
Interactive Reconfiguration of Urban Layouts

Daniel G. Aliaga* Bedřich Beneš+ Carlos A. Vanegas* Nathan Andrysco*
 aliaga@cs.purdue.edu bbenes@purdue.edu cvanegas@cs.purdue.edu nandrysc@cs.purdue.edu

*Department of Computer Science +Department of Computer Graphics Technology
Purdue University

Abstract
The ability to create and edit a model of a large-scale city is necessary for a variety of applications such as web-based navigation (e.g.,

MapQuest, GoogleEarth), emergency response training and simulation, urban planning, and content creation for the entertainment industry.
Satellite and aerial photographs provide overhead views of large urban spaces. Although the layout of the urban space is captured as images, it
consists of a complex collection of man-made structures arranged in parcels, city blocks, and neighborhoods. Treating the content as unstructured
images yields undesirable results (e.g., building deformation, interrupted streets/blocks). However, most GIS maintain and provide digital records
of metadata such as road network, land use, parcel boundaries, building type, water/sewage pipes and power lines that can be used as a starting
point to infer and manipulate higher-level structure. We describe an editor for interactive reconfiguration of city layouts, which provides tools to
expand, scale, replace and move parcels and blocks, while efficiently exploiting their connectivity and zoning. Our results include applying the
system on several cities with different urban layout by sequentially applying transformations. We interactively replace parts of a city, move
blocks of the urban layout with minimal deformation, alter streets, and maintain their connectivity when so desired.

Keywords: urban reconstruction, image synthesis, procedural modeling, texture synthesis, geometric constraints, style.

1. Introduction
Modeling and visualizing large urban environments is a great challenge for computer graphics. Creating, extending, and

changing a model of a large-scale urban environment is necessary for a variety of applications. For example, urban planning
applications include the ability to visualize changes to city layouts or to newly proposed neighborhoods, creating hypothetical
views of an urban area after applying development and growth algorithms, showing microclimate visualizations, providing road
planners with aerial views of new street networks, and allowing architects to see the results of using common building blocks to
design a new city layout. Emergency response simulations seek to train personnel in current and speculative urban layouts,
including planning evacuation routes for various catastrophes, and suggesting emergency deployments of communication
networks, resources, and policing. Finally, envisioning previously-existing cities for which only partial information exists and
analyzing the structural characteristics of a historically significant geographic region are important aspects of urban
visualization.

Figure 1. (a) Satellite image of the original (left) and modified (right) layout of Istanbul. (b) The original topology of the
affected area (top) has been modified (bottom). Selected tiles have been copied from the industrial zone of the city (red) and
relocated to residential area (blue).

a)

b) c)

 2

When the layout of an urban space is captured by images (e.g., satellite and aerial photographs), the structural information is
lost and it cannot be further edited. An urban layout consists of a complex collection of man-made structures arranged in roads,
parcels, city blocks, and neighborhoods. On the one hand the content can be treated as unstructured images and recently
developed image processing tools can be used to change the images (e.g., [1][2]) or to generate similar imagery synthetically
(e.g., [3]). However, this yields to undesirable results, including deformations and structural discontinuities. On the other hand,
the structure of the urban space can be assumed to be known, in the form of an explicit or procedural model (e.g., [4]), and be
altered by directly changing model parameters. However, knowing all model parameters is challenging and even more so for
large urban spaces. Representing an existing urban layout as a set of procedural rules typically involves significant manual labor.

Our inspiration comes from using the records of parcel boundaries, roads, and other metadata maintained by counties in
digital form (e.g., such as that used by Google Maps) as a starting point for inferring higher-level structure automatically and for
supporting urban layout editing. Moreover, urban spaces exhibit a significant degree of repetition on a global scale and
individuality in local detail. This implies that the general “style” of a city can be extracted at a high-level and the resemblance
between similarly-classified elements of the urban layout can be used to improve the editing and reconfiguration process.

