
Release Notes for
 AIBAR: Angle-Independent Bundle Adjustment Refinement

 Version 1.04

Thank you for using the AIBAR refinement software. This file
contains important information regarding this release. We strongly

recommend that you read the entire document.

CONTENT

Installation 2
Installation & System Requirements…………………………....2
Installation Troubleshooting…………………………………….3

Command-Line Options (Flags) 4

Basic Options…………………………………………………....4
Advanced Options…………………………………………….....5
Compare Functionality…………………………………………..5

*.feat Files 6
 Introduction……………………………………………………...6
 *.feat File Format………………………………………………...6

Explanation of AIBAR and Partitioning Mechanisms

 10
Introduction…………………………….………………………10

Contiguous Partitioning Mechanism………...………………….10
Interleaved Partitioning Mechanism…...……………………….11

Installation
__
INSTALLATION & SYSTEM REQUIREMENTS

SYSTEM REQUIREMENTS

Currently, AIBAR is only configured to run on Win32
architecture and can only be compiled using the Visual C++
6.0 compiler.

INSTALLATION

1. UNZIP
 Unzip the file 'AIBAR_*.zip'. Aside from this text file,
 there is a directory called AIBAR_*. It may be placed
 anywhere.

2. COMPILE
 Move into the AIBAR_* directory. There should be a
 folder named 'pkg' and a makefile. Run 'make'. An
 executable named 'AIBAR' will be generated.

3. RUN
 To run AIBAR from the command line, type

 aibar [options] in_file out_file

 Input and output files are REQUIRED. See the table of
 contents for format specifications.

__
INSTALLATION TROUBLESHOOTING

1. COMPILE-TIME ISSUE: no compiler

 If an error occurs because of a missing 'CL.EXE', the
 Visual C++ 6.0 compiler is probably not in your path. If
 you have the compiler installed, in can probably be
 found in one of the directories

 "C:/Program Files/Microsoft Visual Studio/VC98/Bin"
 or
 "C:/Program Files/Microsoft Visual

 Studio/Common/MSDev98/Bin"

2. RUN-TIME ISSUE: syntax error
 Syntax errors occur because of the format of the input
 file. The syntax demanded of *.feat files is very
 strict, and any significant deviations result in a
 syntax error. For format of *.feat files, please see
 the table of contents.

Command-Line Options (Flags)
__
COMMAND-LINE OPTIONS (FLAGS)

1. BASIC OPTIONS

 -c

INSIDE-LOOKING-OUT IMAGE SEQUENCES,
CONTIGUOUS PARTITIONING

 Cannot be used with -i.

 -i

OUTSIDE-LOOKING-IN IMAGE SEQUENCES,
INTERLEAVED PARTITIONING

 Cannot be used with -c.

 -e NUM
 ERROR or NOISE INTRODUCTION
 Introduces absolute (non-percentage-based) error
 into the best guess 3-D reconstruction provided
 by the user.

2. ADVANCED OPTIONS

 -s NUM
 SIZE of IMAGE GROUPS
 (drives grouping)
 Images will be grouped into groups of NUM size.

 -f NUM
 MAX FEATURES PER GROUP
 (drives grouping)
 Necessitates that at most NUM features
 be associated with each image group.

 This exists simply to prevent one group from
 taking all the features, for if one group uses
 all the features, we still reconstruct 3-d points in
 O(N^2) time, thus partitioning was pointless.

 -l NUM
 MINIMUM FEATURE LIFE
 (for culling)
 NUM of consecutive images in a group that must
 see a feature in order for that feature to be
 associated with that image group.

 -m NUM
 NUMBER OF TIMES TO RUN and MERGE
 (for extra refinement)
 Runs AIBAR once, then doubles the group size and
 runs AIBAR again... a total of NUM times. Used
 for extra refinement of data sets. Default is 1.

3. COMPARE FUNCTIONALITY

 -d TRUTH_FILE FILE_TO_TEST DIFF_FILE

 COMPARE RECONSTRUCTED OBJECTS
 Assuming two input files are of *.feat format and
 contain reconstructed objects (3-D points), the
 difference in location of each 3-D point is output
 to the DIFF_FILE. It is assumed TRUTH_FILE will be
 used as the ground truth
 (so DIFF_FILE = TRUTH_FILE - FILE_TO_TEST)

 Note that by using this flag, the AIBAR executable
 does not do its regular task of refining datasets.
 This is merely extra functionality provided for
 convenience.

