
Visual Comput (2007) 23: 773–782
DOI 10.1007/s00371-007-0129-4 O R I G I N A L A R T I C L E

Sylvain Charneau
Lilian Aveneau
Laurent Fuchs

Exact, robust and efficient full visibility
computation in Plücker space
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Abstract We present a set of new
techniques to compute an exact
polygon-to-polygon visibility in
Plücker space. The contributions
are based on the definition of the
minimal representation of lines
stabbing two convex polygons.
The new algorithms are designed
to indicate useless computations,
which results in more compact
visibility data, faster to exploit, and
in a reduced computation time. We

also define a simple robust and exact
solution to handle degeneracies,
where previous methods proposed
aggressive solutions.
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1 Introduction

This paper presents a set of new techniques for a theoret-
ically exact polygon-to-polygon visibility. The polygon-
to-polygon visibility characterisation is very useful infor-
mation, which can have several applications in computer
graphics, from soft shadow computation to fast from-
region visibility queries.

Most tractable methods [1, 4, 7, 10] that fully or par-
tially represent the visibility between two polygonal faces
use the Plücker space of lines in R3 [11, 13]. In this space,
the visibility computation consists in performing CSG op-
erations to solve the selective stabbing problem [9].

Nirenstein et al. [10] propose the first exact and
tractable solution to the from-region visibility problem. It
is used to precompute an exact PVS (potentially visible
set) for an interactive walkthrough application. Haumont
et al. [4] present a low-dimensional framework that im-
proves the Nirenstein method. Notice that these two works
do not compute a complete representation of the visibility.
They aim to find at most one visibility, as fast as possible.
Therefore, these algorithms can process large scenes, but
do not characterise how the polygons are seen from other
ones.

Bittner [1] computes a complete representation of the
visibility from a polygon facing a scene. The visibility
data are encoded in a BSP-tree in the Plücker space and,
as in the work by Nirenstein and Haumont, used to prepro-
cess the PVS. Mora et al. [7] take advantage of both Niren-
stein’s and Bittner’s approaches to compute a BSP repre-
sentation of the complete visibility between two polygons.
Both Bittner and Mora entirely compute the visibility, as
opposed to Nirenstein and Haumont. The downside is the
inability to process complex scenes due to an important
data volume.

Actually, all these methods fail to determine efficiently
which operations can be avoided. The main reason is the
difficult handling of the Plücker space, which does not al-
low for easy geometrical reasoning. Likewise, they fail to
process degeneracies exactly. Previous solutions are ag-
gressive and do not result in an exact visibility description.

The aim of this paper is to obtain a robust method
to compute a full polygon-to-polygon visibility, which
highly reduces the visibility data by limiting useless split-
tings. This will enable the computation of the visibility in
larger scenes.

This paper is organised as follows: Sect. 2 recalls the
previous works and their limitations. Section 3 presents
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our four contributions to the visibility computation. These
contributions first concern a new rejection test which indi-
cates useless splittings, with a low computation cost. Sec-
ond, a new silhouette processing algorithm is discussed,
which leads to a large occluders detection based on the
number of hidden objects, instead of their relative size,
allowing to greatly optimise the silhouette processing. Fi-
nally, the contributions concern a straightforward and ex-
act method to handle degeneracies. In Sect. 4, our visibil-
ity computation method is compared to previous methods
with some test scenes, to evaluate the reduction of the vis-
ibility data and of the computation time.

2 Visibility computation in Plücker space

This section recalls the general principles of the visibil-
ity computation and representation in Plücker space. Then,
optimisations and limitations of previous works are de-
tailed.

2.1 Plücker space

Plücker space [13] is an elegant parameterisation of dir-
ected lines in R3. Lines are represented by vectors in R6,
assuming that two vectors a and λa represent the same
element, for any a in R6 and λ in R∗+. This corres-
ponds to a five-dimensional projective space P5. The rep-
resentation is achieved in the following way: let l be
a line passing through the points P : (px, py, pz) and
Q : (qx, qy, qz). This line is mapped to a 6-tuple l∗ =
(π0, π1, π2, π3, π4, π5), lying on a quadric in P5, called
the Plücker quadric Q (see Fig. 1). The 6-tuple l∗ is called
the Plücker coordinates of the line l. It is defined in P5 by:

(π0, π1, π2) = Q − P = PQ
(π3, π4, π5) = P × Q.