Our approach is to decompose an urban layout into a collection of adjacent tiles, separated by road or parcel boundaries, to
cluster tiles based on their similarity, and to support a variety of editing and reconfiguration tools that minimize the deformation
of the tiles and minimize the distortion of the grid of tiles. The general problem of packing together arbitrary shapes is an NP-
complete problem, but in our work we propose a group of heuristics that enable efficient solutions to this inherently complex
geometric problem as applied to the specific case of the urban layout editing. We support intuitive notions such as stretching an
urban layout to occupy a new space, partitioning and reassembling an urban map, and copying and replacing parts of the map in
one area with parts from other areas. All the while, our system maintains a similarly connected street network and reuses the
existing tiles of the urban layout with minimal or no deformations. We have applied our system to the editing and
reconfiguration of portions of various real world cities as is seen in Figure 1 and show various examples of modifications that are
difficult to achieve by previous techniques such as topology-changing cut and paste operations, moving areas of urban layout,
redesigning roads, etc.

The main contributions of this paper are
• an interactive system for urban layout modification preserving local and global features and the style of the original

layout,
• a constraint system for urban layout editing and reconfiguration, and
• derivation and classification of the high level urban structural information from a set of images and low level structural

data and its application to urban layout editing.

2. Related Work
Our work situates itself between image-processing and procedural modeling and borrows concepts from computational

geometry. Recently, several image processing algorithms have been proposed to enable editing images. For example, Avidan and
Shamir [1] describe a method to resize and retarget images. Fang and Hart [2] propose a technique to re-synthesize image texture
when reshaping a textured portion of an image and reduce unwanted deformations. These methods provide powerful tools for
image editing but are not suitable for images with highly-structured information. An urban layout consists of building contours,
road networks, and local details that cannot be treated the same as a patch of grass or sand. Important boundaries, angular
relationships, and logical connectivity must be maintained and tiles should not be deformed.

Texture and image synthesis provide another group of techniques for image processing. In general, such synthesis algorithms
support creating new image content similar to a provided sample. For example, Zhou et al. [3] provide a method to generate
synthetic terrain following the style of a source image. However, there is no facility to modify the content of the source image;
instead, they propose a mechanism to generate a completely different terrain. Hertzmann et al. [5] use a source image and a color
coding combined with a target color coding to produce an image analogous to the source. They demonstrated rearranged terrain
layouts as well as rearranged urban spaces. Nevertheless, the newly generated urban layouts recombined the patches by treating
them as collections of pixels and used blending to yield new images. Thus, upon closer inspection, it is observed that the
connectivity and close-up detail is not maintained.

Procedural modeling methods have the advantage of exhibiting a high degree of detail amplification; e.g., significant details
can be synthetically generated or modified using only a small number of attributes of rules. However, since a small change in the
parameters can cause massive changes in the resulting model, it is difficult to use these systems and a great experience and
insight is required to provide good results. Nonetheless, procedural techniques have been demonstrated in a variety of contexts
including urban spaces. For instance, one of the first procedural techniques describing 3D city generation is found in [4]. Their
City Engine system takes images of existing areas to generate road maps using L-systems. The road map is then divided into lots
that are filled by buildings provided by another stochastic parametric L-system. More recently, the generation of buildings has
been extended to generating instant architecture [6], to fully procedural modeling of buildings [7], and to a hybrid procedural and
computer-vision approach to generating building facades [8]. The methods for generating urban layouts require either the careful
hand-crafting of a set of procedural rules or significant a priori information about the urban environment. Furthermore, they do
not necessarily reproduce or start-with existing urban layouts. Greuter et al [9] presented a system that is on the boundary
between the texture synthesis and procedural modeling. Their system creates simple procedural cities in real time using

 3

procedural rules, level of detail, and random number generators that are seeded with a unique number that identifies the building.
The look and feel of the generated city is simplistic and the actual style depends on the rules used to generate the buildings. The
challenge for procedural methods is the automatic generation of rules from a given input data. Our system presents a step in this
direction as it derives high-level structural information from a given input data that is reused in the process of urban layout
editing.

