
The Image Generalization Visibility Paradigm

withheld for double-blind review

Figure 1: Top: aggressive from-point visibility with quality guarantee: reference image where visible set is computed (left), frame with 17x
zoom factor and 0.26% error rendered from visible set (middle), and frame error visualization (right). Bottom: from-segment visibility: view
segment (left), incorrect frame rendered from the triangles visible from the view segment endpoints (middle), and correct frame rendered from
the visible set computed by our algorithm directly over the entire view segment (right).

Abstract

We extend the visibility computation capability of conventional im-
ages in three ways: (1) by adding sampling locations to sample all
triangles fragments, which guarantees that all triangles with a com-
pletely visible fragment are found, no matter how small their image
footprint; (2) by adding sampling locations based on a visibility
subdivision of the image, which completes the set of visible trian-
gles efficiently; (3) and by generalizing the visibility sample at a
sampling location from 0D to 1D and to 2D, which supports view-
point translations and time changes. We have used the paradigm
to develop a quality-guaranteed aggressive from-point visibility al-
gorithm, an efficient exact from-point visibility algorithm, a from-
segment and a from-rectangle visibility algorithm that are exact un-
der view translation, and an over-time-interval visibility algorithm
that is exact for a constant view. We have tested our visibility al-
gorithms on a variety of complex static and dynamic scenes. Our
paradigm compares favorably to the prior art approaches of sam-
pling the high dimensional space of visibility parameters with con-
ventional images or with individual rays that are defined by sam-
pling locations placed heuristically.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Visible line/surface algorithms.

Keywords: sample-based visibility, continuous visibility, aggres-
sive visibility, exact visibility, visibility in dynamic scenes.

1 Introduction

For complex scenes, the set of triangles visible from a view re-
gion is a small fraction of the total set, and therefore visibility is
a powerful tool for reducing scene complexity. Visibility benefits
virtually all computer graphics applications, including interactive
applications where frame rate is at a premium, applications that re-
quire expensive rendering effects such as reflections, soft shadows,
or motion blur, and applications where clients running on ”thin”
platforms have to render complex scenes hosted on remote servers.

Visibility remains an open research problem despite decades of re-
search. One approach evaluates visibility at a set of image plane
sampling locations; the visible set is computed aggressively, which
means that the set contains only, but not all visible triangles. The
advantage is efficiency. However, prior sample-based visibility al-
gorithms define sampling locations heuristically, and they do not
provide any quality guarantee for the visible set they compute. A
second approach performs a continuous visibility analysis of the
image, subdividing it into regions where a single triangle is visi-
ble. The visibility subdivision provides the exact set that contains
only and all visible triangles. However, prior continuous visibility
algorithms are inefficient as they construct the visibility subdivi-
sion from all triangles, with the hidden triangles being unnecessar-
ily added temporarily to the visibility subdivision.

We present a novel visibility paradigm based on image generaliza-
tion, which combines the advantages and avoids the disadvantages
of the two approaches described above. The paradigm is based on
the observation that a conventional image is a powerful visibility
computation tool: an image is computed efficiently using graphics
hardware, and every image pixel finds a visible triangle. However,
the visible set found by a conventional image is far from complete.
First, triangles can have an arbitrarily small image footprint due
to a high scene complexity, to a large distance to the eye, or to a
grazing viewing angle. In Figure 2 (left), the visible set found by



Figure 2: Left: reference image and image rendered from incom-
plete set of visible triangles found by reference image. Right: sam-
pling locations added (crosses) to sample all fragments.

the reference image of the finely tessellated sphere is incomplete,
which results in severe artifacts when the set is used to render an
image from the same viewpoint but with a slightly different view
direction. Increasing the resolution of the reference image is only
palliative: the image footprint of a visible triangle can be arbitrarily
small, therefore an infinite resolution would be needed to guarantee
that all visible triangles are found. Second, an image can rule a tri-
angle as a visible, but it cannot rule a triangle as hidden. Whereas a
single sample can be sufficient to verify that a triangle is visible, an
infinite number of samples would be needed to verify that a triangle
is hidden at all its points. Third, a conventional image finds visible
triangles from a viewpoint and not from a view region, missing tri-
angles that become visible as the viewpoint translates. Moreover, a
conventional image only computes visibility for a single time point,
missing triangles that becomes visible as time changes. We general-
ize images to remove these shortcomings. Our image generalization
paradigm has three elements.

1. Finding all triangles with a completely visible fragment. A
fragment is defined as the convex polygonal intersection between
a triangle projection and a pixel. Sampling locations are added to
make sure that all fragments are sampled, which guarantees finding
all triangles with a completely visible fragment, and which in turn
guarantees finding all triangles of a front surface, no matter how
small their footprint. For our sphere example, sampling all frag-
ments finds all visible triangles at the cost of exactly one sampling
location per fragment (Figure 2, right). Sampling locations are not
added heuristically but rather deterministically, based on the scene
geometry and on the pixel grid, to compute efficiently a quality-
guaranteed aggressive visible set.

2. Finding all visible triangles. Sampling all fragments does not
guarantee finding all visible triangles since a partially visible frag-
ment might be sampled at a point where the fragment is hidden.
Starting from the aggressive visible set, sampling locations are
added iteratively to determine the visibility of triangles that are not
hidden by the known visible triangles. The algorithm computes and
updates a visibility subdivision of the image based on the current set
of visible triangles. No hidden triangle is ever added to the visibility
subdivision. Because the starting set is almost complete, the visible
set converges quickly to the exact set.

3. Finding all triangles visible at a sampling location. When the
viewpoint translates or when time changes in a dynamic scene, mul-
tiple triangles can be visible at a given image plane sampling loca-
tion. We generalize the visibility sample captured by the sampling
location from 0D to 1D, for computing visibility directly from a
view segment or over a time interval, and to 2D, for computing
visibility directly from a view rectangle. The sampling location
does not sample the space of visibility parameters exhaustively. The
visibility changes are computed directly by solving visibility event
equations, which guarantees the quality of the visibility solution,
and which provides computation and storage efficiency.

Figure 3: Over-time-interval visibility in a dynamic scene: frame
rendered from the particles visible at the time interval endpoints,
with missing particles shown in red (left), and correct frame ren-
dered from the visible particles computed by our algorithm directly
over the entire time interval (right).