Representing lines by vectors in a vector space is of great
interest, because it allows for the expression of geometric

Fig. 1. Relative orientation of lines in the Plücker space. There are
three different cases for an oriented line to pass another: l1 passes
on the left of l0, l2 is incident to l0 and l3 passes l0 on the right.
Their maps l∗1, l∗2, l∗3 lie above, on, and below hl∗0 , respectively

relations between lines by computations on vectors, like the
relative orientation of two directed lines. This relative orien-
tation of two lines can be interpreted as the way the first line
rotates around the second one, as illustrated in Fig. 1.

A dual hyperplane hl∗ can be associated to each elem-
ent l∗ in P5 representing a line l in R3. This hyperplane is
defined by:

hl∗ = {
x ∈ P5 | hl∗(x) = 0

}

where

hl∗(x) = π3x0 +π4x1 +π5x2 +π0x3 +π1x4 +π2x5.

Such a hyperplane induces a positive half space h+
l∗ =

{x ∈P5 | hl∗(x)>0}and a negative half space h−
l∗ ={x ∈ P5 |

hl∗(x) < 0} in the Plücker space. While the hyperplane hl∗
is the set of lines incident to l, each half space determines
a set of lines missing l, with an opposite relative orientation
according to the half space to which they belong.

2.2 Polygon-to-polygon visibility

In this section, the general principles of Nirenstein’s so-
lution to the visibility computation are recalled from [9].
Let A and B be two convex polygons with n1 and n2 ver-
tices. Let {e1, . . . , en1+n2} be the oriented lines defined by
two consecutive vertices of A or B. There exists a unique
orientation for the lines (ei)i=1,... ,n1+n2 such that every
line l stabbing A and B satisfies:

∀ i ∈ [1, . . . , n1 +n2], he∗
i
(l∗) ≥ 0. (1)

This system of inequations is the hyperplane representa-
tion of an unbound polyhedron P in the Plücker space. In
practice, some constraints are added in order to bound P .
The result is a convex polytope PAB, which represents the
same set of stabbing lines, i.e. P ∩Q = PAB ∩Q.

Computing the visibility consists in removing the lines
stabbing an occluder O from the remaining lines stab-
bing A and B. Denoting {o1, ..., om} as the oriented edges
of O, a similar reasoning as in Eq. 1 gives the set of lines
stabbing A and B but not O:

PAB −
m⋂

1

h+
o∗

i
.

By splitting PAB against the hyperplanes ho∗
i
, the subset

of lines blocked by the occluder is computed and then
removed, as shown in Fig. 2. Processing every occluder
in the same way results in some polytopes representing
exactly the set of lines stabbing A and B and omitting
every occluder.

However, the naïve solution, which consists in comput-
ing a hyperplane arrangement by splitting every polytope
by each hyperplane, results in an excessive amount of
splittings. Pu [12] used such a solution and was limited to
processing about fifteen occluders.
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Fig. 2. Occluder removal. The set of lines blocked by an occluder O
is computed using CSG operations in the Plücker space. The re-
maining parts of the polytope represent the visibility between A
and B

Actually, many splittings can be avoided. Ideally,
a splitting has to be computed, for an occluder O, if
and only if the intersection PAB ∩ PAO ∩Q is non-empty.
The previous works of Nirenstein [10], Bittner [1] and
Mora [7] aimed at limiting this splitting in different ways.

2.3 Optimisations and limitations in previous methods

The previous techniques used to limit the visibility split-
ting and to handle degeneracies are now presented with
their limits.

2.3.1 The minimal polytope

The first solution to limit the splitting is to have the bounds
of the polyhedron P , defined by Eq. 1, as close as possible
to the quadric Q, which is the only area of interest. This
will result in a small initial polytope PAB which can avoid
splittings resulting in polytopes containing only points out
of the quadric. A minimal candidate for PAB should be de-
fined as the smallest polytope containing all the points on
the Plücker quadric representing lines stabbing the poly-
gons A and B.