Also related to our system are several image and model reconfiguration methods. For example, Aliaga et al. [10] uses
partially annotated images of buildings (analogous to our mapping data input) to edit and reconfigure buildings. This system
takes uncalibrated images of a building, performs a photogrammetric reconstruction with user assistance, and then infers the
parameters for a procedural model of the captured building. Interactive modifications, such as resizing and copy/paste are easily
performed while maintaining the style of the building. Kim and Pellacini [11] introduce an image mosaic algorithm whereby
arbitrary images of objects are composed together to form the final picture also of arbitrary shape. Our approach also has some
similarity with parametric computer-aided-design (CAD) models [12], where an object is defined by a parameterized model
whereby each parameter has a valid range. The set of valid ranges of all parameters defines the potential shapes of the object.
The parameters of the urban layout are the location of the tiles and the width and orientation of the numerous streets. In general,
our work draws inspiration from these papers and takes the concept to urban layouts. We enable similar operations but for much
larger physical spaces and for generally rigid tiles of a functional city. Unlike parametric CAD, our method supports larger
changes by adopting the strategy of joining (or removing) a group of tiles and replacing it with a similar-function tile of larger
(or smaller) size. This provides significant more flexibility. To the contrary of the procedural models, once provided with the
input data, our preprocessing is fully automatic and users are provided with an interactive system.

3. Urban Layout Editing
Our system supports interactively editing an urban layout and visualizing the results. An urban layout of a city is formed by

adjacent tiles (e.g., parcels of land), interconnected by a network of streets, and together forming a collection of neighborhoods.
Our system supports moving (translate, rotate), copying, cutting, and pasting (group of) tiles in order to edit or create a new city
arrangement. In the context of our system, moving implies selecting one or more tiles and displacing them. Tiles that must be
excessively deformed to accommodate the overall changes are automatically replaced with other tiles that better fit in the
deformed space and represent an equivalent urban structure. Copying, cutting, and pasting refer to the process of selecting a
collection of tiles and placing them in another part of the city. The tiles in the source location may be copied or removed while
the tiles in the destination location are replaced with the new ones. After any editing operation, the system attempts to
accommodate the position and orientation of nearby tiles to the changes and maintain a consistent layout.

The input to our system is an array of high-resolution images, a set of lines identifying street layout, and per-tile information.
This information is the same as that used by mapping applications and is available from geographical information systems (GIS).
Each street or parcel boundary is defined by a polyline. In the case of streets, each polyline segment has an associated street
width. For parcel boundaries (i.e., logical land boundaries), the polyline has no width parameter. The collection of intersecting
polylines partitions the plane into adjacent polygons or tiles; a tile fully surrounded by street-polylines corresponds to a “block”

Figure 2. Urban Layout Data. (a) Several mutually
registered aerial views used to create an urban layout. (b)
Underlying geometric configuration of the layout. (c)
Color-coded representation of per-tile zoning
information.

b)

c)

a)

 4

and a tile with at least one street edge corresponds to a “parcel”. Although not strictly enforced, we assume the use of an egress
rule which implies that each tile has direct access to a segment of a street. Figure 2a shows an example urban layout and
Figure 2b contains a diagram of the corresponding interconnected set of tiles, streets, and boundaries. In addition, each tile is
annotated with its zoning classification. Without loss of generality, we choose a zoning classification of residential, commercial,
industrial, park or other. Figure 2c depicts zoning information using color modulation of the tiles.

In order to perform the editing operations, the system performs (1) tile layout management and (2) tile similarity estimation.
The layout management component ensures that the result after editing is a valid and sensible street network and that no tile is
excessively deformed. To help obtain tiles of similar function (and shape), the similarity estimation component places each tile
into one of a set of clusters and then compares tiles within each cluster. For example, houses are grouped together; then similar
houses are further placed into subgroups, etc. In the following two sections we describe these two components in more detail.