We have used the image generalization paradigm to develop four
visibility algorithms. The first one is a quality-guaranteed aggres-
sive from-point visibility algorithm. In Figure 1, the algorithm
computes the correct visibility over 99.93% of the reference image.
The aggressive set yields high quality frames even under substan-
tial magnification of the reference image. The few incorrect pixels
are at surface boundaries, and never inside visible surfaces, so the
frames are virtually indistinguishable from truth. The second algo-
rithm computes exact from-point visibility. The algorithm extends
the aggressive set from Figure 1 to the exact set in three iterations.

The third algorithm is an aggressive from-segment visibility algo-
rithm that is exact under view translation. The algorithm computes
the visible set directly over the entire view segment by computing
visibility exactly for each sampling location. A sampling location
stores a 1D visibility sample that records all triangles visible as the
viewpoint translates. When the view translates (and does not rotate
or change focal length), the sampling locations do not change, and
the visible set is exact. In Figure 1, bottom, rendering an interme-
diate frame from the triangles visible at the endpoints of the view
segment results in severe visibility artifacts, and the correct frame is
obtained when using our algorithm. The same algorithm computes
visibility over a time interval in a dynamic scene (Figure 3). The
fourth algorithm computes visibility directly over a view rectangle,
and the algorithm is exact under view translation (Figure 4).

Visibility is computed for a scene by subdividing the viewing vol-
ume into box-like cells, and the viewing time into intervals. A con-
ventional image does not compute visibility adequately even for a
single viewpoint and a single time point. Approximating from-cell
and over-time visibility requires a large number of conventional
images to sample the six-dimensional space of visibility parame-
ters (two view direction rotations, three viewpoint translations, and
time). Our paradigm increases the visibility computation power of
images. Image generalization for exact from-point visibility alone
reduces the dimensionality of the parameter space to four by elim-
inating the two view rotations; over-time-interval visibility elim-
inates the time parameter; from-rectangle eliminates two transla-
tions. From-cell visibility is approximated by aggregating the vis-
ible sets for the eight corners, the twelve edges, or the six faces of
the cell. The more powerful the underlying image generalization,
the more complete the resulting visible set, and the coarser the re-
quired subdivision of the viewing volume and time. We also refer
the reader to the accompanying video.



Figure 4: From-rectangle visibility: error visualization for a frame
rendered from the triangles visible from the view rectangle corners
(top), and correct frame rendered from the visible set computed by
our algorithm directly over the entire view rectangle (bottom).

2 Prior Work

Visibility algorithms are classified based on the visible set they
compute. Conservative visibility algorithms overestimate visibility,
such that no visible triangle is omitted. The benefit is an accurate
image, but the number of hidden triangles unnecessarily included
in the solution can be substantial [Cohen-Or et al. 2003; Durand
2010]. Aggressive visibility algorithms underestimate the set of vis-
ible triangles, which leads to image errors. The goal of aggressive
visibility research is to reduce and control the error [Nirenstein and
Blake 2004; Wonka et al. 2006]. Exact visibility algorithms find
only and all visible triangles, which avoids the cost of rendering
unnecessary triangles as well as any image error.

Aggressive Visibility. We distinguish between probing visibility by
casting individual rays, and by rendering entire images. Algorithms
in the first category use heuristics to shoot rays that are likely to find
visible triangles, and subsequent sampling is guided by what the
initial rays find e.g. [Wonka et al. 2006; Bittner et al. 2009]. The
advantage is the flexibility to cast precisely the rays deemed neces-
sary, which limits sampling redundancy. However, it is difficult to
place error bounds on the results. Moreover, casting individual rays
can only be done efficiently with a hierarchical scene subdivision,
which is difficult to extend to dynamic scenes.

Algorithms in the second category leverage the fact that the amor-
tized cost of rays in an image is lower than that of individual rays.
Our aggressive visibility algorithms fall in this category. An im-
age only captures samples visible from its viewpoint. One option is
to use images from additional viewpoints [McMillan and Bishop
1995], which are highly redundant, or to eliminate redundancy as a
pre-process [Max and Ohsaki 1995; Shade et al. 1998]. The chal-
lenge of these approaches is to decide which images are needed for
a sufficient sampling of the visibility parameter space. The usual
strategy is to sample uniformly ”as densely as possible”, and thus
the visibility error is not bounded. Multiperspective images capture

in a single shot more than what is visible from a single viewpoint
through innovation at the camera model level [Yu and McMillan
2004; Cui et al. 2010], but there is no quality guarantee on the visi-
ble set they gather.

Specialized visibility algorithms have been developed for many
computer graphics contexts. The algorithms are typically aggres-
sive, focusing on finding the visible triangles of highest relevance
in the particular context. The semi-analytical visibility algorithm
[Gribel et al. 2011], developed for motion blur, samples the image
with lines as opposed to points, an idea from temporal antialias-
ing [Jones and Perry 2000]. Visibility is analyzed continuously
over time for each line sample. The algorithm is aggressive be-
cause the analysis is restricted to lines in the image. Line samples
are a brute force approach for improving uniform point sampling.
The line parameter adds an expensive second dimension to the 1D
motion blur visibility problem. The line sample pattern is fixed, so
even after solving the higher-dimension visibility problem, there is
still no guarantee for the quality of the solution. We propose deter-
ministic point sampling that guarantees a quality visible set without
increasing the visibility problem dimensionality.

Exact Visibility. Early work focuses on from-point visibility for
antialiasing. The solution was to compute a visibility partition
for each pixel, defined by the triangle fragments visible at each
pixel [Carpenter 1984; Catmull 1978; Weiler and Atherton 1977].
The solution is inefficient because fragments of hidden triangles
are added and then removed from the visibility partitions. Pixel-
free from-point visibility algorithms are also inefficient because oc-
cluded intersections are computed (e.g. [Goodrich 1992]); typical
running times are O((n+k) logn) or O(n logn+k+ t) for n tri-
angles with k edge intersections and t triangle intersections on the
image plane. Output sensitive algorithms are restricted to special
input [Katz et al. 1992; Sharir and Overmars 1992]. From-point
visibility was implemented on the GPU [Auzinger et al. 2013], but
the quadratic running time limits applicability to simple scenes.