In [4, 9], the proposed solution consists in translating
points in P5, corresponding to the lines from a vertex of
A to a vertex of B, in a particular direction. This method
is equivalent to the addition of two parallel hyperplanes to
have the polyhedron bound, but it does not define the min-
imal polytope. Moreover, they do not evaluate the distance
between their initial polytope and the Plücker quadric,
which prevents the determination of the number of split-
tings that should be avoided with a smaller polytope.

To avoid this problem, Mora et al. [7] use a back-
splitting technique to cancel a splitting if the resulting
polytope does not intersect with the Plücker quadric, re-
quiring back-ups of intermediate results.

2.3.2 Determining non-empty polytope intersections

Another solution to limit the splitting of the visibility is
to determine whether the intersection PAB ∩ PAO is empty

or not, ignoring the quadric for a while, since one cannot
compute directly with it.

Bittner’s solution consists in representing the visibility
by a BSP-tree [1]. The test is then achieved by inserting
an occluder in the BSP-tree. This insertion corresponds to
a standard polytope insertion algorithm in a BSP-tree [8].
The polytope PAO is split by the hyperplanes contained in
the tree inner nodes. If no polytope remains at the end, the
intersection is empty. Nevertheless, this method requires
a huge amount of intermediate computations (splittings
of PAO) and is sensitive to numerical imprecision.

In [4, 7, 10], the authors use instead an implicit repre-
sentation of PAO, given by the hyperplanes corresponding
to the occluder edges. The test consists in rejecting the ver-
tices of PAB against those hyperplanes. If one hyperplane
rejects all the vertices, the intersection is empty. How-
ever, this test is insufficient. Indeed, it must also reject the
vertices of PAO against the hyperplanes of PAB, as illus-
trated in Fig. 3. The authors do not perform this second
test because they do not have a representation of those ver-
tices.

Thus, it appears that either these techniques lead to nu-
merous intermediate computations or they cannot avoid
some useless splittings due to an incomplete rejection
test.

2.3.3 Ordering occluders

A critical way to accelerate the computation and to re-
duce the visibility splitting is to determine a good order
to subtract occluders, according to their importance in the
occlusion of B from A.

Two solutions appear in [9]. The first is a heuristic on
the solid angle of the occluders. The second, taken back
in [4], consists in shooting rays into the remaining visibil-
ity computed between A and B and measuring, for each
remaining occluder, the number of rays intersecting it. The
biggest occluder is the one which is intersected by most of
the rays.

However, whereas the first technique does not return
good order in all cases, the second only gives the first
biggest occluder. So, this process must be repeated before
each occluder subtraction. Moreover, these two methods
do not take into account the number of objects that the
large occluders hide, in order to avoid processing those
hidden objects.

Fig. 3. Polytope rejection test. Two
tests must be performed, first ver-
tices of PAB against hyperplanes of
PAO then vertices of PAO against hy-
perplanes of PAB
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Fig. 4. A degeneracy case. The plane that sup-
port A intersects B

2.3.4 Degeneracies

A degeneracy occurs when the plane supporting the face A
intersects the plane supporting the face B on B itself or on
an edge or a vertex of B (and vice versa). Figure 4 shows
a frequently occurring degeneracy.

Previous methods fail in dealing with such cases, since
they use an unsuitable projection of vectors in R6. Recall
that all lines in R3 are mapped to vectors in R6 whereas
Plücker space only has five dimensions. In [4, 9], vectors
are projected on a hyperplane in the following way (the
projection only depends on a change of coordinate sys-
tem):

(π0, π1, π2, π3, π4, π5) �→
(

1,
π1

π0
,
π2

π0
,
π3

π0
,
π4

π0
,
π5

π0

)
.

This projection is a direct adjustment of the homo-
geneous coordinates used in the usual three-dimensional
space. It allows to retrieve only five dimensions but fails
for π0 = 0 (which corresponds to points at infinity) or
leads to numerical imprecisions when π0 � 0. Yet, points
at infinity appear with degeneracies. The previous solution
is to split and truncate the intersected face along the inter-
section (the dashed line in Fig. 4). Therefore, this method
is no more exact but aggressive and numerically unstable
due to points almost at infinity. We consider this solution
as unacceptable for a theoretical exact visibility computa-
tion technique.