4. Layout Management
Our layout management component uses a linear system of constraints that during editing simultaneously attempts to keep

streets unchanged and to minimize the deformation of the tiles. While there are multiple approaches to managing an urban layout
editing process, we focus on supporting the easy editing of an existing layout using only GIS-like data and a minimal user input.
Furthermore, in order to prevent having to generate new and synthetic imagery, we reuse the imagery of the existing overhead
views. This leads us to an approach whereby we must rearrange the original, arbitrarily-shaped tiles, and maintain a
validly-connected and similarly-styled street layout. In order to accommodate changes to the layout, we observe that while the
tiles are desired to be kept mostly rigid, there is some flexibility in the width and relative orientation of the segments of the street
network. Thus, if a particular urban tile is to be inserted into another part of the layout, we accommodate the additional space
needed for the insertion by mildly changing the width and angle of all nearby streets. However, if the required change is too
large, we resort to small deformations of the tiles and eventually to collapsing (or removing) tiles from the layout so as to support
the operation.

4.1 Constraint Solver
Our solver attempts to find a planar transformation for each tile that best accommodates the changes caused by an editing

operation. Internally, the collection of tiles is stored as a connected graph. The nodes of the graph correspond to the tiles.
A graph edge is produced for each pair of tiles that meet at a vertex of a street’s or parcel boundary’s polyline. The graph edges
correspond to the constraints that are used to keep abutting tile corners and abutting sharp street bends exactly touching.
A gap error is defined to be the distance by which corresponding vertices do not overlap. The gap errors for the vertices of
streets are penalized less than those of parcel boundaries because mild changes to the width and/or angle of the streets are
acceptable. This flexibility allows us to re-position all tiles for a given editing operation without deforming them. Nevertheless,
to support larger changes, we optionally use non-rigid transformations as well (e.g., affine). The tile deformation error is the
amount by which a tile must be deformed to fit into the destination location. The constraint solver finds a global solution for the
tiles that minimizes a weighted sum of the gap error and deformation error. Figure 3a depicts the constraint setup.

The linear system of equations capturing constraints for N tiles consists of two major groups of equations. The first group
expresses the desire to keep corresponding tile vertices exactly touching (i.e., a gap error of zero). The second group expresses
the desire to avoid having to deform the tiles (i.e., a deformation error of zero). A single global weighting parameter allows the
user to choose between strict rigid transformations and mild affine deformations. The equations for minimizing gap error are:

() () 0=++−++∑ ∑ ∑ ∑
i k j m

kmkkkijiii dMtcdMtc (1)

Figure 3. Layout Management. (a) We show a set of polylines that partition an aerial image into tiles and a depiction of the
quantities used by the constraint solver; point pij is attempted to be kept the same as point pkm. (b) To demonstrate replace
operations, tile i, located in a zone Z1, is moved to the south. Neighboring tile k is deformed as a result. The system
automatically finds the union of tiles j and l (located in some other zone Z2 of the city) to be a tile that, after a relatively
smaller deformation, better fits the deformed space previously occupied by k.

 5

where dij = pij-ci and dkm = pkm-ck; ci and ck are the centroids of the tiles i and k; pij and pkm are points j and m on the perimeter of
the tile i and k; ti and tk are the unknown tile translation vectors; and Mi, Mk are unknown 2x2 tile transformation matrices. To
setup a linear system of equations, the expression (1) expands to

() () ()
() () () 0

0

,,,,,,11,10,

,,,,,,01,00,

=++++−++

=++++−++

∑∑∑∑

∑∑∑∑

i k j m
yijyiykmykykyijixijiyi

i k j m
xijxixkmxkxkyijixijixi

dcdtcdMdMt

dcdtcdMdMt

. (2)

One way to minimize tile deformation error is to keep the matrices M as close as possible to a 2D orthogonal rotation matrix.
Thus, our system prefers that the matrices M have the general form [a –b; b a] for arbitrary values of a and b. Thus, to minimize
tile deformation error we add the following additional set of equations:

∑ =−
i

ii MM 0)(
1100

; ∑ =+
i

ii MM 0)(
1001

. (3)

These two groups of equations can be written as a system of linear equations in the form Ax=b, where x is constructed as an
array of 6N unknown variables, namely ti,x , ti,y, Mi00, Mi01, Mi10, Mi11. The number of columns of A is 6N and the number of rows
depends on the number of vertices per tile. Since all tiles have at least 3 vertices, there are at least 6N equations from the
equation set (2) and 2N equations from the equation set (3). This yields a typically over-constrained and sparse linear system of
equations that can be efficiently solved.