Beam tracing [Heckbert and Hanrahan 1984] analyzes visibility in
3D by partitioning the 2D space of rays defined by the viewpoint
using conical or frustum-like beams. The unsampled gaps between
rays are avoided, but beam-triangle intersection is costly. Beam-
tracing has recently been used for shadow [Apostu et al. 2012;
Chandak et al. 2008] and sound [Overbeck et al. 2007] rendering,
using acceleration schemes based on adaptive beam splitting. Our
paradigm bypasses the need for beams in from-point visibility: the
beam is replaced with the smallest number of rays needed to cap-
ture the visible triangles over a solid angle. Moreover, we do not
trace multi-dimensional rays but rather evaluate visibility over their
sampling domain by projection.

One strategy for from-rectangle visibility is to decompose the 4D
non-Euclidean space of lines in the dataset according to visibility
criteria. A complete model with O(n4) complexity and output sen-
sitive construction is yet to be practical [Durand et al. 2002]. An-
other strategy is to compute visibility between pairs of polygons
[Haumont et al. 2005; Mora and Aveneau 2005; Charneau et al.
2007], using constructive solid geometry in the 5D ambient space
of the Plucker coordinate representation of lines. The algorithms
have high computational complexity and are not output sensitive.

Conservative Visibility algorithms are exact algorithms that run on
a visibility problem that was conservatively simplified, e.g. through
extended projections [Durand et al. 2000], or occluder erosion
[Décoret et al. 2003]. Our aggressive visibility algorithms produce
a visible set that is almost complete, so adding to the set all tri-
angles not hidden by the aggressive set yields a good conservative
visible set (i.e. with only a small number of hidden triangles). Per-
frame occlusion culling improves rendering performance by batch



discarding triangles that are hidden in the current output frame [Bit-
tner et al. 2004]. Triangles are grouped inside containers with sim-
ple geometry, the containers are rendered on a partial z-buffer of the
output frame obtained from known big blockers, and the triangles
of hidden containers are discarded. Occlusion culling methods can
also be aggresive by fusing blockers [Zhang et al. 1997]. Grouping
occluded and occluding geometry is heuristic, and it is particularly
challenging in the case of dynamic scenes.

Irregular Framebuffers. Our paradigm advocates abandoning the
uniform sampling of conventional images in favor of adding sam-
pling locations deterministically to guarantee that all visible trian-
gles are found. The benefits of irregular framebuffers have been
noted before in contexts that include: pixel-accurate shadow map-
ping [Johnson et al. 2005], where the shadow map estimates light
visibility precisely at the point samples captured by the output im-
age; point-based rendering [Popescu et al. 2000], where projected
reference image samples are not clamped to the output image pixel
grid but rather located precisely within the output image pixel using
a pair of offsets; and focus plus context visualization where focus
regions are sampled at a higher rate [Furnas 1986].

3 From-Point Visibility

We have developed two from-point visibility algorithms based on
our image generalization visibility paradigm: one aggressive, with
a quality guarantee, and one exact.

3.1 Aggressive

The input to the algorithm is a viewpoint o, a conventional pixel
grid that defines the reference image where visibility is computed,
and a set of triangles. The output is a set of triangles visible from
o that is guaranteed to contain all triangles with a fragment that
is completely visible from o. This includes all triangles of a front
surface, no matter their footprint. The algorithm has three steps.

Figure 5: Quality-guaranteed aggressive from-point visibility.

Step 1 computes the triangles that are visible at the pixel centers us-
ing a conventional rendering pass. In Figure 5, the centers of pixels
0-3 are indicated with dots. The conventional image rendered finds
triangles a and c, but not b, even though b is completely visible.

Step 2 takes a second pass over the scene triangles adding sampling
locations to sample all fragments. A fragment f that does not al-
ready contain a sampling location generates a sampling location at
its centroid cf , unless the triangle of f is hidden at cf by the trian-
gle found at step 1. In Figure 5, a generates one and b four sampling
locations (crosses); d generates no sampling locations because its
fragments in pixels 1 and 2 contain sampling locations that were
added for b, and because d is hidden by a at the centroid of its
fragment in pixel 0.

Step 3 takes a third pass over the scene to find the triangles visible
at each sampling location. Triangle projection proceeds as usual.
Rasterization has to take into account that a pixel can have more
than one sampling location. This implies that all pixels touched by

the projection of a triangle have to be considered, and not just those
whose centers are inside the projection. Furthermore, rasterization
parameters (e.g. z, edge equation sidedness expressions) have to be
evaluated for each sampling location of each pixel.

A sampling location is useful only if it reveals that its triangle is
visible at that point. If the triangle is not visible at the sampling
location, one cannot rule the triangle as hidden, and the sampling
location is wasted. Step 1 computes a preliminary set of visible
triangles efficiently, then step 2 avoids creating sampling locations
that are already known not to be useful based on the preliminary
set. If a pixel is completely covered by a visible triangle, the pixel
will have only its initial sampling location at its center; the visible
triangle is found at step 1, and all candidate sampling locations are
discarded by the triangle at step 2. In our experiments, the number
of sampling locations was linear in the number of visible fragments.

3.2 Exact

Algorithm 1: Exact from-point visibility
input : scene S, viewpoint o, aggressive visible set V0;
output: exact set of visible triangles V ;

1: Construct initial visibility subdivision V S from V0;
2: Initialize V = V0, U = S − V0;
3: while U is not empty do
4: Remove all sampling locations;
5: for all triangles t in U do
6: if t is hidden by V S then
7: remove t from U ;
8: else
9: add sampling locations for t

10: end if
11: end for
12: Render all triangles remaining in U ;
13: Collect newly found visible triangles Vi;
14: UpdateV S with Vi; U = U − Vi; V = V + Vi;
15: end while

We have developed an efficient algorithm that extends the aggres-
sive visible set iteratively to the exact set (Algorithm 1). The al-
gorithm first constructs an initial visibility subdivision V S of the
image from the aggressive visible set V0 received as input (1). V S
has polygonal regions where one or no triangles are visible. The
region boundaries are the visible portions of the projected triangle
edges. Figure 6 illustrates the construction of a visibility subdi-
vision. The visible set V is initialized to V0 and all other scene
triangles are added to the set of undecided triangles U (2). Then
the algorithm iterates until there are no more undecided triangles
(3-15). For each iteration, the algorithm first removes the sampling
locations generated by the previous iteration (4), and then it pro-
cesses the undecided triangles (5-11).

b

c
a

b

c
a

b
a

c
q

p

a

b

c

(1) (2) (3) (4)

Figure 6: Triangle a partially occluding b (1), and visibility sub-
division before (2), during (3) and after (4) adding a.