3 New techniques for computing visibility

Our method is now presented in three parts. All our contri-
butions are based on the definition of the minimal convex
polytope representing the lines stabbing two polygons.
The definition and its interests are discussed below.

3.1 Visibility representation and occluder rejection

Our representation of the visibility follows the solution
proposed in [1, 7]: a set of polytopes (or polytope com-
plex) is represented by a BSP-tree in the Plücker space.
Each upper node to a leaf contains a hyperplane deter-

mining one boundary of the polytope which is contained
in the leaf. Two kinds of leaves can be distinguished:
visible leaves, containing a polytope representing a re-
maining part of the visibility between A and B, and invis-
ible leaves, representing occlusions. The polytope in the
leaves is represented only by its vertices and edges, fol-
lowing [4].

The originality of our algorithm resides in the occluder
insertion in the BSP-tree, to take into account the occlu-
sion, which is based on a coherent definition of the min-
imal polytope.

3.1.1 Definition of the minimal polytope

The definition of the minimal polytope is given in [3] by
the following theorem.

Theorem 1. The set of lines stabbing two convex polygons
A and B in R3 is the intersection of the Plücker quadric
with the convex hull of the lines going through one vertex
of A and one vertex of B if and only if the support planes
of A and B do not intersect in A or B.

This says that a convex polytope does not exist in de-
generacy cases except when the intersection of A and B
is either on an edge or a vertex. But, any degeneracy can
be reduced to one of these two particular degeneracies
by splitting the intersected face along the intersection, but
without truncating it, like in previous methods.

The major advantage of Theorem 1 is the ability to
obtain the vertices of the minimal polytope, with few com-
putations, from the vertices of A and B. It is of use in two
parts of our application. First, a convex hull incremental
algorithm [2] is used to compute the initial polytope PAB
from its set of vertices. This algorithm is here adapted to
a convex hull in an oriented projective space and to a set of
points in any position. Second, from the vertex representa-
tion of PAO which can now be easily determined for each
occluder O, the second rejection test, missing in previous
methods, can be performed.

3.1.2 Occluder insertion

The first use of the new rejection test concerns the oc-
cluder insertion in a BSP-tree. Thanks to Theorem 1, the
vertices of PAO are computed for each occluder O. Then,
the occluders are inserted by proceeding with the rejec-
tion of the PAO vertices against the polytopes boundaries
contained in the tree. Recall that these boundaries are the
hyperplanes in the tree inner nodes.

To understand the importance of this rejection test,
Fig. 5 shows the result of an occluder insertion obtained
without rejection, with a partial or with a complete re-
jection test. The polytope PAO represents lines stabbing A
and the occluder O, whereas the three polytopes P1,
P2 and P3 represent the remaining visibility, encoded in
a BSP-tree.
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Fig. 5a–c. Results of the polytopes splitting after the tree traversal. a Without rejection test. b With partial rejection test. c With total
rejection test. The drawings (on the left) show how the polytopes are split, and the trees (on the right) show which nodes are visited
during the algorithm, and which leaves are split or rejected

Figure 5a corresponds to a hyperplane arrangement
(without any rejection) and leads to nine polytopes. This is
equivalent to Pu’s solution [12]. The second Fig. 5b shows
the insertion with a partial rejection as used in [4, 7, 10] (see
Sect. 2.3). It creates here six polytopes. The rejection of the
vertices of (Pi)i=1,2,3 against the hyperplanes of PAO en-
ables the rejection of the polytope P1 by the hyperplane ho2 .
A complete rejection test (Fig. 5c) successively rejects the
polytope PAO by the hyperplanes h1 and h3. It is not inserted
in the corresponding subtrees. The occluder insertion leads
to four polytopes by splitting the lone polytope P2.

In practice, this rejection test is achieved on each oc-
cluder edge separately, instead of the whole occluder. This
determines which edges really change the visibility.