4.2 Editing Operations
Given the aforementioned graph and constraint system, editing operations amount to changing the graph and re-computing

the transformation of the tiles so as to best satisfy the constraints. In general, editing operations fall into two categories: those
preserving the graph topology and those changing the graph topology. An example of a topology-preserving operation is an
interactive displacement of a set of tiles to a new location. The system adjusts the transformation applied to the nearby tiles so as
to best accommodate the move. Gap error and tile deformation error are minimized by the linear constraint solver. Tiles that
yield an excessively large gap and/or deformation error are attempted to be replaced by other tiles of similar classification (see
next section). Potential replacement tiles are those tiles that are most similar (non-deformed) to the deformed tile. A replacement
is performed only if using the candidate tile results in a solution with lower overall error, as defined by the constraint equations.
This process repeats in an iterative fashion until no more replacement operations can be carried out. Figure 3b shows an example
of a move and replace sequence.

An example of a topology-changing operation is “copy/paste” or “cut/paste” which transfers a part of the urban layout from
one location to another one. In this case, an interactively selected group of tiles is placed at a new location by replacing the most
similar tiles with the selected tiles. The notion of similarity is used to naively find the best mapping between the selected tiles
and the destination tiles. Subsets of these computations are pre-computed and stored in a similarity matrix which helps to
improve the system performance.

5. Similarity Estimation
An important building block for performing the editing operations is the quantification of the tile similarity. This problem is

analogous to the polygon mapping problem (e.g., how to best correspond a n-vertex polygon with another m-vertex polygon). In
the context of an urban layout, two tiles are similar if they serve a similar function in the urban layout and one can be substituted
by another one through only a small geometric distortion. Hence, our system determines similarity in two phases. First, tiles are
grouped into similarity clusters. Each cluster represents a set of tiles of similar function, style, and approximate shape. Second, a
more expensive and accurate metric is used to measure the geometric similarity between tiles of the same cluster. A 2D
similarity matrix is computed to represent the further similarity data between tiles in the same cluster.

To generate the first-level of similarity, we use a weighted k-means clustering algorithm to group tiles into clusters of similar
function and form. The metadata defining a tile includes its zoning classification, construction date, building type and numerous
other characteristics. The general shape is characterized, for instance, by the area, number of vertices, and interior angles of the
tile’s geometry. Without loss of generality, in our system we define a 5-dimensional vector Si=[z,a,n,µ,σ] to represent a tile i,

Figure 4. Similarity Clustering. In the first part of similarity
estimation, tiles can be partitioned into, for example, (a)
clusters mostly-based on the area of the tile, or (b) clusters
mostly-based on tile shape similarity. Subsequently, similarity
between tiles in the same cluster is computed using a
geometric similarity measure. a) b)

 6

where z is the tile’s zone (i.e., industrial, residential, commercial, park, or other), a is the area of the tile, n is its number of
vertices, and µ denotes the mean interior angle and σ is the interior angle’s standard deviation. The number of clusters is
specified by the user as a percentage of the total number of tiles (Figure 4).

