deformation.ICA
is a mathematical method to separate multivariate signals into ad-
ditive components assuming that they arestatistically independent
[Hyvärinen and Oja 2000]. In this paper, we consider the motion of

Figure 2: Partition of points on skin by transforming their local
coordinate systems in order to eliminate rigid motion of skin defor-
mation.

skin deformation(signals) are multiply coupled to motionsof mus-
cles, each of which is independent to each other muscles.

Assuming that a given observed signal at timet be represented by
a column vectorx(t) = (x1(t), . . . , xn(t))

T and its source signal
by s(t) = (s1(t), . . . , sk(t))

T , ICA can representx(t) as

xi(t) =
k

∑

j=1

ai,jsj(t) (1)

For a set ofn points on skin, in this paper, an input deformation
data overm frames can be represented by a matrix equation using
ICA such that

x(t) = As(t)
X = AS,

(2)

whereX = [xi,j ]n×m
, A = [ai,j ]n×k

, andS = [si,j ]k×m
. The

[·]n×m represents a matrix whose dimension isn×m. In general,
the skin deformation data are represented by a motion of several
thousands of points on skin and several hundreds of frames while
the number of source signals is within several tens according to our
experimental result; that is,k < m < n. During extraction of
virtual muscle signals, we can greatly reduced the number ofdata
from nm to nk + km.

3.3 Parameterization of Virtual Muscle

Input data of skin deformation described with respect to time are
represented by a simple multiplication of matrices using ICA. In
this section, we present a method to parameterize the skin deforma-
tion with respect to skeletal motion which has been a simplest but
most powerful control for character animation.

For a set of points on skin, we specify a set of bones that are in-
fluencing the deformation. It is well known that there are at most
four bones influencing the deformation of a point on skin [Lander
2001]. This parameterization problem can be solved by finding a
function between the source signalS in Equation (2) and its corre-

sponding joint angleΘ =
(

~θ1(t), . . . , ~θl(t)
)T

= [θi,j ]l×m, where

l stands for the number of joints. An ordered pair of a source signal
and a joint angle(s(t), ~θ(t)) is represented by a point in(m + l)-
dimensional space. Once those points for allt are projected onto



a l-dimensional space(skeletal space), they form points on anm-
dimensional graph.

We assume that the graph are smooth and continuous over thel-
dimensional skeletal space. In this paper, we use an RBF to approx-
imate and finally to parameterize them-dimensional graph with re-
spectl-dimensional parameters such that

sj(~θ) =
m
∑

i=1

wi,jφ
(

‖~θ − ~θi‖
)

. (3)

We use a quaternion to represent the rotation angle of a jointθ
and a thin plate functionφ(r) = r2 log(r) for the kernel func-
tion of RBF. The weightswi,j can be represented by the matrix
W = [wi,j ]m×k, which can be computed by a singular value
decomposition method for a standard linear least square problem.
Once we obtainsj parameterized by~θ in Equation (3), we can rep-
resent motions of vertices on skin with respect to joint angles by a
simple substitution such that

x(~θ) = As(~θ). (4)

There has been done several research to parameterize motions of
vertices on skin by approximatingX with respect toΘ, which has
to be taken place directly in highern × m-dimensional parameter
space while ours indirectly in lowerm×k-dimensional space. Even
though the approximation problems are recognized as underdeter-
mined linear system, the approximation in low dimensional space
can avoid over fitting problem and hence it generates a smoothsur-
face with respect to parameters.

4 Skin Deformation Retargeting

One of the contributions of the method in this paper is to provide a
simple way of mathematical analysis for skin deformation. Given
two or more sets of skin deformation data, we can compare one
to another and transfer the difference between two into another by
simple matrix computations. In this section, we show a simple ex-
ample to transfer a difference between two skin deformationdata
into another deformation (See Figure 3).

X1 = A1S1

T=A2S2S
+
1

A
+
1 // X2 = A2S2
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U=A1S1R
+

1
B

+

1
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T ′

//_________ Y2 = B2R2

Figure 3: Overview of skin deformation retargeting: Finding the
skin deformationY2 fromY1 which reflects the difference between
X1 andX2.

Assume that two sets of skin deformationX1 andX2 with the same
skeletal structures but different muscular structures, skinny and
muscular characters’ deformation data with the same bone lengths
for example, and a set of the deformationY1 with a different struc-
ture are given. The skin deformation retargeting problem can be
described as finding the deformationY2 from Y1 which reflects the
difference betweenX1 andX2.

Let the matrixT : X1 → X2 be the transformation fromX1 to
X2, then

X2 = TX1

A2S2 = TA1S1

T = A2S2S
+

1 A+

1 ,
(5)

whereM+ stands for the Moore-Penrose pseudo inverse matrix of
M . Let n1 andn2 be the numbers of vertices,k1 andk2 be the
numbers of independent signals, andm1 andm2 be the numbers
of frames in the deformation dataX1 andX2, respectively. The
transformation matrixT can be obtained only ifk1 = k2 andm1 =
m2 without concerning the number of verticesn1 andn2. It is easy
to makek1 = k2 by specifying the same number of independent
signals as an input of ICA forX1 andX2. OnceX1 andX2 have
the same numbers of signals, matricesS1 andS2 have the same
numbers of rows. Furthermore,S1 andS2 are parameterized by
joint anglesθ as in Equation (3), we can always generate the same
number of columnsm in S1 andS2 by specifyingm sequences of
joint angles such thatm = m1 = m2.

