
Robust Epsilon Visibility

Florent Duguet and George Drettakis

REVES - INRIA Sophia-Antipolis, France, http://www-sop.inria.fr/reves/ �

Figure 1: (Far left) A Dandelion model of 62,000 polygons. Using robust ε visibility, the output shadow mesh has 270,000 polygons for
ε = 10�4. From left to right: shadows on the leaves and ground (top view) for ε = 10�4, and ε = 10�2, resulting in 220,000 polygons,
with no visible difference. Rightmost two images: zoom of the ground for ε = 10�4 and ε = 10�2; some missing features are now visible.

Abstract

Analytic visibility algorithms, for example methods which compute
a subdivided mesh to represent shadows, are notoriously unrobust
and hard to use in practice. We present a new method based on
a generalized definition of extremal stabbing lines, which are the
extremities of shadow boundaries. We treat scenes containing mul-
tiple edges or vertices in degenerate configurations, (e.g., collinear
or coplanar). We introduce a robust ε method to determine whether
each generalized extremal stabbing line is blocked, or is touched by
these scene elements, and thus added to the line’s generators. We
develop robust blocker predicates for polygons which are smaller
than ε. For larger ε values, small shadow features merge and even-
tually disappear. We can thus robustly connect generalized extremal
stabbing lines in degenerate scenes to form shadow boundaries. We
show that our approach is consistent, and that shadow boundary
connectivity is preserved when features merge. We have imple-
mented our algorithm, and show that we can robustly compute an-
alytic shadow boundaries to the precision of our chosen ε threshold
for non-trivial models, containing numerous degeneracies.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture
I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Visible line/surface algorithms

Keywords: Illumination, Shadow Algorithms, 3D Visibility, Ro-
bust Visibility Predicates, Epsilon Visibility.

�fFlorent.Duguet|George.Drettakisg@sophia.inria.fr. The
first author is also affiliated to the Ecole Nationale Supérieure des Télécommunications
(ENST), Paris.

1 Introduction

Computing visibility is central for many aspects of computer graph-
ics. From the most basic visible surface determination, to shadows
and global illumination calculations, a major part of computational
effort is spent on visibility. Although discrete approximations or
sampling such as the z-buffer or ray-casting are often used in prac-
tice, analytic methods in which a continuous and precise solution
is computed, can be very useful. In particular, for shadow cal-
culations [16, 21, 6], or global illumination [10], the importance
and utility of analytic visibility methods has been demonstrated.
For virtual environments or games, graphics engines can now han-
dle large polygon counts, even for low-end platforms. In certain
cases, for games engines or virtual reality, texture memory may be
a scarce resource, precluding its use for shadow representation. As
a result, subdividing the input geometry into (partially) shadowed
and lit sub-polygons using one of these methods could well be the
best solution for displaying high-quality shadows for these appli-
cations. Note that such subdivision is a view-independent solution
with shadows, with no additional shadow processing per frame. We
will refer to this subdivision of the input scene as a shadow mesh in
what follows. The shadow mesh can be created either for hard shad-
ows (such as from a directional or point source) or for soft shadows
from an area source.

In practice however, analytic methods have not been used be-
cause they suffer from robustness problems, algorithmic complex-
ity and/or memory restrictions. These problems render them unus-
able for the type of scene used in virtual reality, games or other in-
teractive applications. Such scenes are geometrically complex, and
typically contain a large number of degeneracies: objects touch,
edges are often aligned or coplanar etc. In addition, since floating
point numbers are used both for the modeling phase and visibility
computation, below a certain threshold, small features of the model
or of the resulting shadows can lead geometric algorithms to fail.
Object connectivity is not always given in such models and can-
not always be reconstructed, and intersecting polygons are often
present in the models. All of these properties can lead to robustness
problems for geometric algorithms.

1.1 Motivation

To create shadow meshes, in particular for soft shadows, disconti-
nuity meshing approaches [13, 6, 16] intersect shadow boundary

Copyright © 2002 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by
others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Permissions Dept,
ACM Inc., fax +1-212-869-0481 or e-mail permissions@acm.org.
© 2002 ACM 1-58113-521-1/02/0007 $5.00

567

surfaces, or swaths, with scene geometry. This approach is in-
evitably unrobust for large and degenerate scenes, since numerical
problems quickly lead to loss of connectivity in the shadow mesh,
or result in geometrical errors due to small features.

We can observe however that shadow boundaries are delimited
by extremal stabbing lines [23]. Two examples are shown in red
in Fig. 2 (a). One way to generate shadow boundaries is to com-
pute extremal stabbing lines, and then join them to form the actual
swaths which constitute shadow boundaries. A simpler problem is
thus solved, since in essence we only perform line- or ray-casting.
This results in a stabler approach, as was shown in the Visibility
Skeleton [9]. For non-degenerate scenes, the number of possible
configurations of connectivity between extremal stabbing lines and
swaths is finite and small. As a result, Durand et al., [9], devel-
oped a catalog of swaths and their neighboring lines to establish
connectivity, based on a small set of non-degenerate configurations
of edges, vertices and faces. The result of this construction, among
other applications, is the shadow mesh.

���

�������	
�

�
���

���

��

���

Figure 2: (a) Shadow boundaries are delimited by extremal stabbing
lines (in red). (b) In complex models, stabbing lines may contain
multiple collinear vertices. (c) If vertices are almost collinear, we
choose to consider them as being on the same line.