To generate the second-level of geometric similarity between two tiles (typically of the same cluster), we iterate through a
subset of all vertex-to-vertex mappings and estimate a similarity value. For each mapping, we compute the best linear
transformation to align the perimeters of the two tiles. The mapping that produces the least tile distortion and smallest perimeter
mismatch is used as an indicator of the similarity between the tiles. To explain our method, we define tile A to contain n vertices
and tile B to contain m vertices, with n≥m. If both tiles have the same number of vertices, then O(n) possible vertex mappings are
tried by sequentially attempting to map the vertices of A to those of B with an offset varying from 0 to n-1. If tile A has more
vertices than tile B, each vertex of A is individually removed and the similarity method is recursively called. While this may
yield a very large number of potential mappings, in practice the difference between the number of vertices of A and B is small.
Furthermore, several trivial-reject heuristics are used to significantly reduce the number of potential mappings: (1) if the removal
of a vertex of A causes the area of the tile to be significantly reduced, that branch of potential mappings is ignored; (2) if the
sequence of vertices around a pair of tiles of the same of number vertices does not match in the type of the vertex (e.g., street or
parcel boundary vertex), the case is ignored.

Our system also finds the similarity between 1-to-many tiles -- this enables comparing, and thus replacing, one tile with
multiple tiles (e.g., a large tile replacing a collection of smaller tiles). This computation is performed by recursively merging the
smaller of the two tiles with an adjacent tile. The similarity estimation is performed analogously on the merged tiles. The
merging process is not performed if the area difference between two tiles is too large and it stops when the merged tile is
sufficiently larger than the other tile.

To choose the best mapping between a pair of tiles A and B, we distort tile A to tile B, estimate a measure of the tile
distortion error edistortion, and compute a difference between perimeter shapes. Tile distortion error is computed as a weighted sum
of undesired shearing, scaling, and change in aspect ratio, namely edistortion = k0escale + k1easpect + k2eshear and

1
)2,min(

)2,max(
scale −

+

+
=

ba

ba
e , ()

() 1
,min
,max

aspect −=
ba
ba

e , ()

()
1

2
,cosmin

2
,cosmax

1

1

shear −
⎟
⎠
⎞

⎜
⎝
⎛ ⋅

⎟
⎠
⎞

⎜
⎝
⎛ ⋅

=
−

−

π

π

ba

ba
e

, (4)

where a is the vector (1,0) transformed by the matrix computed for tile A and similarly b is the vector (0,1) transformed by the
same matrix, and ki are weights for establishing the relative importance of the components of the distortion error. The perimeter
mismatch error, eperimeter, is computed straightforwardly as the summed distance between corresponding tile vertices. The total
similarity error is a weighted sum of the two aforementioned error metrics:

(1-α)edistortion + αeperimeter . (5)
The clustering and tile similarity information can be pre-computed so as to accelerate the performance of the paste and replace
operations during interactive editing. To improve the performance of the move operation, a deformed tile that is desired to be
replaced is compared against a representative from each cluster (e.g., the tile closest to the midpoint of the tile’s description
vector) and then further compared against the members of the cluster of the best-matched representative.

6. Results and Discussion
We have used our system to edit the urban layouts of subsets of several real-world cities. The software system is

implemented in C++. All rendering is done using standard OpenGL, GLUT, and GLUI. To improve performance, our system
makes a one-time simplification of the graph of tiles in order to reduce the number of constraints. Pairs of vertices that are very
near each other are collapsed to one vertex; existing constraints between the affected tiles are merged. In addition, non-corner
edges that are approximately collinear with their surrounding edges are removed as well. The similarity clustering and tile-to-tile
similarity matrix is also pre-computed and stored to disk.

Our four example datasets are Buenos Aires, Istanbul, Madrid, and Paris. Each city consists of 9 to 16 1024x1024 images
obtained from GoogleMaps and arranged in a 2D grid. Table 1 provides additional information about the cities and their layouts.
The preprocessing time for computing tile similarities and tile connectivity information varies from one to three hours for each of
the datasets. The input data can either be parsed automatically from a GIS database/county-office or input manually. In our

City Streets Boundaries Tiles
Buenos Aires 20 440 686

Istanbul 174 1073 2012
Madrid 79 568 802
Paris 33 373 535

Table 1. Information about our example datasets.