Algorithm 1 presents our occluder insertion: First,
the occluder edges are inserted in the BSP-tree root
(procedure InsertOccluder). If this root contains
a hyperplane, the edges are rejected against it (function
RejectEdges, lines 6, 17). If the root is a leaf, a second
rejection test is achieved with the polytope vertices against
the hyperplanes of the occluder O (function isSplit,
line 11). This second test corresponds to the partial rejec-
tion performed in previous works [4, 7, 10].

Algorithm 1. Occluder insertion in the BSP-tree algo-
rithm, using an exhaustive rejection test in inner nodes.

1 Polygon A, B, O
2 procedure InsertOccluder (VBSP tree ; EdgeList O;

Polygon A)
3 begin
4 if isInnerNode (tree) then
5 EdgeList posList, negList
6 (posList, negList) ← RejectEdges (O, A, tree.hp)
7 InsertOccluder (tree.posTree, posList, A)
8 InsertOccluder (tree.negTree, negList, A)
9 else
10 if isVisibleLeaf (tree) then
11 if isSplit (tree.polytope, O) then
12 addSubtree (tree, tree.polytope, O)
13 end
14 end
15 end
16 end

17 function RejectEdges (EdgeList O; Polygon A;
Hyperplane H)

18 EdgeList posList, negList
19 begin
20 foreach edge in O do
21 L ← lines from vertices of A to vertices of the edge
22 foreach line l in L do
23 if H(l∗) > 0 and edge /∈ posList then
24 Add edge in posList
25 else
26 if H(l∗) < 0 and edge /∈ negList then
27 Add edge in negList
28 end
29 end
30 end
31 end
32 return (posList, negList)
31 end

Our supplementary test is described in the function
RejectEdges. This test rejects each occluder edge on
one side or on both sides of a hyperplane according to
the side where the lines L lie (line 21). Those lines are
obtained from the vertices of the source polygon and the
vertices of the edge to be rejected. This rejection tech-
nique is consistent thanks to the definition of the minimal
polytope. By interpreting the hyperplane H by a line lH
inR3, this rejection corresponds to detecting the side of lH
where the penumbra wedge associated to the edge lies.
Recall that the penumbra wedge is the shadow volume de-
termined by the edge and the light source A [5].

The function RejectEdges returns two lists, corres-
ponding to the edges to be inserted in the positive subtree
and in the negative subtree of the root respectively (lines 7
and 8). If no edge remains, the polytopes under the root are
either fully in or fully out of PAO. The second rejection test
determines which case occurs.

The proposed new test, performed in the inner nodes
and missing in previous works, consequently reduces the
visibility splitting. Moreover, this test requires few com-
putations: only some Plücker maps of known points in R3

and some lines relative orientation computations. The con-
sequences of this extra rejection on the visibility splitting
are discussed in Sect. 4.
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3.2 Using extended silhouettes

The interest to process only silhouette edges, instead of
every occluder, is to limit the computation to elements
which potentially change the visibility. Haumont was the
first to include a silhouette processing in exact from-
polygon visibility computation [4]. However, his tech-
nique for silhouette extraction is time-consuming due to
the propagation process and is not well-suited to our algo-
rithm since Haumont’s algorithm only tests the visibility.

Our occluder insertion in the BSP-tree rejects edges in-
stead of polygons. Algorithm 1 is then adapted to insert
edges as occluders, allowing to deal with silhouette edges.

From a viewpoint, a silhouette edge is an edge con-
nected to two faces, with the viewpoint lying in two dif-
ferent half spaces delimited by the oriented planes sup-
porting the two faces. This definition conforms to the clas-
sical definition of silhouette edges [5] and is illustrated
in Fig. 6. The edge e on the figure is a silhouette from
every viewpoint lying in the +− or the −+ subspaces.

Since the silhouette is computed from viewpoints on A
and B, this definition can be extended to silhouette edges
from multiple viewpoints: an edge is a silhouette from
a set of viewpoints if it is a silhouette from at least one
viewpoint in this set. Occluders for which every edge be-
longs to the silhouette are considered as silhouette faces
and are processed as previously described. Notice that, to
handle general scenes like objects with holes for example,
edges only connected to one face are also considered as
elements of the silhouette.