If an undecided triangle t is hidden by the visibility subdivision, t is
removed from further consideration. If t is not hidden in a visibility
subdivision region r, the algorithm creates sampling locations at



the vertices of t that project in r, at the vertices of r inside the
projection of t, and at the intersection points of the edges of r and
the projected edges of t. In Figure 7.1, t is hidden in regions r3 and
r4, but not in r1 and r2, and six sampling locations are created.

r

r

1

2
r

3

t

r
4

s

u

v
t t

(1) (2) (3)

Figure 7: (1) six sampling locations, shown with dots, created for
undecided triangle t at first iteration (1), triangles s, u, and v vis-
ible at those sampling locations (2), and eight sampling locations
created for t at second iteration (3).

After all undecided triangles are processed, the remaining unde-
cided triangles are rendered over the new sampling locations they
have generated (12), a step identical to step 3 of the aggressive al-
gorithm. The visible triangles found by the sampling locations are
used to update the visibility subdivision, they are removed from the
undecided set, and they are added to the visible set (14).

The algorithm is fast because the initial visible set is almost com-
plete and most remaining triangles are hidden by the initial visibil-
ity subdivision. The visibility subdivision is built exclusively from
visible triangles. Figure 7 illustrates an unlikely scenario where a
triangle remains undecided after an iteration: all sampling locations
created for t are won by other undecided triangles and more sam-
pling locations are needed to decided t. In our experiments, the
algorithm converged in three iterations or less, for scenes with tens
of millions of triangles and with complex occlusion patterns.

4 From-Segment Visibility

We have developed an algorithm that computes visibility from a
view segment directly. The input to the algorithm is a scene mod-
eled with triangles, a view, and a view segment. The output is an
aggressive approximation of the set of triangles visible from points
on the view segment, with the following quality guarantees:

1. The visible set contains all triangles t that have a fragment f
at a pixel p that is completely visible from any viewpoint on the
segment from where f exists (i.e. the projection of t touches p).
Like before, this guarantees that all triangles of a front surface are
captured, no matter how small their footprint.

2. The visible set contains all triangles visible at the pixel cen-
ters as the view translates from one segment endpoint to the other.
This makes the algorithm exact under view translation. As the view
translates along the view segment, the visible set produces correct
frames from any intermediate viewpoint.

The algorithm has two stages. In the first stage, sampling locations
are added to sample all triangle fragments. This is done like before
by computing the image footprint of the triangle, by computing its
fragments, and by adding a sampling location at the centroid of a
fragment that does not already contain one. The only difference
is that now the footprint of the triangle is the union of all triangle
projections as the view translates. We use a fast, tight, and con-
servative approximation of the triangle footprint as the convex hull
of the six extremal vertex projections. In Figure 8 the projection
of the triangle moves from a0b0c0 to a1b1c1, and the convex hull
a0b0c0a1b1c1 has six fragments, each with one sampling location.

The second stage uses the third element of our visibility paradigm

Figure 8: Triangle footprint as the view translates.

to find all triangles that are visible at each sampling location, as
the view translates. The translation along the view segment de-
fines a one-parameter visibility change. The visibility sample of a
sampling location is generalized from 0D to 1D to store a list of
visibility intervals that define which triangle is visible at the sam-
pling location and for which view sub-segment. The algorithm for
the second stage takes a pass over the scene triangles. For each tri-
angle t, the footprint of t is approximated as described at stage 1,
and then the visibility sample is updated for each sampling location
inside the triangle footprint.

Figure 9: Left: triangles d and e move over a sampling location
(cross). Right: visibility intervals at the sampling location.

In Figure 9, left, two triangle projections e and d move over a sam-
pling location as the viewpoint translates along the view segment.
The translation is linear with parameter t. The graph (right) shows
the depths z from the viewpoint to the triangles, at the sampling
location, as the viewpoint translates. The visibility intervals stored
are shown on the abscissa. Initially the visibility sample of the sam-
pling location is empty. After d is processed, there is one visibility
interval [t0, ts] for d. After e is processed, there are three visibility
intervals: [t0, tq] for d, [tq, tr] for e, and [tr, ts] for d.

Visibility changes at a sampling location when a moving projected
triangle edge crosses the sampling location. Given two triangle ver-
tices a and b and a sampling location s with image plane coordi-
nates (us, vs), we derive the condition that the projection of trian-
gle edge ab contains s. The coordinates (ua, va) of the projection
of a are computed by writing a as a 3D point on the ray through
(ua, va) at w from viewpoint v0:

a = v0 +M

ua

vb
1

w,

ua

vb
1

w = M−1(a− v0) (1)

ua =
m0 · (a− v0)

m2 · (a− v0)
, va =

m1 · (a− v0)

m2 · (a− v0)
(2)

where M is the camera matrix, and the rows of M−1 are mi. s is
on the projection of ab if:

us − ua

us − ub
=

vs − va
vs − vb

(3)

By plugging in ua and va from Eq. 1 into Eq. 4, we obtain:

(usm2 −m0)(a− v0)

(usm2 −m0)(b− v0)
=

(vsm2 −m1)(a− v0)

(vsm2 −m1)(b− v0)
(4)



We target all possible view directions by running all visibility algo-
rithms for each of the six faces of a cube map aligned with the world
coordinate system. Consequently M is constant. Since mi, vs, us,
a and b are constant, and since v0 is linear in t, Eq. 4 is quadratic
in t. Eq. 4 is solved for each of the three edges of the triangle, the
solutions in [t0, t1] are kept and sorted to define the visibility inter-
vals of the current triangle, and the visibility intervals are z-buffered
with the previous visibility intervals at the sampling location. The
depth z from v0 to the intersection of a triangle abc and camera ray
rs through s is given by:

z =
(a− v0) · n

rs · n
, n = (b− a)× (c− a) (5)

Since a, b, c, n, and rs are constant, and since v0 is linear in t, z is
linear in t. For scenes where triangles do not intersect, z-buffering
two overlapping visibility intervals is simply done by evaluating
the two depth functions at a t inside the overlap. When triangles
could intersect, the possible intersection between two triangles is
found by solving the quadratic equation that results from setting
their z’s (Eq. 5) to be equal at the sampling location. The algorithm
is exact per sampling location, where visibility is analyzed continu-
ously over the view segment. Since the pixel centers are part of the
sampling locations, the visible set contains all triangles visible at
pixel centers as the view translates. View rotations and focal length
changes modify the sampling locations defined by the view rays,
therefore the algorithm is exact only under view translation.