Unfortunately, this approach will fail for complex scenes, such as
those encountered in games or VR applications. Consider Fig. 2(b),
where vertices of several leaves of a tree are collinear. Build-
ing shadow adjacencies based on a finite set of configurations is
no longer possible, since a catalog capable of treating all cases
would be infinitely big. Despite treatment of certain cases for the
test scenes used in [10], a complete solution is lacking, as men-
tioned by the authors ([10], pages 164 – 166). This fact is also
clearly demonstrated by the small size and specific (i.e., custom-
built) nature of the test scenes used in all previous analytic ap-
proaches [6, 21, 16, 9, 10], in which the largest test scenes used
were under 2,000 polygons. If edges or vertices are almost aligned
or coplanar (see Fig. 2(c)) problems will appear, since resulting
small shadow mesh features become sources of numerical insta-
bility, such as small, sliver triangles, edge side-test problems etc.
Finally, many models are inaccurate, and may contain intersecting
polygons or lack connectivity information. To use the catalog ap-
proach, expensive and numerically unstable preprocessing would
have to be performed to re-facetize the input scene based on these
intersections, and then to reconstruct all connectivity information
around edges.

1.2 Contributions

To robustly compute shadow boundaries for real-world scenes, we
develop an approach based on generalized extremal stabbing lines.
Candidate extremal stabbing lines are proposed based on native
generators for non-degenerate configurations [9], i.e., VV , VEE
and E4, with V a vertex and E an edge. We attach additional

generators to the candidate line, using ε methods to robustly de-
termine whether a single feature (edge or vertex) is a generator or a
blocker. The set of attached generators ensures that degenerate stab-
bing lines are correctly constructed, and allows us to robustly estab-
lish shadow boundary connectivity. We show that our ε method is
consistent, by avoiding undesired propagation of ε contact and by
ensuring consistent shadow-boundary connectivity.

The use of ε methods requires special attention when encounter-
ing faces (polygons), smaller than the ε threshold. We introduce
robust blocker predicates both for the case when face connectivity
is available, and for models lacking this information. We also treat
models with intersecting polygons as input.

The resulting structure is sufficient for the generation of a
shadow mesh. An interesting advantage of our methods is that when
the value of ε used in the robust computation is increased, small
shadow features will disappear, reducing the size of the shadow
mesh.

These methods have allowed us to implement robust shadow
mesh computation for soft and directional shadow boundaries for
complex, real-world scenes, such as those shown in Fig. 1, 14 – 19.

2 Previous Work

Very early work in computer graphics attempted to compute shad-
ows using polygon clipping methods [24]. These were the precur-
sors of analytic visibility methods which have inspired our work.

It is beyond the scope of this paper to survey all work on visibil-
ity. An excellent survey of the whole spectrum of visibility meth-
ods in computer graphics can be found in F. Durand’s Ph.D. thesis
[8]. For directional and point light sources, shadow volumes [5]
allow the computation of shadow boundaries. They suffer how-
ever from robustness problems and computational expense, both in
the preprocess and for rendering since they are very polygon-fill
intensive [17]. Various other methods have been developed, for ex-
ample the methods of Campbell and Fussell [3] or Chin and Feiner
[4] based on BSP-trees, which also run into robustness or mem-
ory problems due to the geometric operations and data structures
involved.

Discontinuity meshing approaches were introduced by Heckbert
[13] and Lischinski et al. [16]. These methods compute shadow
discontinuity surfaces (line swaths), by intersecting them with the
scene, with the resulting robustness problems previously discussed
in Sect. 1.1. The ideas developed in the original aspect graph vision
literature [14, 11], and introduced to graphics by Teller [23] have
led to algorithms computing the complete discontinuity mesh [6,
21]. These include the backprojection data structure representing
the visible part of the source for rapid computation of penumbral
lighting. These methods suffer from the same robustness problems.

We have already mentioned the Visibility Skeleton [9], which
computes extremal stabbing lines by casting them into the scene,
and uses a finite catalog to establish swath connectivity. This ap-
proach was used to compute shadows, but also in a global illumi-
nation algorithm which adapts the radiosity mesh using perceptual
criteria to insert discontinuities [10].

Many approximate or discrete methods have been developed for
shadow computation (e.g., shadow maps [25]) and ray-tracing is ev-
idently one of the most widespread point-sampling approaches used
in practice. For soft shadows, convolution methods [20] give con-
vincing results, which may contain some error however, depending
on the configuration. All these methods use a discrete buffer, and
thus resolution and resulting aliasing are the predominant problems.
More recent work [1] presents an image-based approach compris-
ing an efficient interactive solution with limited control of sampling
and an expensive, view-dependent ray-tracing solution.

We adopt an ε geometry approach [18], albeit without perturbing
the input data, using interval arithmetic to robustly treat degenera-

568

cies for our visibility computations. Interval approaches have been
extensively used in computer graphics, for example for implicit
functions and CSG [7] or by Snyder [19] for a variety of problems
such as ray-tracing, interference detection etc. To our knowledge, ε
methods have only been used to a limited extent for 3D visibility or
shadow problems, notably by Bala et al. [2] for ray-tracing.

3 Generalized Visibility Events

As mentioned in the introduction, we will treat scenes containing
degeneracies, such as those used in real-world applications. We first
define our new framework, which is based on a general definition
of extremal stabbing lines (ESL) and line swaths. This definition
overcomes the limitations of a catalog of visibility events [9], since
it will not depend on a finite enumeration of specific configurations.
We first define the basic entities we use.

A generator is an edge or a vertex of the scene 1. For edges we
distinguish silhouette edges with respect to a given line direction,
in the traditional sense of the term, i.e., that the edge is attached to
a single face, or that one of the two faces connected to the edge is
back-facing with respect to the line. A silhouette vertex is defined
depending on its local blocking properties, i.e., whether it blocks an
extremal stabbing line or not, depending on its neighboring faces.
This is defined in detail in Section 4.1 (see also Fig. 6).