Let the matrixU : Y1 → X1 be the transformation fromY1 toX1,
then

X1 = UY1

A1S1 = UB1R1

U = A1S1R
+

1 B
+

1 .
(6)

Letn′
1, k′

1, andm′
1 be the numbers of vertices, independent signals,

and frames inY1, respectively. Without concerningn1 andn′
1, the

Equation (6) can be also obtained only ifk1 = k′
1 andm1 = m′

1,
which can be achieved as easily as describe in the Equation (5).

Finally, we can obtain the desired deformationY2 such that

Y2 = T ′Y1

= U+TUY1

= B1R1S
+

1 A+

1 A2S2S
+

1 A+

1 A1S1R
+

1 B
+

1 B1R1

= U+A2S2.

(7)

The only required condition to obtain the deformation dataY2 using
the Equation (7) isn1 = n2. Without loss of generality, we assume
that dn = n1 − n2 > 0. Puttingdn zero row vectors into the
bottom ofA2 satisfies the required conditionn1 = n2 while it does
not destroy any necessary conditions for computing ICA, pseudo
inverse, and so on.

JH and Prof. Hoffmann, I’m not quite sure whether the above state-
ment is true. We have to evaluate it by experiments.

The primary advantage of the method proposed in this sectionis
that we do not have to care of the numbers of vertices, frames,and
independent signals. They are easily achievable as described so far.

5 Experimental Result

In this section, we show several quantitive and qualitativeexperi-
mental result for skin deformation. For a given skin model shown in
Figure 2, the deformation data are generated by bending elbow and
twisting wrist. The numbers of vertices on skin, frames, andcom-
puted source signals by ICA are 3,234, 100, and 7, respectively.
ICA can generate the signals withinxxx sec and the RMSE(Root
Mean Squared Error) is within 0.1 mm compared with the origi-
nal data (See Figure 4). The number of storage required to rep-
resent the skin deformation is reduced from3 × 3, 234 × 100 to
3×3, 234×7+7×100 which is approximately 7.1% with respect
to the size of original data.

For a virtual character shown in Figure 5 withxxx vertices and
yyy frames, ICA can generatezzzindependent signals withinwww



(a)

(b)

Figure 4: (a) Original input deformation dataX and (b) their corresponding reconstructed data using ICA.Should be replaced with high
quality data. Prepare the files, JH.

(a)

(b)

Figure 6: (a) Original input deformation dataX and (b) their corresponding reconstructed data using ICA.Should be replaced with high
quality data. Prepare the files, JH.

RMSE and their reconstructed skin deformations are shown inFig-
ure 6.

For our skin deformation retargeting, we generate two character
models (a man and a woman) and generate two motions (one for
skinny and other for muscular). Let the skin deformation data for a
skinny man beX1, the deformation for a muscular man beX2, and
the deformation for a skinny woman beY1, we compute the skin
deformation for a muscular woman as describe in Section 4 using
Equation (7). The result is shown in Figure 7.

6 Discussion and Future Work

In this paper, we presented a method to parameterize the skinde-
formation with respect to skeletal motion using ICA and RBF.Ex-
ample skin deformation data obtained using motion capture and/or
physical simulation are represented by a multiplication ofmatrices
using ICA, one of the matrices represents source signals forvir-
tual muscles. During this step, the number of required storage to
represent the deformation is greatly reduced with small amount of
errors. The signals with respect to time are parameterized by joint
angles of skeletal structure using RBF, which gives a simplebut



(a)

(b)

(c)

(d)

Figure 7: Retargeting result of skin deformation. (a) The deformation data for a skinny man, (b) the deformation data for a muscular man, (c)
the deformation data for a skinny woman, and (d) the computeddeformation data for a muscular woman using skin deformation retargeting.
Should be replaced with high quality data. Prepare the files,JH.

Figure 5: Segmentation of a virtual character

powerful control of the skin deformation. The primary contribution
of this paper is providing the skin deformation data with a mathe-
matical analysis way. Given multiple sets of skin deformation, we
formulate the difference between the deformation and transfer the
difference to another deformation data using simple matrixcompu-
tations.

Since we concerned the deformation as a motion triggered by the

motion of underlying structure between skin and skeleton, the sig-
nals computed so far are considered as muscles. In conventional
animation softwares, the skin deformation can be controlled using
simple parameters of muscles, bulging rate for example. How-
ever, to alter a single signal is not directly meaningful to change
the shape of local skin deformation. Hence, we cannot expectthe
local change only with a single signal rather with a combination of
signals which is turned out to be extremely difficult.
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