5 Over-Time-Interval Visibility

The from-segment visibility algorithm can be used to compute the
triangles visible over a time interval in a dynamic scene. The input
is a dynamic scene modeled with triangles whose vertices move
linearly over a time interval [t0, t1], and a view V . The output is
the set of triangles visible at the pixels of V at any time in [t0, t1].
The visible set is exact for view V .

Eq. 4 used to compute the visibility events remains a quadratic in
t, as now vertices a, b, and c are linear in t and v0 is constant.
Eq. 5 used to z-buffer the overlapping visibility intervals of two
triangles is now a cubic in t over a quadratic in t, as n is quadratic
in t. For applications where moving triangles do not intersect, such
as for the finite element analysis (FEA) and the smoothed particle
hydrodynamics (SPH) simulation applications used as examples in
this paper, the depth functions are trivially evaluated to arbitrate
between the two triangles. When triangles intersect, depth function
equality results in an order five equation in t, which would have to
be solved numerically.

The visible set is exact for the given view V because visibility is
computed exactly for each sampling location, including the pixel
centers of V . Visibility at a sampling location is computed contin-
uously over the time interval by solving visibility event equations.
The algorithm computes not only what triangles are visible at each
sampling location for [t0, t1], but also what triangle is visible when,
which provides perfect occlusion culling for any t in [t0, t1].

6 From-Rectangle Visibility

We have used all three elements of our visibility paradigm to de-
velop an algorithm for computing visibility directly over a view
rectangle. The input to the algorithm is a scene modeled with tri-
angles, a view, and a view rectangle. The output is an aggressive
set of triangles visible from the view rectangle. The visible set pro-
vides the same guarantees as before: the set contains all triangles
that have a completely visible fragment, and the algorithm is exact

under view translation. The algorithm has two stages, similarly to
the from-segment algorithm (Section 4).

In stage 1, sampling locations are added to a conventional image to
ensure that all triangle fragments are sampled. The triangle foot-
print is approximated with the convex hull of the twelve extremal
projections of the triangle vertices (i.e. one for each of the four
corners of the view rectangle, for each of three vertices).

In stage 2 visibility is computed exactly for each sampling location
with another pass over the scene triangles. For each triangle, the
footprint is approximated as described for stage one, and the vis-
ibility samples of the sampling locations covered by the footprint
are updated. The viewpoint translation inside the view rectangle
is described with two parameters v and t. Like before, visibility
changes when a projected triangle edge crosses the sampling loca-
tion. These visibility events are defined by lines in the 2D visibility
parameter space (v, t). The three edges of a triangle define three
visibility event lines, which define a triangle in (v, t). The triangle
projection moving with two degrees of freedom in the image plane
corresponds to a (static) triangle in the (v, t) plane. This can also
be thought of as an orthographic projection of the scene triangle
with the set of parallel rays obtained by translating the sampling
location ray with two degrees of freedom. We solve visibility ex-
actly for each sampling location, by running our exact from-point
visibility algorithm (Section 3.2) in the (v, t) plane.

The table in Figure 10 (left) shows two triangle projections that
move over a sampling location s as the viewpoint translates over
a view rectangle. The 3D graph (right) shows the depth z at the
sampling location as a planar function of the two translations, for
each triangle. The (v, t) plane (bottom of graph) shows the 2D
visibility sample stored at the sampling location.

Figure 10: . Left: two triangles projections moving over sampling
location s as the view translates over a view rectangle [v0, v1] ×
[t0, t1]. Right: z planes of the two triangles as they move over the
sampling location, and 2D visibility sample in the (v, t) plane.

7 Spherical Particles as Visibility Primitives

We have described our visibility algorithms for scenes modeled
with triangles. The algorithms support any geometric primitive
that can be tessellated. We have extended our from-point, from-
segment, and over-time-interval visibility algorithms to support
spherical particles directly, without the cost of increasing the num-
ber of primitives through tessellation. The extension has to solve
three problems: (1) deciding whether a particle covers a sampling
location, which is done in 3D by checking whether the distance d
from the particle center to the sampling location ray is less than or
equal to the particle radius r; (2) finding the visibility parameter
values (translation or time) when a visibility event occurs, which
is done by solving a quadratic equation that results from setting d
equal to r, and (3) finding the centroid of a particle ”fragment”,
which is the projection of the particle center if the projection is in-



side the pixel, or else the average of the intersection points between
the pixel frame and the particle projection.

8 Results and Discussion

We have tested our visibility algorithms on a variety of scenes:
Manhattan (4.0Mtris, Figure 4), Grass (55Mtris, Figure 1), Forest
(47Mtris, Figure 1), Isosurface (500Mtris, Figure 11), Water (2.1M
spherical particles over 80 states, Figure 3), Impact (2Mtris over
134 states, Figure 11), Fusion (500K spherical particles over 100
states, Figure 11). We organize the presentation and discussion of
our results in four subsections: quality, efficiency, comparison to
prior art methods, and limitations.

Figure 11: Isosurface, Impact, and Fusion scenes.

8.1 Quality

From-point visibility. The quality of the visibility solution com-
puted by our aggressive from-point visibility algorithm is summa-
rized in the top three rows of Table 1. Visibility completeness (row
1) is defined as the percentage of image area for which visibility is
fully resolved by the aggressive set. Let S∗ and S be the visibility
subdivisions of the image induced by the aggressive and exact sets.
Then visibility completeness is computed as the sum of the areas of
the regions in S for which S∗ provides the correct visible triangle.
As seen from the table, the aggressive visible set all but completes
the visibility subdivision of the image.

Table 1: Quality and efficiency of from-point visibility algorithms.

Manhattan Grass Forest Isosurface Water
1. Completeness 99.9% 99.9% 98.1% 99.7% N/A
2. Frame err. (avg) 0.03% 0.11% 2.11% 0.27% 0.09%
3. Frame err. (max) 0.08% 0.20% 3.0% 0.61% 0.13%
4. S.L. / pix (avg) 1.6 5.7 24 209 2.0
5. S.L. / pix (max) 57 1,490 1,245 1,670 27
6. Time A [s] 31 31 347 8,008 8.1

7. Iterations 2 3 3 3 N/A
8. Time E [s] 5.8 22 1,078 146 N/A

We have also estimated the quality of the algorithm by measuring
the average and maximum per frame percentages of incorrect pixels
over typical paths with thousands of frames. Both the reference
image and the output frames have a resolution of 1, 280×720. The
errors are small, even though the paths include zooming in. The
maximum zoom-in factors for the Manhattan, Grass, and Forest
paths were 7×, 17×, and 10×. The errors only occur in between
surfaces, which makes them less noticeable.