�� ��

��

����	
���

����	�

��

��

��

Figure 3: An extremal stabbing line l1, with generators
V1;V2;E1;E2, and up and down blockers blockup and blockdown,
and a swath between ESL l1 and ESL l2, sharing E2 and V2.

A blocker is a face, or non-silhouette edge or vertex touched by
a line.

A generalized extremal stabbing line (ESL) is a data structure,
containing the corresponding line equation (also called supporting
line), the set of associated generators, and its up and down blocker.
A degenerate ESL, l1, its generators and blockers are shown in
Fig. 3.

The limits of a critical line swath, or simply swath, are its up and
down blockers, and the start and end ESL’s (see Fig. 3).

To establish shadow boundaries, we need to connect stabbing
lines with swaths. Since we can no longer use a finite catalog,
we will define when it is possible to connect pairs of ESL’s. The
intuition is that there needs to be a sufficient number of shared
generators to define a planar (e.g., edge-vertex) or quadric (edge-
edge-edge) swath joining the two ESL’s. The process we use is
procedural, and detailed in Section 4.3.

In what follows we consider visibility events between an “emit-
ter” and a “receiver” pair. This is a logical choice for shadow com-
putations, and allows us to define distances and sizes in a mean-
ingful manner for our ε algorithms. This can be seen as a lazy

1In contrast to [9], we do not consider faces as generators. In the context
of a finite catalog, such a consideration is appropriate, since it allows a more
concise presentation of possible configurations.

evaluation of parts of the visibility skeleton [9]. In theory, the Visi-
bility Skeleton could be computed using our algorithm, if we com-
puted and stored all emitter-receiver pairs. This would however be
impractical for any scene of reasonable size, due to the (at least)
quadratic complexity in memory. Our ε approach is based on dis-
tance, defined across the shaft formed by the emitter and receiver.
Thus merging operations vary depending on the chosen receiver-
emitter pair; querying the entire structure would require special
manipulation. However, for all the applications using the visibil-
ity skeleton to date [9, 10], (shadows, discontinuity mesh, global
illumination), emitter-receiver pair computations suffice, so we do
not consider this restriction significant.

4 Enumeration and Validation
of ESL’s and Swaths

The first step in our approach is the enumeration and validation
of extremal stabbing lines (ESL). We construct ESL’s, associating
all appropriate generators as we proceed, as well as start and end
blockers, if they exist. The second step is the identification and
validation of swaths connecting ESL pairs.

ESL’s are “cast” into the scene to identify potential generators.
We will use ε methods to consistently treat “almost” coplanar or
“almost” collinear events, during this process. Before the enumer-
ation and validation, we present the specifics of our ε methods.

4.1 ε methods

While casting lines, we need to identify whether a scene element,
face (polygon), edge or vertex interacts with the line. If there is an
interaction, it can be either a blocking interaction, i.e., we consider
that the line is blocked, or can be a generator interaction, i.e., the
line grazes the element, for example an edge, and thus we consider
that the edge is a generator of the line. Consistent attribution of
generators is a key to correct connectivity of shadow boundaries,
since ESL’s are connected by looping over generators.

We perform all calculations to determine whether an interaction
exists, and its type, in floating point arithmetic, up to a precision of
a pre-determined ε threshold.

��
��

�
���

��

����� ���

Figure 4: (a) A fat line or fat ray, (b) A fat vertex (c) A fat edge.

The ε parameter is given in the same units as the model of the
scene. Thus if the scene is defined for example in meters, ε will
also be defined in meters. Thus, the algorithm reacts as expected to
scaling operations, i.e., if the entire scene is scaled by a coefficient
of say 2, then the result will be the same in the topological sense,
as if ε was divided by 2.

We use an interval arithmetic approach with floating point val-
ues for upper and lower bounds. We define ε contact in a natural
manner: two elements are in ε contact, if and only if their distance
is below ε. We say that an edge or vertex of the scene is in inter-
action with a line if and only if its distance to the line is below ε.
For a vertex p and line we project the vertex onto the line to find
the closest point q, and for a line and an edge, p and q are the pair
of closest points of the two lines. An equivalent definition is that a

569

��� ��� ��� ��
��

���

���� ����

Figure 5: (a) No-stab, the line does not interact with the triangle (b) Full-stab, the line is blocked by the triangle (c) Edge-stab, the line touches
the edge but nothing else (d) Vertex-stab the line touches the vertex but nothing else (e) Multi-stab: the fat line touches multiple elements.

vertex or an edge interacts with the line if it hits the associated fat
element, i.e., sphere or shaft. This ε contact approach is central to
our algorithm.

As a result of our ε approach, scene elements are transformed. A
line is transformed into a shaft, which we call a fat line or fat ray
(Fig. 4(a)). This shaft is the cylinder defined by the spheres of any
two points centered on the line.

A vertex is a sphere of radius ε, which we will call a fat vertex,
Fig. 4(b), and an edge is a cylindrical “shaft” (similar in spirit to that
of [12]) between the two spheres of its extremal vertices, which we
will call a fat edge, Fig. 4(c).

Since faces are only considered as blockers in the context of our
approach, they remain as is.

There are five kinds of interactions between a line and a face,
shown in Fig. 5. The first two cases, no-stab and full-stab, are han-
dled trivially (Fig. 5(a) and (b)), since the first case results in no in-
teraction, and the second results in the line being blocked. The third
and fourth (Fig. 5(c) and (d)) are followed by a blocker/generator
test described below, in order to check if the element is a blocker or
a generator for the line. The last case is more complex and is the
essence of our ε approach (Fig. 5(e)).