The visibility computation is then achieved in two
steps. First, every silhouette element (edge or polygon) is
inserted in the tree, using Algorithm 1 modified to han-
dle edges like faces. This first process makes all necessary
splits to separate the lines passing over some occluders
and the ones missing all of them, except for some sil-
houette singularities which are handled during the second
process. This process does not determine which leaves,
in the BSP-tree, contain a polytope representing occluded
lines.

Fig. 6. Determining silhouette edges from a viewpoint v

This leads to the second step which consists in insert-
ing in the tree each occluder which does not belong to the
silhouette. It determines which leaves are visible or invis-
ible and when there is a singularity.

A singularity consists of two edges such that lines
from A to B rejected on some side of the two edges lie
both on h+

l∗∞ and h−
l∗∞ , where l∞ is the line at infinity de-

termined by the two edges directions. This line has coordi-
nates l∗∞ = (0, d1 × d2) where 0 is the zero vector in R3,
and d1 and d2 are the directions in R3 of the two edges.
The simplest singularity is composed of two consecutive
occluder edges form a plane intersecting A and B.

Recall that the vertices of PAO are the lines from a ver-
tex of A to a vertex of O. A singularity occurs in the
silhouette if the vertices of PAO, lying in h+

l∗∞ (resp. h−
l∗∞)

are rejected by the two edges, whereas the vertices of PAO
in h−

l∗∞ (resp. h+
l∗∞) are not rejected. In this case, the leaf

represents occluded lines on the side the occluder is not re-
jected and visible lines on the side it is rejected. In order
to separate these lines, the leaf must be split by the hyper-
plane associated to l∗∞.

3.2.1 Large occluders

To avoid computations on many silhouette edges which
are hidden by few large occluders, a large occluder de-
tection is described. Contrary to previous works [4, 7, 10]
which also define an occlusion measure of occluders (see
the occluder ordering in Sect. 2.3), our technique is not
based on a heuristic but on the effective number of objects
hidden by an occluder. The large occluders must then be
processed before the silhouette elements.

A detection based on the number of hidden objects is
much more efficient than any heuristics in this case. More
precisely, consider two boxes, a large one which is empty
and a small one containing many small objects. It is of
course preferable to consider the faces of the small box as
large occluders, since they hide all the objects the box con-
tains. While on the contrary, a heuristic based on the size
of the polygons should choose the faces of the large box
as larger occluders, even if these faces do not simplify the
silhouette.

The detection of hidden objects is now explained. An
edge E (or a whole polygon) is hidden by an occluder O
if and only if each line from a vertex of A to a vertex of E
intersects O (see Fig. 7). If e1 and e2 are the vertices of the
edge e, (ai)i=1,...,n the vertices of A and (eoi )i=1,...,m the
edges of the occluder O, we have, according to Eq. 1:

∀i ∈ [1; . . . ; n], j ∈ [1; 2], k ∈ [1; . . . ; m],
h(ai,ej)

∗(e∗
k) ≥ 0.

This large occluder detection consequently reduces the
number of silhouette edges to process in many situations,
and gives better results than detections based on some
heuristics. Some typical examples are shown in Sect. 4.
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Fig. 7. Detection of large occlud-
ers O which “hide” edges according
to a source A

3.3 Dealing with degeneracies

Handling degeneracies first needs a correct definition of
the initial polytope PAB. The minimal polytope presented
in Sect. 3.1.1 is suitable since it is also constructible when
a degeneracy occurs. Second, it needs to be able to repre-
sent points at infinity (see Sect. 2.3). Actually, such points
can easily be represented by using a projection of vectors
on the hypersphere S5 in R6.

Figure 8 shows an example in P1, represented by vec-
tors in R2. In Fig. 8a, it is clear that the vector e1, paral-
lel to the hyperplane e0 = 1, cannot be projected on this
hyperplane. This vector is a point at infinity. As a conse-
quence, projecting vectors of R6 on a hyperplane, as in
previous works, prevents representing such points in P5.
On the contrary, those vectors can be projected on a hyper-
sphere (see Fig. 8b), where e1 can be projected on the
circle S1 (the one-dimensional hypersphere). This projec-
tion represents points at any direction, even at infinity.