 7

prototype system instead of focusing on parsing the mapping files, we used a simple interactive system to specify streets and
parcel boundaries.

We demonstrate topology-preserving operations in Figures 5 and 6. We compare the results of bending the layout using a
common image processing program to the results obtained by using our method. Figure 5a shows a view of the urban space.
Figure 5b shows the result using our linear constraint solver without any tile deformations and Figure 5c shows a similar result
but enabling mild tile deformations. The average gap error in Figure 5c is smaller than in Figure 5b but a small average tile
deformation is introduced. Comparatively, Figure 5d demonstrates an image after naïve mesh warping using Adobe Photoshop
and without considering any structural information; large deformation error is evident. In Figure 6, we show two more examples
of moving operations. In particular, Figures 6a-c depict a sequence of breaking an urban layout into pieces, displacing the pieces
outwards, and reassembling a stretched version of the layout. The stretching of the entire layout has been distributed by
rigid/affine transformations among hundreds of constituting tiles, and thus the size and aspect ratio of each block present only a
very small variation. Figures 6d-f show another example where some parts of a city are rotated around the Place de la
Concorede. Both of these examples are generated interactively and comprise core topology-preserving operations.

Figure 5. Image Comparison. (a) A view of the Buenos Aires layout. (b) Layout deformed using our constraint solver with
rigid and (c) with mild non-rigid transformations. (d) Layout deformed using a standard image processing program.

a)
b)

c) d)

d) e) f)

Figure 6. Topology-preserving operations. (a) An original view of Istanbul, (b) the layout divided into distinct parts, and
(c) reassembled with a stretch. (d) A view of Paris (e-f) with parts of the layout rotated by around the Place de la Concorde.

a) b) c)

 8

The copy/cut and paste operations are depicted in Figure 7. Using the Buenos Aires layout, we replicate an urban structure in
several locations of the layout. For each placement, the constraint system is re-solved yielding a slightly perturbed layout that
accommodates the new tile. Figures 7a-c show the major steps of this operation. Despite placing pieces of different connectivity
and different size into the grid, the system is able to reconfigure the tiles and accommodate the changes. The position and the
orientation of the pasted tile is calculated so that the matching to the tile or set of tiles that it replaces is maximized. Then, the
pasted tile inherits its connectivity from the replaced tiles, and the gap error between the tile and its neighbors is recalculated and
minimized by re-solving the constraint system. The type of transformation used to reduce gap error (rigid or affine) can be
selected by the user.

Figure 8 demonstrates an example that combines multiple operations. Figure 8a shows the original zoning division and street
network of downtown Madrid (top), and a satellite view (bottom). Figure 8b shows two zoomed areas: a curve in “Gran Via”
Avenue (top), and the building of the Museum of the Royal Academy (bottom). Several copy/paste operations are performed.
First, the museum is copied and pasted to a set of tiles in the southeast corner that were initially occupied by residential
buildings. Then, the building of the Spanish Army is copied and pasted to (1) the former location of the museum (Fig. 8d
bottom), and (2) a set of tiles with residential buildings (center of the map). Two specific rotations are then applied to some tiles
in the northwestern corner of the city, aiming to eliminate the curve in “Gran Via” Avenue. Such rotations result in overlapping
tiles with large gap errors. Finally, the constraint system is re-solved for the entire layout and a straightening of “Gran Via” is
obtained (Fig. 8d top). The final result of the sequence of operations is depicted in Figure 8c. The process was completed in
approximately 10-15 minutes (once the source and destination tiles had been identified). Getting similar solution using an image
editor would require experienced user and several hours of editing.

Additional results, high resolution images, and a video demonstrating interaction with our system can be found at the web
page http://www.cs.purdue.edu/cgvlab/projects/urbanlayout.shtml.