In Section 5, we introduce techniques to robustly determine
whether this configuration blocks the line.

The blocker/generator tests for edges and vertices proceed as fol-
lows. Since the line may not pass exactly through the edge, for
an edge-stab we form a plane Π with the edge (points A and B in
Fig. 6(a)) and normal to a direction perpendicular to the line with
its origin on the edge. We can always define this plane since we
do not have a vertex-stab, and thus the edge is not on the line. We
then compute the position of the faces attached to the edge with
respect to this plane. If faces are present on both sides, the edge
is a blocker, otherwise, the edge is a generator (Fig. 6(b)). This is
equivalent to determining whether we have a silhouette edge with
respect to the line.

For the vertex stab, let Π be a plane orthogonal to the line, for
instance a plane passing through the vertex. We compute the or-
thogonal projections of the faces surrounding the vertex onto Π.
Each face around the vertex can be seen as a slice of a pie. We then
merge the slices in contact. If the slices merge into a whole pie, then
the vertex is a blocker, otherwise, it is a generator (see Fig. 6(c)).

4.2 Enumeration and Validation of ESL’s

We have now defined the framework for generalized visibility
events and our ε visibility approach, which are the basic elements
required to define our new, robust, algorithm. We start with the enu-
meration of non-degenerate or generic ESL’s, that is VV , VEE and
E4, as defined in previous work [23, 9]. For VV and V EE the line
equation is defined as in [9]. For E4 ESL’s we adopt the method
previously proposed by Teller [22]. An alternative would be to use
the bisection approach described in [9].

The choice of which generators are considered as native depends
on the order in which we evaluate them: We demonstrate below that

��� ���

�
�

���

�

Figure 6: (a) Determining whether an edge is a blocker for an edge-
stab (b) Top, the edge is blocked, bottom the edge is a generator (c)
Top the vertex is a generator, bottom, the vertex is a blocker.

a consistent result is obtained with our method independently of the
order of evaluation.

The algorithm proceeds with an ESL casting process. First,
generic ESL’s are formed by enumeration of native generators. For
each such generic line, we propose a candidate ESL and cast it
through the scene. The ESL-casting process has a dual function:
we find and attach all additional generators to form the appropri-
ate set attached to a degenerate ESL, and we test visibility of the
stabbing line to decide whether the candidate ESL is valid. Finally,
redundant ESL’s are also eliminated.

4.2.1 ESL Casting

A candidate ESL is defined by a line and a set of native generators
(VV , V EE, E4). The ESL casting process is very similar to a tradi-
tional ray-casting algorithm, but is based on “fat rays” as described
previously. The casting process identifies the elements, either face,
edge or vertex, which interact with the ESL, as described in the pre-
vious section. The fat ray emanates from the emitter, and we visit
elements in order of increasing distance from the origin of the fat
ray. This is achieved cheaply by the traversal routine of the accel-
eration structure described below; a sort is performed on elements
in the interior of a cell of the acceleration structure.

For each such element, we test if it is a blocker, using the ε stab-
bing process. If it is, we flag the element as the down blocker of the
extremal stabbing line, and the casting process is stopped. If not,
we add the element to the set S of stabbed elements associated with
the ESL, which is initially empty. Note that the native generators
are not contained in S at the outset of the casting process.

Once the ray is stopped, we compare the set of stabbed elements
S, and the set of native generators N. If N � S, then all the na-
tive generators are touched by the candidate ESL, which is then
validated. The set of stabbed elements also constitutes the set of
generators associated with the ESL. This process is illustrated in
Fig. 7. To accelerate swath validation, references to the ESL’s are
stored on the scene edges and vertices.

570

��������������
�

��
��

���������������������
��

��

��

��

��

��

�
������

��
��

�����������

��� ��� ���

Figure 7: The ESL casting process. (a) Before casting, the line is formed by the native generators v1 and v2, S is empty and the line originates
at the emitter. (b) The ESL encounters the generator v1, and in this configuration, the ESL is invalidated by the face f . (c) Here, the ESL
encounters generators v1;v2;e1;e2. This is a valid ESL, with down blocker f , since S contains the native generators.

�� ��

��

�� ��

��
��

��
��

��

�� ������

��
��

��
��

��

Figure 8: Elimination of redundant ESL’s. (a) The native generators of l1 are v1 and v2, and we add v3 and v4. (b) Native generators of l2
are v2 and v3, and we add v1. l1 and l2 satisfy the combinatorial criterion and the topological criterion, and thus l2 is eliminated. (c) Native
generators of l3 are v3 and v4, and we add v2. Even though the combinatorial criterion is satisfied with respect to l1, the topological criterion
is not, and thus l3 is maintained as a separate ESL.

We use standard acceleration techniques for fat-ray casting.
Faces are simply added to the acceleration structure cells if they
are either inside the cell or at a distance less than ε. We use a recur-
sive grid for faces and subdivide based on a 3pn criterion, where
n is the number of polygons at each level. Most other acceleration
techniques for ray tracing could also be used for our ESL casting.

4.2.2 Elimination of Redundant ESL’s

As mentioned above, we consider the order in which we traverse
generators to be irrelevant. For this to give a consistent result, we
need a method which will eliminate redundant ESL’s when they are
“sufficiently close” to an existing ESL, with respect to the ε chosen.
This elimination step must be done carefully, to avoid propagation
of ε across generators, which would result in the “merge” of lines
which in reality are geometrically far apart.

We thus define a consistent elimination method for ESL’s, based
on two criteria: a combinatorial and a topological criterion.

An ESL lc satisfies the combinatorial criterion with respect to
another ESL le, if and only if the set of its native generators is com-
pletely contained in the set of generators of the other ESL le.