*.feat Files
__
INTRODUCTION

How to refine scenes using Angle-Independent Bundle Adjustment
Refinement

Since camera orientation has been removed from our bundle-

adjustment formulation, the only information necessary to refine a
scene is the camera position, the scene points and a best-guess 3-D
reconstruction (and naturally some of the camera’s properties).
Provided below is a description of how to organize this data into a
format digestible by the AIBAR executable.

__
*.FEAT FILE FORMAT

1. Camera Parameters
2. Camera/Viewpoint Locations
3. Features List and Locations
4. 3-D Reconstructions or Objects

Sample *.feat files are available for download online.
In *.feat files, there are four sections, each separated by an empty line.

• Camera Parameters

Format:
 “CameraParameters ” XANGLE YANGLE

-XANGLE and YANGLE are both floats detailing the camera’s
viewing field in x and y direction.

 -It is assumed the camera has focus of length 1.

• Camera/Viewpoint Locations

Format:
“NumViewpoints ” NUMVIEWPOINTS “ FirstFrame ”

FIRSTFRAME
-NUMVIEWPOINTS is the number of camera positions (number of
images)
-FIRSTFRAME is the first camera position seen (usually 0)

 for each viewpoint (so a total of NUMVIEWPOINTS times)
 {
 in one line:
 “position# viewLocX viewLocY viewLocZ
 viewDirX viewDirY viewDirZ

 upDirX upDirY upDirZ”

-'position#' is '0' for the first viewpoint, '1' for the second... 'n-1'
for the nth viewpoint

 }

• Feature List

Format:
“NumFeatures” NUMFEATURES

-NUMFEATURES is the total number of features observed

 for each feature (so a total of NUMFEATURES times)
 {
 “FirstImageID” FIRSTIMAGEID feature#

-firstImageID is the position# of the first viewpoint
location that sees this feature
-‘feature#' is '0' for the first feature, '1' for the second...
'n-1' for the nth feature

 “NumProjections” NUMPROJECTIONS
 for each projection (so a total of NUMPROJECTIONS times)
 {
 X-coord, Y-coord
 }
 }

• 3-D Reconstructions (or objects)

Note: This is necessary for input files.

Format:
“NumObjects” NUMOBJECTS

-NUMOBJECTS is the total number of objects, or
reconstructed 3-D features (NUMOBJECTS should be equal to
the number of features)

 for each object (so a total of NUMOBJECTS times)
 {
 X-coord Y-coord Z-coord object#

- object# is '0' for the first object, '1' for the object... 'n-1' for the
nth feature

 }

PARTITIONING MECHANISMS
__
INTRODUCTION

AIBAR uses a new bundle-adjustment formulation which exhibits
noticeably better numerical behavior at the expense of an
increased computational cost. For instance, regular bundle
adjustment runs in time O(J*N), and AIBAR runs in time
O(J*N^2), where J is the number of images and N is the number
of features.

To alleviate the cost of the 'N^2' above, we break the data
down into several smaller subsets and run AIBAR on those
subsets. For instance, if N=4, then N^2 will be 16, but
doing two groups of N/2 will result in 2^2 + 2^2 = 8, thus
cutting the time in half. In other words, we compensate for
our increased computational time by partitioning features
and images into subsets and running AIBAR on those subsets.

There are two types of partitioning mechanisms in use:
contiguous partitioning (for inside-looking-out sequences)
and interleaved partitioning (for outside-looking-in
sequences. Explanations of each mechanism and the command
line flags it uses are below.

Note: AIBAR uses contiguous partitioning by default.

__
CONTIGUOUS PARTITIONING MECHANISM

In contiguous partitioning, image groups consist of adjacent
images. For instance, if images are grouped into groups of
size 6, the first group would consist of images 0-5, the second
group images 6-11, the third 12-17, etc.

__
INTERLEAVED PARTITIONING MECHANISM

In interleaved partitioning, image groups consist of evenly
spaced images that span the entire original image sequence.
An example might help. If group size is 5 and there are 100
images, then we will have groups like
{1, 21, 41, 61, 81}, {2, 22, 42, 62, 82}, {3, 23, 43, 63, 83}