Since the Plücker space is an oriented projective space
(i.e. for all λ in R∗+, two vectors v and λv in R6 represent
the same element of P5), computing the visibility with λv
instead of v does not change the final result. As a conse-
quence, we do not have to pay attention to the change of
normalisation.

Thanks to this new projection, degeneracies can be
handled transparently, while keeping a theoretically exact
visibility computation technique.

4 Discussion

In this section, we analyse the impacts of our new algo-
rithms and optimisations and discuss some possible im-
provements.

4.0.1 Analysis context

The study first concerns the impact of the new occluder
insertion algorithm, including the rejection test in the in-
ner nodes of the BSP-tree (see Sect. 3). Second, it eval-
uates the importance of the silhouette processing, and
comparisons are made between computation times, BSP-
trees sizes and memory requirements.

Fig. 8. Different projections in a vector space

All tests were performed on an Athlon 64, running at
2.8 GHz and with 3 Gb RAM and 2 Gb swap. The GNU
multiple precision arithmetic library (GMP) [14], is used
for the Plücker data. It performs precise computations but
also decreases the computation speed on coordinates by
about a factor of 50 compared to a double precision arith-
metic. However, since our method is used to precompute
the visibility, accuracy is more important than speed.

Notice that the comparisons are not between the Niren-
stein and Haumont results and our results, since they only
compute a partial visibility representation until they find
the existence of at least one visibility, and our method aims
at computing the full visibility. Therefore, the compari-
sons are between our rejection technique and their partial
technique.

4.0.2 Comparison scenes

This study uses five test scenes presented in Fig. 9. The
visibility is computed from each light source for every
polygon in the scene. The first three scenes (Deformed
Sphere, Three Pens and One Pen) contain few polygons
but represent various visual complexities.

The two other scenes (Room and Building) show our
optimisations behaviour in virtual scenes containing ob-
jects with many different visual complexities. The first one
presents only one object with a high visual complexity
(a plant in Fig. 9e). The second contains many more poly-
gons and lights (about 20 k polygons and 15 lights, leading
to 300 k computed BSP-trees) and many tessellated ob-
jects. Notice that the last scenes results do not present
statistics for the partial rejection test. Indeed, we were un-
able to process it with this partial test, due to an excessive
amount of splittings which require too much memory.

4.1 Visibility computation results

Table 1 shows the results obtained with the different
methods. The first remark on the scene Three Pens is that
our method reduces the number of inner nodes by about
a factor of 2, in spite of the low visual complexity. The
difference is all the more important for scenes presenting
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Fig. 9. Test scenes used for comparisons. The visibility data are applied here to compute soft shadows in an interactive ray-tracer

Table 1. Visibility computations results for different scenes, using GMP. These results are followed by ratios, taking the first column as
reference

Name Size∗ Silhouettes and total rejection Total rejection Partial rejection
IN∗∗ L∗∗ CT∗∗ MM∗∗ IN L CT MM IN L CT MM

Three 1011 (1) 1432 620 7 min 57 s 19 Mb 1960 596 7 min 11 s 12 Mb 2470 747 7 min 47 s 12 Mb
Pens ×1.369 ×0.961 ×0.904 ×0.632 ×1.725 ×1.205 ×0.979 ×0.632

One Pen 339 (1) 1811 754 3 min 25 s 137 Mb 3264 875 5 min 59 s 185 Mb 47851 18113 1 h 36 min 44 s 2461 Mb
×1.802 ×1.160 ×1.751 ×1.350 ×26.422 ×24.023 ×28.312 ×17.964

Def. 323 (1) 6108 2079 6 min 57 s 197 Mb 9359 2586 20 min 56 s 370 Mb 83708 29502 2 h 50 min 02 s 1849 Mb
Sphere ×1.530 ×1.244 ×3.012 ×1.878 ×13.705 ×14.190 ×24.465 ×9.386
Room 2940 (2) 6912 3337 22 min 08 s 10220 3512 12 min 05 s 24494 9003 27 min 02 s

×1.478 ×1.052 ×0.546 ×3.543 ×2.698 ×1.221

Building 18880 (15) 4803 1930 33 min 17 s 6343 1883 26 min 44 s – – – > 5 Gb
×1.321 ×0.976 ×0.803

∗ Number of polygons (number of light sources)∗∗ Average values per light source
IN number of inner nodes, L number of visible leaves, CT computation time, MM maximum memory usage during the visibility compu-
tation, if available

high visual complexities: One Pen, which contains many
short edges in the pen’s lead, and Deformed Sphere, which
presents a moderately tessellated object. For both scenes,
regarding only the rejection test impact, the BSP-tree sizes
and the computation times are decreased by more than 90%
with our method.