An ESL lc satisfies the topological criterion with respect to an-
other ESL le, if and only if the distance between the two supporting
lines is less than ε.

The distance between two lines used for this test is defined with
respect to the emitter-receiver shaft. In particular it is defined as
the maximum distance (over the shaft), between any point of one
line with respect to the other line. If an ESL satisfies both criteria
with respect to another, existing ESL, then it is redundant and is
eliminated. The entire process is illustrated in Fig. 8.

Note that the test can be performed before the actual ESL cast-
ing. We thus compare the candidate line to existing ESL’s pre-
venting unnecessary computation implied by the actual casting al-
gorithm. We only search a subset of existing ESL’s, since we first
need to satisfy the first criterion.

4.3 Enumeration and Validation of Line Swaths

Once we have generated all the ESL’s, we create the swaths which
join them, if required by the application. Since we have foregone
the catalog, we use a procedural construction. Swath creation in-
volves two steps, enumeration, to determine whether a swath can
exist between two ESL’s, and validation, which verifies visibility
with respect to the rest of the scene.

Swaths are found by looping over all edges and vertices in the
scene. We first loop over all pairs of edges EE to treat the special
case of coplanar edges. We also collect any other edges which are
coplanar to this pair; We discuss details of this case later. At the
same time we find any potential EEE swaths. We then loop over
all V and E pairs.

For each potential swath, EEE or EV , we examine the extremal
stabbing lines shared by each generator, E or V . If there is a shared
pair of ESL’s, we create a candidate swath, which is then tested for
visibility.

We need to validate the candidate swath, that is treat visibility
with respect to the other elements of the scene. In the catalog ap-
proach [9], this step is not necessary, since it is included in the local
connectivity information. An example of a swath which must be
discarded is shown in Fig. 9.

Since all ESL’s have been computed, there cannot be a visibility
discontinuity along the swath, otherwise it would be represented by
an ESL. Thus, to validate the swath, it suffices to sample visibility
by a line in the middle of the line set, that is the line through the
point in the middle of the edge portion concerned by the swath,
which we call the midline.

The midline is then cast in the same manner as an ESL into the
scene, using the acceleration structures. The swath is valid if the
midline is not blocked before reaching the receiver.

A special case occurs for coplanar edges, as was pointed out in
[13]. This special case corresponds to a line set of dimension 2,
as opposed to other swaths (EEE and EV) which are of dimension
1, since they only have one degree of freedom (along the E in an
EV for example). We first collect all the ESL’s contained in the
plane, and then find the extremal lines, in the sense of the emitter-
receiver pair, shown in red in Fig. 10. We then sort the ESL’s across
the generating emitter edge, and perform the visibility test for each

571

�

�

�

��

�

�� ��

Figure 9: Swath validation. (a) The swath ev is valid since the mid-
line does not touch any other object. (b) The swath e2v is invalid,
since the midline is blocked by the face f , and the receiver has not
been encountered.

individual swath separately. For the shadow application, we create
a line segment on the receiver with the boundary ESL’s, we then
calculate the intersections of all other ESL’s, and insert the shadow
mesh segments sorted from the start to the end boundary ESL’s.

Figure 10: Coplanar edge treatment and shadow mesh segment in-
sertion.

4.3.1 Swath Connectivity Consistency

To demonstrate consistency, we adopt the approach of the visibility
skeleton [9], in which ESL’s are the nodes of a graph, connected by
the swaths which are arcs.

We want to demonstrate that if we merge a certain number of
nodes together, due to our ε approach, the graph remains consistent.
By consistent, we mean that all arcs which could potentially exist
in the new configuration are preserved.

Consider the example shown in Fig. 11 (left). If we increase ε
sufficiently, l1 and l2 will merge, Fig. 11 (right).

Once the merge has taken place, the graph becomes as shown in
Fig. 11, upper right. In practice, all generators of l2 are attached to
l1, assuming that l1 was created first. We refer to the new “merged”
node as lm. We need to show that all arcs which were connected
to all the nodes before merging are taken into account. Arcs which
connected the two merged nodes no longer exist. We need to show
that arcs originating at another node and arriving at one of the nodes
merged into lm, will now be connected to lm.

This is simple to show, since the generator set of the merged node
lm is the union of the generator sets of all constituent nodes (l1 and
l2). Consider any given external node le (e.g., l3) which was linked
to one of the constituent nodes before the merge. The merged node
lm thus contains the necessary generators and we are able to create
an arc between le and lm, when looping over generators for swath
enumeration.

When creating swaths between merged nodes, an edge is nec-
essarily shared between them. This edge is used for the midline
computation, thus guaranteeing a consistent result, since it will re-
flect the original structure of the shadow boundary.

��

��

��

��

��

��

��

��

��

��

���� ��

��

��
���� �� ��

��

��
��

Figure 11: (Left) Original configuration with a small ε. The corre-
sponding graph is shown in the upper left. (Right) The ε threshold
is higher, and thus l1 and l2 will merge. A merged node lm now
takes the place of l1 and l2 in the graph.

5 Robust Blocker Predicates
for ε Visibility

The use of fat lines, or an ε approach, implies that all geomet-
ric computation is performed up to a certain precision. Once the
threshold is chosen some elements may be of size smaller than the
given ε. For instance, consider the example shown in Figure 12(a)
where line l interacts with many small faces. Since the faces are
smaller than the ε chosen, they should not be considered individu-
ally.

� �

��

Figure 12: (a) A fat line covers several faces, and the fat line is
blocked since it is contained inside the multi-face contour, in black.
(b) The multi-face does not block the fat line, since it is not con-
tained in the multi-face contour.

In particular, we need a robust way of determining whether the
line is blocked by multiple faces.