The exact from-point visibility algorithm supports rendering cor-
rect frames with any view direction and any zoom factor. We have
developed a robust implementation of the algorithm based on a per-
turbation technique that evaluates control logic predicates correctly
and without special handling of individual types of degeneracies
[Sacks and Milenkovic 2014]. We start by perturbing the triangle
vertex coordinates by an amount that is negligible in terms of vis-
ibility solution but sufficient to avoid degeneracies (i.e. 10−8% of
the diameter of the scene). We evaluate predicates with floating

point interval arithmetic, which provides an interval that contains
the true value of the predicate. The sign of the predicate is deter-
mined unless the interval contains zero. We resolve such ambiguous
cases by increasing the precision of the interval arithmetic, and thus
shrinking the interval, until zero is excluded. The extended preci-
sion arithmetic is implemented with the MPFR library [Fousse et al.
2007]. Although it is costly, ambiguity is rare due to perturbation,
so the overall efficiency is high.

1D visibility. We solve from-segment visibility and over-time-
interval visibility with an algorithm that computes 1D visibility
samples directly over the entire visibility parameter domain (i.e.
translation or time). The algorithm computes visibility exactly for
each sampling location, by z-buffering visibility intervals. The re-
sulting visible set is therefore exact when the sampling locations do
not change, as is the case when the view translates along the seg-
ment for from-segment visibility, or when the view does not change
for over-time-interval visibility. Table 2 gives the error if instead of
using our 1D visibility algorithm one approximates the visible set
by unioning the two visible sets computed for the endpoints of the
visibility parameter domain (i.e. view segment or time interval).
The error is given as the average and maximum percentage of in-
correct pixels per frame over a sequence of 1,000 frames uniformly
sampling the visibility parameter domain.

Table 2: Incorrect pixels when using union of endpoint visible sets.
Our 1D visibility algorithm is exact in these cases.

From segment endpoints From time interval endpoints
Forest Grass Manhattan Impact Water Fusion

Avg. 26% 46% 2.5% 0.093% 0.17% 0.66%
Max. 34% 50% 5.2% 0.34% 0.35% 0.91%

The from-segment algorithm supports any segment length. The
longer the segment, the bigger the benefit of the algorithm com-
pared to simply computing visibility at the segment endpoints, but
also the less efficient the algorithm becomes as discussed below.
The over-time-interval algorithm is run for time intervals that are
short enough for the motion of triangle vertices to be approximately
linear over the interval. The scenes used here were animated by
numerical simulation codes that define these intervals implicitly in
between simulation states.

From-rectangle visibility. Table 3 reports the quality of the visible
set computed by our from-rectangle visibility algorithm. The scene
is Manhattan and the output resolution is 1, 280 × 720. The
algorithm is compared to running the exact from-point algorithm
from the corners of the view rectangle and unioning the resulting
four visible sets. The error is given as the average and maximum
number of incorrect pixels over two paths of 10,000 frames each,
which sample the view rectangle. For the first path the view only
translates, and for the second path the view translates and rotates.
The view-rectangle algorithm is exact under view translation and
it has substantially smaller errors than the four-corners algorithm
when the view also rotates.

Table 3: Quality of from-rectangle visibility algorithm.

From-rectangle From rectangle corners
Avg. Max. Avg. Max.

Tanslation only 0 0 202 362
Translation + rotation 0.01 1 274 948

8.2 Efficiency

The efficiency of our aggressive from-point visibility algorithm is
summarized in rows 4-6 of Table 1. The number of sampling loca-



tions per pixel (rows 4-5) depends on the average image footprint
of the triangles, and on the presence of large blockers, and there-
fore it is small for scenes like Manhattan and large for scenes
like Isosurface. The running times (row 6) were measured for a
serial implementation on a 3.16GHz X5460 Intel workstation, and
are all below 6min except for Isosurface where the average number
of sampling locations per pixel is 209.

The efficiency of our exact from-point visibility algorithm is sum-
marized in rows 7-8 of Table 1. The algorithm converges in at most
three iterations (row 7), even for the Grass and Forest scenes which
have tens of millions of triangles and complex occlusion patterns.
The sampling locations generated based on the visibility subdivi-
sion (Figure 7) are very likely to resolve the visibility of an un-
decided triangle t by verifying that t is visible or by finding the
triangle that occludes t. The running time (Time E, row 8) does
not include the time for computing the starting aggressive visible
set (Time A), and it was measured for a parallel implementation ex-
ecuted on 32 2.27GHz X7560 Intel cores. The algorithm is paral-
lelized by subdividing the 1, 280×720 reference image into 16×16
tiles, and by assigning the tiles to cores in round robin fashion.

The running times of our from-segment and our over-time-interval
visibility algorithms are given in Table 4. For the over-time-interval
algorithm the times given are the sum of all times over all intervals
(i.e. 134, 80, and 100 intervals for the Impact, Water, and Fusion
scenes). The times were measured for a parallel implementation
that tiles the reference image, run on 4 3.16GHz X5460 Intel cores.
Interval z-buffering uses a binary search tree and has an O(n logn)
running time for a sampling location with n intervals.

Table 4: Running times in minutes for our 1D visibility algorithm.

From-segment Over-time-interval
Forest Grass Manhattan Impact Water Fusion

Time 34 120 20 34 12 75

The running time of our from-rectangle visibility algorithm was 23h
for the Manhattan scene for a parallel implementation that tiles the
reference image, run on 20 2.53GHz E5649 Intel cores.

8.3 Comparison to Prior Art Methods

We compare the visibility computation capability of our image gen-
eralization paradigm to two prior art approaches.

The first prior art approach is the use of conventional images to
aggregate an approximate visibility solution by uniformly sampling
the high-dimensional space of visibility parameters. We compared
our from-point visibility algorithms to computing visibility with a
conventional image of ultra-high resolution, i.e. 32 × 1, 280 ×
32 × 720. This corresponds to a 32 × 32 uniform supersampling
of the reference image used by our visibility algorithms. Even at
the prohibitive cost of 1,024 samples per pixel, the conventional
image fails to find all visible triangles: the average pixel errors for
the cases used in Table 1 are 0.015%, 0.0078%, 0.11%, 0.25%,
and 0.0001%. Our exact from-point visibility algorithm produces
correct frames. For the Manhattan scene our aggressive algorithm
yields a 0.03% frame error with 1.6 sampling locations per pixel,
compared to the 0.015% error for the high resolution image with
1,024 sampling locations per pixel.