7. Conclusions and Future Work
We have presented an efficient system for urban layout editing that effectively exploits low-level structural information such

as the street layout and the parcel shape provided by GIS. We derive high-level structural information, such as tile similarity and

Figure 7. Copy/Cut & Paste. (a) A view of Buenos Aires; (b) the result after performing a paste operation, and (c) after re-
solving the constraint system.

a) b) c)

Figure 8. Combined Example. (a) Zoning and Satellite image of the original layout of Madrid and two different zoomed
areas. (b) Edited layout. Royal Academy building (lower left zoom box) has been moved to a different location in the
southeastern corner of the map, and has been replaced by a copy of the Spanish Army building (lower right zoom box).
Madrid’s Gran Via (upper zoom boxes) has been straightened. Several other tiles have been also copied and relocated.

a) c) b) d)

 9

street connectivity, and use it for efficient urban layout modifications. Our system allows for a wide variety of operations where
pixel-oriented editors fail, such as moving city areas to new locations, topology changing copy and paste, straightening
roads, etc. An efficient constraint solver maintains the deformation of the regions minimal and allows for easy replacement of
parts that do not fit well with other parts that preserve similar style. In this way the visual plausibility of the new city layout is
maintained coherent with the input data.

There are several possible improvements of the system. Our current similarity estimation method has some limitations as
well as the edition of new urban layouts. The method we describe is efficient and accurate when comparing tiles that are
relatively similar, as is common for urban layouts. However, the quantitative result is less stable for large dissimilarities. The
actual bottleneck of the system is calculation of the tile distortion error. An efficient method for this calculation should be
addressed as future improvement. While our system supports multiple operations, the future work should include the full
spectrum of standard editing procedures. These new editing methods would include the functionality to create a completely new
urban layout, to join two or more layouts, to copy an urban layout style, and to change the style of an existing city layout to
visually resemble the style of a different city.

References
[1] S. Avidan, A. Shamir, “Seam Carving for Content-Aware Image Resizing”, Proc. of ACM SIGGRAPH, 26(3), 2007.
[2] H. Fang, J. Hart, “Detail Preserving Shape Deformation in Image Editing”, Proc. of ACM SIGGRAPH, 26(3), 2007.
[3] H. Zhou, J. Sun, G. Turk, J. M. Rehg, "Terrain Synthesis from Digital Elevation Models", IEEE Transactions on
Visualization and Computer Graphics, 13(4), 834-848, 2007.
[4] Y. Parish, and P. Müller, “Procedural Modeling of Cities”, Proc. of ACM SIGGRAPH, 301-308, 2001.
[5] A. Hertzmann, C. Jacobs, N. Oliver, B. Curless, D. Salesin, “Image Analogies”, Proc. of ACM SIGGRAPH, 327-340, 2001.
[6] P. Wonka, M. Wimmer, F. Sillion, and W. Ribarsky, “Instant Architecture”, Proc. of ACM SIGGRAPH, 669-677, 2003.
[7] P. Müller, P. Wonka, S. Haegler, A. Ulmer, and L. Van Gool, “Procedural Modeling of Buildings”, Proc. of ACM
SIGGRAPH, 614-623, 2006.
[8] P. Müller, G. Zeng, P. Wonka, and L. Van Gool, “Image-based Procedural Modeling of Façades”, Proc. of ACM
SIGGRAPH, XX-YY, 2007.
[9] S. Greuter, J. Parker, N. Stewart, and G. Leach, “Real-time Procedural Generation of `Pseudo Infinite' Cities”, Proc. of 1st
International Conference on Computer Graphics and Interactive Techniques in Australasia and South East Asia (GRAPHITE),
87-ff, 2003.
[10] D. Aliaga, P. Rosen, and D. Bekins, “Style Grammars for Interactive Visualization of Architecture”, IEEE Transactions on
Visualization and Computer Graphics, 13(4), 786-797, 2007.
[11] J. Kim and F. Pellacini, “Jigsaw Image Mosaics”, Proc. of ACM SIGGRAPH, 657-664, 2002.
[12] C. Hoffmann and K.-J. Kim, “Towards Valid Parametric CAD Models”, Computer-Aided Design, Vol. 33, 81-90, 2001.