For this, we develop two solutions: the multi-face structure,
which assumes that the scenes contain faces with connectivity in-
formation; and the blocker-fan, which treats multiple interactions
without connectivity information, and handles surface contact.

If the original model does not contain connectivity information
we reconstruct it as much as possible, by finding vertices at the
same position and determining faces sharing an edge. The blocker-
fan is used for all remaining cases, due either to numerical impreci-
sion or touching faces.

5.1 The Multi-face Structure

If an ESL has multiple interactions with a face (e.g., Fig. 5(e) or
Fig. 12(a)), we apply the multi-face approach. The multi-face is
a data structure containing the faces interacting with the fat line,
and the contour of these faces used for the blocker test. The idea
of the multi-face is related to the application of face-clustering to

572

�

�

�������	���

Figure 13: Blocker-fan: (Left) Perspective view of the unconnected
faces encountered by the line. (Middle) The slices, on a plane per-
pendicular to the line. The red lines show the angular slices. (Right)
View of the slice along the line direction to verify depth overlap.
Upper row: The line is not blocked, both due to depth and to slice
coverage. Middle row: The line is blocked, since it satisfies both
criteria. Lower row: Special case of surface contact. The valid
region is defined by the surfaces in contact.

visibility presented by Leblanc and Poulin [15], but is developed
and used in a very different context.

For each surrounding face which is touched by the line, in the ε
sense (i.e., distance less than ε), we add the face to the multi-face.
All connected faces touched by the line are added if the edge is not
a silhouette with respect to the line. Once the set is complete, we
identify the boundary edges of this set.

To determine if the multi-face blocks a given fat line, we check
if the projection of the boundary edges onto a plane orthogonal to
the line is a complete loop around the line. If it is, then the multi-
face is a blocker; Otherwise, it is not. In addition, the line must
be entirely contained in the loop in the ε sense (see Fig. 12). This
test is performed by traversing the neighboring faces to the line,
adjacent to the face(s) interacting with the line.

5.2 The Blocker-fan structure

For unconnected polygons we use a different approach. We collect
a “fan” of independent polygons encountered along the line of sight
of the fat ray, as it is propagated through the scene. The elements
encountered are either edges or vertices, and they form slices with
respect to the shaft, as shown in red in Figure (13, middle column).
We also consider an ε depth for each slice, in the direction of the
line. The depth is taken around the point of intersection of the edge
or the vertex with the line.

As with the multi-face, we project the faces onto a perpendicular
plane. For each face, we take the edges outside the fat line, and
create angular slices (see Fig. 13). If the slices collected cover a
whole section of the shaft, and they overlap in depth, then we have
a blocker. Note that, as with fat-ray casting (see Sec. 4.2.1), we visit
elements in order of distance on the line.

The blocker fan also handles surface contact. In particular for
touching objects and a line passing “between” them, we perform
the same slice operation (see Fig. 13, lower row), and verify that
the slices overlap in depth. Note that the blocker fan works to-
gether with fat ray casting, so that the routines must be called by
the casting process.

6 Implementation and Results

We have implemented a system based on the algorithms presented
above. In addition to the methods described in the previous sec-
tions, we compute intersections between polygons. Instead of re-
facetizing the input polygons along these discontinuities, we con-
sider them as special generators and blockers, rather than true
polygonal elements. They are thus attached to the original input
geometry.

We have also implemented an octree acceleration structure for
the hourglass formed by two edges when looping over generators
as described in [9].

All the results and tests we present have been run on scenes con-
taining unmodified objects we have either found on the internet or
which are used in real applications. All timings are on a Pentium
III 1 Ghz PC under Linux, with a GNU C++ implementation.

Figure 14: “Big” scene, overview and details of shadows on flower,
leaves and ground.

Figure 15: Two views of the cactus model.

The example scenes we use are a Dandelion (Dand) (Fig. 1), a
Cactus (Fig. 15), “Vizzy the skeleton” (Fig. 16), the Agave plant
(Fig. 19 right), the “Big” scene (Fig. 14), which is the largest scene
tested, and a very degenerate aligned cube scene (Fig. 17). For soft
shadows we have also used the Tree of “Big”, containing 33,000
input polygons (Fig. 19, middle).

6.1 Shadow Computation

To compute shadow boundaries for directional light sources we
only need to enumerate ESL’s in the direction of the light source,
and we only have planar swaths. We use all algorithms developed;
that is the general definition of ESL, ε methods, multiface, blocker
fan and intersecting polygons. Results for directional light sources
are shown in Fig. 14 – 16.

We have also computed a solution for an extremely degenerate
model, which is a cube of cubes, in which everything is aligned,
shown in Figure 17. This computation took 20 minutes.

To compute soft shadows, we compute the ESL’s and the swaths
for each such emitter-receiver pair, as described previously. Note

573

Figure 16: An overview and a zoom of “Vizzy the skeleton” with a
directional light.

Figure 17: The cube of cubes degenerate model and resulting shad-
ows (directional light source parallel to the cubes).

that we only compute visibility events with one generator on the
source; in the full discontinuity mesh [6, 21] other events also exist,
but we choose to ignore them. We made this choice for computa-
tional efficiency and because the impact of these events on shadows
is usually minimal. The algorithm could easily be adapted to com-
pute them all, at the cost of an expensive additional search for ESL’s
within the shaft.

To create images with shadows, we insert all discontinuity lines
into a Constrained Delaunay Triangulation (CDT), and then sample
the light source. Nonetheless, standard constrained Delaunay trian-
gulation packages are numerically unrobust. For soft shadows, the
CDT packages we tried failed for very complex models. We show
however the discontinuity edges for an area light source computed
by our algorithm, without actually computing a CDT and the result-
ing shadows. We computed the discontinuity edges on all objects
for the Vizzy and Tree models. Due to memory limitations of our
current implementation, we restricted the computation to the floor
only for Agave. These results are shown in Figure 19.