We compared our 1D visibility algorithm to sampling the visibility
parameter domain, i.e. the view segment or the time interval. Even
when the domain is sampled densely, the quality of the aggregate
visibility solution is low. For example, for the Forest (Table 3),
aggregating the visibility solution from 40 points on the view seg-
ment reduces the average error only to 4.9%, whereas our algorithm

yields error-free frames. Similarly, we have compared our from-
rectangle visibility algorithm to aggregating visibility from 50×50
conventional images supersampled by a factor of 32×32, rendered
from viewpoints that sample the view rectangle uniformly. Again,
the extensive uniform sampling of the visibility parameter domain
failed to find all visible triangles (average and maximum frame er-
rors of 2.5 and 41 pixels). Our algorithms do not search for the
visible triangles blindly, through uniform sampling of the visibil-
ity parameter domain, but they rather find the visible triangles di-
rectly, by computing the visibility parameter values where visibility
changes occur, through visibility event equations.

The second prior art approach to which we compare our image gen-
eralization paradigm for visibility is adaptive global visibility sam-
pling (AGVS) [Bittner et al. 2009], which relies on individual rays
to sample the space of visibility parameters heuristically. Table 5
gives the average and maximum frame errors obtained for a path
with 10,000 frames through a box-like view cell in the Manhattan
scene. Our paradigm performs substantially better even when we
only compute visibility at the eight corners of the view cell. The
errors are further reduced when our more powerful visibility algo-
rithms are used for the edges and the faces of the view cell.

Table 5: Incorrect pixels per frame for prior and our approach.

AGVS Image Generalization paradigm
8 corners 12 edges 6 faces

Avg. 435 21 4.9 0.56
Max. 3,198 210 124 21

8.4 Limitations

The current implementation of our aggressive from-point visibility
algorithm has a running time quadratic in the number of sampling
locations per pixel, as a new sampling location is created only after
checking that none of the existing sampling locations is inside the
current fragment. This is acceptable when the average number of
sampling locations is small, but can become a bottleneck for scenes
where the average triangle image footprint is small (e.g. Isosur-
face). In all our experiments the resolution of the reference image
where visibility was computed was always the same as the resolu-
tion of the output image. Choosing a reference image resolution
commensurate with the average triangle footprint will control the
average number of sampling locations per pixel. Another option is
to subdivide pixels hierarchically, e.g. with a quadtree, to find the
sampling locations inside a fragment in logarithmic time.

Our over-time-interval visibility algorithm relies on the assumption
that triangle vertices move with a constant velocity vector over the
time interval, which reduces the complexity of the visibility event
equations. The assumption requires subdividing time into multiple
intervals and running the visibility algorithm for each interval. Gen-
eralizing our from-rectangle visibility algorithm to a from-segment
and over-time-interval algorithm is non-trivial. When one visibil-
ity parameter is translation and the other one is time, the visibility
event loci are not lines anymore, but rather curves, and the visibility
subdivision becomes not polygonal.

Our algorithms rely on sampling locations to eliminate two visibil-
ity parameters. For example, from-rectangle visibility is reduced to
solving a from-point visibility problem at each sampling location.
However, this comes at the cost of redundancy–the same triangle is
found as visible by many sampling locations. The bigger the span
of the visibility parameter domain (e.g. view segment, time inter-
val, view rectangle), the higher the redundancy.



9 Conclusions and Future Work

We have described a novel approach to visibility based on image
generalization. The image is enhanced with sampling locations de-
fined by scene geometry. A small number of sampling locations
are sufficient to reveal most visible triangles. Our approach couples
a sample-based and a continuous visibility analysis of the image
plane to complete the visible set efficiently, in a remarkably small
number of iterations. 1D and 2D visibility domains are handled di-
rectly, by solving visibility event equations, which reveals visibility
changes without trial and error.

So far we have used our visibility algorithms to precompute visi-
bility for complex scenes off-line. One direction of future work is
to accelerate our visibility algorithms to support applications where
visibility has to be computed in real time, such as antialiasing of
minified geometry, motion blur, or soft shadow rendering. One op-
tion is to leverage the programmability of current graphics hardware
(e.g. through CUDA); another option is to devise hardware exten-
sions that bring native support to rendering over framebuffers with
a variable number of sampling locations per pixel, and with more
complex sampling locations (e.g. a list of intervals, a 2D map).

A second direction of future work is to use the image generaliza-
tion paradigm to develop more general visibility algorithms. For
example, an exact from-rectangle visibility algorithm, which also
provides exact from-box visibility when applied to the six faces
of the box, requires the construction of a two-parameter dynamic
visibility subdivision of the image; a quality-guaranteed aggressive
from-rectangle and over-time-interval visibility algorithm requires
3D visibility samples, which could be implemented by voxelizing
the translation by translation by time visibility parameter volume.

References
APOSTU, O., MORA, F., GHAZANFARPOUR, D., AND AVENEAU, L. 2012. Analytic

ambient occlusion using exact from-polygon visibility. Computers & Graphics 36,
6, 727–739.

AUZINGER, T., WIMMER, M., AND JESCKE, S. 2013. Analytic visibility on the gpu.
In Computer Graphics Forum, vol. 32, Wiley Online Library, 409–418.

BITTNER, J., WIMMER, M., PIRINGER, H., AND PURGATHOFER, W. 2004. Co-
herent hierarchical culling: Hardware occlusion queries made useful. In Computer
Graphics Forum, vol. 23, Wiley Online Library, 615–624.

BITTNER, J., MATTAUSCH, O., WONKA, P., HAVRAN, V., AND WIMMER, M. 2009.
Adaptive global visibility sampling. In ACM Transactions on Graphics (TOG),
vol. 28, ACM, 94.

CARPENTER, L. 1984. The a-buffer, an antialiased hidden surface method. ACM
SIGGRAPH Computer Graphics 18, 3, 103–108.

CATMULL, E. 1978. A hidden-surface algorithm with anti-aliasing. In ACM SIG-
GRAPH Computer Graphics, vol. 12, ACM, 6–11.