Figure 18: Soft shadow on the rose and on a 69,000 polygon bunny.

For the rose (1,700 polygons) and the bunny (69,000 polygons)
models, the CDT was able to produce a soft shadow mesh, Fig. 18.

Scene/ε Vizzy/1e�4 Cactus/1e�4 Dand/1e�4 Agave/1e�4 Big1e�4

polys 11,000 34,000 61,000 114,000 121,000
time 0m35s 1h10m 2h40m 0h04m 0h10m
smesh 31,600 428,000 287,000 153,000 329,500
ESL 4,300 45,000 75,000 20,000 19,000
dESL 535 19,600 7,700 5,000 4,300
mface 254 17,000 1,200 7,700 3,100

Table 1: Statistics for test scenes with directional shadows, polys:
number of input polygons, time: time to compute shadow mesh,
smesh: size of shadow mesh, ESL: number of generic ESL’s, dESL:
number of degenerate ESL’s, mface: number of ESL’s implying
multi-faces.

6.2 Statistics

As we can see from Table 1, we can treat models of significant
complexity (from 11,000 to 121,000 input polygons), and the re-
sulting shadow meshes multiply the polygon count by 2-5 times
for a directional source; this a reasonable overhead for high-quality
shadows. The Cactus is an exception where we have a factor of 13
increase. For soft shadows, the shadow mesh for the rose is 49,500
polygons and required 2h, while for the bunny it is about 95,000
polygons and required 3h; the respective times for computing the
discontinuity edges only were 8m and 1h46m. Our soft shadow
computation could be significantly optimized by using a hierarchi-
cal data structure on the scene graph and using more appropriate
acceleration structures. For the discontinuity edges only, the times
are 1h43m for Vizzy, 17h30m for Tree and 2h40m for Agave (floor
only). Other than the unoptimized implementation, the reason for
the high computational cost for Tree is also the large number of E4
events (91,000) compared for example to Vizzy (446). It is also in-
teresting to note the number of swaths, 464,000 for Tree compared
to 34,000 for Vizzy.

ε Agave 3e�3 8e�4 Vizzy e�2 e�3 Dand 2e�3

polys 114,000 114,000 11,000 11,000 61,000
time 0h15m 0h06m 1m45s 0m39s 1h48m
smesh 139,000 146,000 22,600 29,600 221,000
ESL 8700 15,300 1,250 3,500 55,000
dESL 7400 6,000 1,800 969 19,400
mface 7600 5,000 2,179 645 7,700

Table 2: Additional statistics for test scenes for varying ε.

It is interesting to note the much higher number of ESL’s for the
Cactus which has multiple interactions between spikes, compared
to the Vizzy model which is quite sparse and does not contain mul-
tiple interactions. The percentage of degenerate ESL’s varies, but
is always more than 10%, and in some cases the number of degen-
erate ESL’s is at the same level as the non-degenerate lines, even
for small ε (see Table 2) which underlines the importance of our
approach. Similarly, the number of multi-face operations on the
various models shows that the systematic treatment we propose is
indispensable. The running times do not always decrease with the
increase in ε, due to the potential additional complexity of certain
steps of our algorithm such as the blocker-fan computation.

7 Discussion and Conclusion

We have presented a novel, systematic approach to robust shadow
boundary computation on real-world models. Our method first re-
defines visibility events in a generalized framework, thus taking
into account typical degenerate configurations, notably collinear
and coplanar scene features. We then develop an algorithm to ro-
bustly compute generalized extremal stabbing lines using ε meth-
ods, and a procedural approach to connect shadow boundaries. We

574

Figure 19: Discontinuity edges for an area light source for three complex models (Vizzy, Tree and Agave – floor only).

demonstrated that our approach is consistent both in terms of the
usage of ε and in preservation of shadow boundary connectivity.
Finally, we present robust blocker predicates for ε computations,
both for connected models, and models which do not have con-
nectivity information. We also handle intersecting polygons. Our
results show that we can robustly compute both directional and soft
shadow boundaries on complex models.

Our method greatly improves the usability of analytic shadow al-
gorithms for real scenes. We consider the idea of consistent feature
merging to be of particular interest, since it may lead to an interest-
ing development of hierarchical visibility methods. Currently, the
multi-face approach requires connectivity information. If connec-
tivity information is missing, interesting problems arise, since, for
large ε values we may wish to merge small features which are rel-
atively far apart, such as the bones of the Vizzy model Fig. 16. We
find this line of research interesting, and inevitably dependent on
application requirements in terms of output.

Evidently, our approach is limited by the inherent computational
complexity of visibility events. It is known that the worst-case com-
putational complexity of the full discontinuity mesh is O(n4

) for
the E4 ESL’s, with n the number of objects/edges, multiplied by
mesh construction cost which can be O(n2

) on each object. In cases
where the number of E4 events is large, such as the Tree example,
this effect becomes significant, although the worst case bounds are
still very pessimistic. In our approach ESL enumeration and elim-
ination are brute-force, but cheap, while the more expensive ESL
validation step is output dependent. Developing optimal algorithms
is an interesting research direction, and should follow the spirit of
sweep approaches (e.g., [21]).

As with any robust algorithm, it is interesting to discuss pos-
sible cases of failure. The use of ε predicates means that we will
never block an ESL which should not be blocked. For the same rea-
son however, we may enumerate and validate an ESL which should
have been blocked. This is not problematic since no swath will be
connected to this ESL, and therefore the output will remain consis-
tent. In its current form, we do not guarantee topological consis-
tency of shadows for very large ε values; shadows simply disappear
after a certain point. More sophisticated application-dependent ap-
proaches could be developed to guide the way simplified swaths are
created.

Our approach could be directly applied to the global illumination
method of [10], since all operations are performed in that method
on a link basis, which is exactly equivalent to the emitter-receiver
pair we use here.

Acknowledgments
Thanks to P. Poulin for reading an early version and M. Stamminger for his many
comments and for making the video. This work was partially supported by the INRIA
Action de Recherche Coopérative (ARC Vis3D) on 3D Visibility. The initial ideas
leading to this work originated in F. Durand’s Ph.D. thesis. We would like to thank
him for the many fruitful discussions and exchanges.

References
[1] M. Agrawala, R. Ramamoorthi, A. Heirich, and L. Moll. Efficient image-based

methods for rendering soft shadows. In ACM SIGGRAPH 2000, Annual Confer-
ence Series, pages 375–384, July 2000.

[2] K. Bala, J. Dorsey, and S. Teller. Radiance interpolants for accelerated bounded-
error ray tracing. ACM Transactions on Graphics, 18(3):213–256, July 1999.

[3] A. T. Campbell, III and D. S. Fussell. Adaptive mesh generation for global
diffuse illumination. Computer Graphics (Proc. SIGGRAPH ’90), 24:155–164,
August 1990.

[4] N. Chin and S. Feiner. Fast object-precision shadow generation for areal light
sources using BSP trees. In Computer Graphics (1992 Symposium on Interactive
3D Graphics), volume 25, pages 21–30, March 1992.

[5] F. C. Crow. Shadow algorithms for computer graphics. Computer Graphics
(Proc. SIGGRAPH 77), 11(2):242–248, July 1977.

[6] G. Drettakis and E. Fiume. A fast shadow algorithm for area light sources using
back projection. In ACM SIGGRAPH 94, Annual Conference Series, pages 223–
230, July 1994.

[7] T. Duff. Interval arithmetic and recursive subdivision for implicit functions
and constructive solid geometry. Computer Graphics (Proc. SIGGRAPH’92),
26(2):131–138, July 1992.

[8] F. Durand. 3D Visibility: analytical study and applications. PhD thesis, Univer-
sité Joseph Fourier, Grenoble I, July 1999. http://www-imagis.imag.fr.

[9] F. Durand, G. Drettakis, and C. Puech. The Visibility Skeleton: A Powerful and
Efficient Multi-Purpose Global Visibility Tool. In ACM SIGGRAPH 97 (Los
Angeles, CA), Annual Conference Series, August 1997.

[10] F. Durand, G. Drettakis, and C. Puech. Fast and accurate hierarchical radiosity
using global visibility. ACM Trans. on Graphics, 18(2):128–170, Apr 1999.

[11] Z. Gigus and J. Malik. Computing the aspect graph for the line drawings of poly-
hedral objects. IEEE Trans. Pattern Analysis and Machine Intelligence, 12(2),
February 1990.

[12] E. A. Haines. Shaft culling for efficient ray-traced radiosity. In Photorealistic
Rendering in Comp. Graphics, pages 122–138. Springer Verlag, 1993. Proc. 2nd
EG Workshop on Rendering (Barcelona, 1991).

[13] P. Heckbert. Discontinuity meshing for radiosity. Proc. Third Eurographics
Workshop on Rendering, Bristol, pages 203–226, May 1992.

[14] J. J. Koenderink and A. J. van Doorn. The internal representation of solid shape
with respect to vision. Biological Cybernetics, 32(4):211–216, 1979.

[15] L. Leblanc and P. Poulin. Guaranteed occlusion and visibility in cluster hierar-
chical radiosity. In Rendering Techniques 2000, (Proc. 11th Eurographics Work-
shop on Rendering 2000), pages 89–100, June 2000.

[16] D. Lischinski, F. Tampieri, and D. P. Greenberg. Discontinuity meshing for ac-
curate radiosity. IEEE CGA, 12(6):25–39, November 1992.

[17] nvidia. webpage. http://developer.nvidia.com/
view.asp?IO=cedec stencil.

[18] D. Salesin, L. Guibas, and J. Stolfi. Epsilon geometry: Building robust algo-
rithms from imprecise computations. In Annual Symposium on Computational
Geometry, 1989. Saarbrucken, West Germany.

[19] J. M. Snyder. Interval analysis for computer graphics. Computer Graphics
(Proc. SIGGRAPH’92), 26(2):121–130, July 1992.

[20] C. Soler and F. X. Sillion. Fast calculation of soft shadow textures using convo-
lution. In ACM SIGGRAPH’98, Annual Conference Series, pages 321–332, Jul
1998.

[21] A. J. Stewart and S. Ghali. Fast computation of shadow boundaries using spatial
coherence and backprojections. In ACM SIGGRAPH 94, Annual Conference
Series, pages 231–238, July 1994.

[22] S. Teller. Visibility Computations in Densely Occluded Polyhedral Environ-
ments. PhD thesis, UC Berkeley, 1992.

[23] S. J. Teller. Computing the antipenumbra of an area light source. Computer
Graphics (Proc. SIGGRAPH 92), 26(4):139–148, July 1992.

[24] K. Weiler and K. Atherton. Hidden surface removal using polygon area sorting.
Computer Graphics (Proc. SIGGRAPH 77), 11(2):214–222, July 1977.

[25] L. Williams. Casting curved shadows on curved surfaces. Computer Graphics
(Proc. SIGGRAPH 78), 12(3):270–274, August 1978.

575