CHANDAK, A., LAUTERBACH, C., TAYLOR, M., REN, Z., AND MANOCHA, D.
2008. Ad-frustum: Adaptive frustum tracing for interactive sound propagation.
Visualization and Computer Graphics, IEEE Transactions on 14, 6, 1707–1722.

CHARNEAU, S., AVENEAU, L., AND FUCHS, L. 2007. Exact, robust and efficient full
visibility computation in plücker space. The Visual Computer 23, 9-11, 773–782.

COHEN-OR, D., CHRYSANTHOU, Y. L., SILVA, C. T., AND DURAND, F. 2003.
A survey of visibility for walkthrough applications. Visualization and Computer
Graphics, IEEE Transactions on 9, 3, 412–431.

CUI, J., ROSEN, P., POPESCU, V., AND HOFFMANN, C. 2010. A curved ray camera
for handling occlusions through continuous multiperspective visualization. Visual-
ization and Computer Graphics, IEEE Transactions on 16, 6, 1235–1242.

DÉCORET, X., DEBUNNE, G., AND SILLION, F. 2003. Erosion based visibility
preprocessing. In Proceedings of the 14th Eurographics workshop on Rendering,
Eurographics Association, 281–288.

DURAND, F., DRETTAKIS, G., THOLLOT, J., AND PUECH, C. 2000. Conserva-
tive visibility preprocessing using extended projections. In Proceedings of the
27th annual conference on Computer graphics and interactive techniques, ACM
Press/Addison-Wesley Publishing Co., 239–248.

DURAND, F., DRETTAKIS, G., AND PUECH, C. 2002. The 3d visibility complex.
ACM Transactions on Graphics (TOG) 21, 2, 176–206.

DURAND, F. 2010. 3D Visibility: analytical study and applications. PhD thesis,
Université Joseph Fourier.

FOUSSE, L., HANROT, G., LEFÈVRE, V., PÉLISSIER, P., AND ZIMMERMANN, P.
2007. MPFR: A multiple precision binary floating point library with correct round-
ing. ACM Transactions on Mathematical Software 33, 13.

FURNAS, G. W. 1986. Generalized fisheye views, vol. 17. ACM.

GOODRICH, M. T. 1992. A polygonal approach to hidden-line and hidden-surface
elimination. CVGIP: Graphical Models and Image Processing 54, 1, 1–12.

GRIBEL, C. J., BARRINGER, R., AND AKENINE-MÖLLER, T. 2011. High-quality
spatio-temporal rendering using semi-analytical visibility. In ACM Transactions on
Graphics (TOG), vol. 30, ACM, 54.

HAUMONT, D., MÄKINEN, O., AND NIRENSTEIN, S. 2005. A low dimensional
framework for exact polygon-to-polygon occlusion queries. In Proceedings of the
Sixteenth Eurographics conference on Rendering Techniques, Eurographics Asso-
ciation, 211–222.

HECKBERT, P. S., AND HANRAHAN, P. 1984. Beam tracing polygonal objects. In
ACM SIGGRAPH Computer Graphics, vol. 18, ACM, 119–127.

JOHNSON, G. S., LEE, J., BURNS, C. A., AND MARK, W. R. 2005. The irregular
z-buffer: Hardware acceleration for irregular data structures. ACM Transactions on
Graphics (TOG) 24, 4, 1462–1482.

JONES, T. R., AND PERRY, R. N. 2000. Antialiasing with line samples. In Rendering
Techniques 2000. Springer, 197–205.

KATZ, M. J., OVERMARS, M. H., AND SHARIR, M. 1992. Efficient hidden surface
removal for objects with small union size. Computational Geometry 2, 4, 223–234.

MAX, N., AND OHSAKI, K. 1995. Rendering trees from precomputed z-buffer views.
In Rendering Techniques 95. Springer, 74–81.

MCMILLAN, L., AND BISHOP, G. 1995. Plenoptic modeling: An image-based ren-
dering system. In Proceedings of the 22nd annual conference on Computer graph-
ics and interactive techniques, ACM, 39–46.

MORA, F., AND AVENEAU, L. 2005. Fast and exact direct illumination. In Computer
Graphics International 2005, IEEE, 191–197.

NIRENSTEIN, S., AND BLAKE, E. H. 2004. Hardware accelerated visibility prepro-
cessing using adaptive sampling. Rendering Techniques 2004, 15th.

OVERBECK, R., RAMAMOORTHI, R., AND MARK, W. R. 2007. A real-time beam
tracer with application to exact soft shadows. In Proceedings of the 18th Euro-
graphics conference on Rendering Techniques, Eurographics Association, 85–98.

POPESCU, V., EYLES, J., LASTRA, A., STEINHURST, J., ENGLAND, N., AND NY-
LAND, L. 2000. The warpengine: An architecture for the post-polygonal age. In
Proceedings of the 27th annual conference on Computer graphics and interactive
techniques, ACM Press/Addison-Wesley Publishing Co., 433–442.

SACKS, E., AND MILENKOVIC, V. 2014. Robust cascading of operations on polyhe-
dra. Computer-Aided Design 46 (Jan.), 216–220.

SHADE, J., GORTLER, S., HE, L.-W., AND SZELISKI, R. 1998. Layered depth
images. In Proceedings of the 25th annual conference on Computer graphics and
interactive techniques, ACM, 231–242.

SHARIR, M., AND OVERMARS, M. H. 1992. A simple output-sensitive algorithm for
hidden surface removal. ACM Transactions on Graphics (TOG) 11, 1, 1–11.

WEILER, K., AND ATHERTON, P. 1977. Hidden surface removal using polygon area
sorting. In ACM SIGGRAPH Computer Graphics, vol. 11, ACM, 214–222.

WONKA, P., WIMMER, M., ZHOU, K., MAIERHOFER, S., HESINA, G., AND

RESHETOV, A. 2006. Guided visibility sampling. ACM Transactions on Graphics
(TOG) 25, 3, 494–502.

YU, J., AND MCMILLAN, L. 2004. General linear cameras. In Computer Vision-
ECCV 2004. Springer, 14–27.

ZHANG, H., MANOCHA, D., HUDSON, T., AND HOFF III, K. E. 1997. Visibil-
ity culling using hierarchical occlusion maps. In Proceedings of the 24th annual
conference on Computer graphics and interactive techniques, ACM Press/Addison-
Wesley Publishing Co., 77–88.