The memory usage concerns the maximal memory
requirement during the visibility computation. It conse-
quently depends on the sizes of both the BSP-trees and
the polytopes. For applications, only the BSP-trees are re-
quired, so the memory requirement in those applications
only depend on the number of inner nodes (six coordi-
nates per inner nodes, for the hyperplane), which is signifi-
cantly lower. Concerning the size of the polytopes, the more
a polytope is split, the more its size grows due to the increas-

ing number of vertices and edges necessary to represent it.
It explains the high memory requirement for One Pen with
a partial rejection test. This proves that our method is more
stable in terms of memory consumption and enables us to
deal with bigger scenes and more complex objects.
Concerning the silhouette processing, it can increase the
computation time compared to the same method with-
out silhouette. However, this method generally reduces
the computation time compared to the partial rejection
method, and it always reduces the number of inner nodes,
whatever the method, complete or partial rejection. The
result is a more balanced BSP-tree which accelerates its
traversal in applications.

Finally, the Building shows our ability to process larger
scenes with many tessellated objects, whereas before we
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were unable to process it with a partial rejection test, due to
the excessive amount of memory required. This scene, com-
posed of many rooms, also shows the advantage of our large
occluders detection. Where the solid angle measure returns
inappropriate results, our method efficiently detects the cor-
rect large occluders, which avoids processing the complete
silhouette of complex objects, such as the chair in Fig. 9f,
when those objects are hidden from lights by large walls.

4.2 Application

Our visibility computation method is applied in an inter-
active ray-tracer to compute soft shadows. The visibil-
ity data are precomputed and saved into files, which are
then used to render soft shadows, based on Mora’s vis-
ibility query [6], at an interactive frame rate. To save
memory, the BSP-trees are loaded with single precision
arithmetic values. The ray-tracer software uses a coherent
approach based on Wald’s previous work [15] to render
800×600 pixels images. Rays are intersected with the tri-
angles four at a time, using SSE instructions.

On the scene Building, using the trees computed with
the silhouette, the ray-tracer allows to trail round the rooms
with about 2 to 13 fps, with an average of 3.5 fps. In the One
Pen scene and in the worst case, when the camera moves
closer to the lead shadow, the frame rate using the trees com-
puted without the first rejection is about seven times slower
(0.09 fps) than using the reference tree with silhouettes and
a complete rejection test (0.65 fps).

This application shows the high speed of the tree
traversals, thanks to their compactness, which maintains
an interactive soft shadows rendering.

5 Conclusion

In this article, we propose new algorithms to compute the
visibility between pairs of convex polygons in R3. Our
algorithms offer some improvements to existing methods
which can be easily plugged into the previous algorithms.
First, we define a robust and exact technique to deal
with degenerate cases. Second, our algorithms implement
a new rejection test, based on the minimal representation
of the visibility by a polytope in the Plücker space, which
significantly reduces the visibility splitting. Third, we pro-
pose an algorithm to process only the silhouettes instead
of the whole objects.

The splitting reduction has a direct impact on the use
of the visibility data in any application: the compactness
of the visibility BSP-tree increases the speed of the tree
traversal, and the data extraction.

This visibility data extraction speed is of interest. Ex-
act visibility precomputation can be, for example, used as
an accelerating structure, in place of a classical kd-tree, in
ray-tracing methods.

However, the current methods usability is limited to
static scenes. We are now looking at computing soft
shadows in animated scenes, for non-deformable objects,
by computing the visibility in the bounding boxes of the
objects in the scene and by transforming the hyperplanes
in the BSP-trees (translate and rotate them) according to
the position and orientation of the objects in the scene. We
are also looking for a way to use the visibility data to de-
terminate which polygon is intersected by a ray, without
performing any intersection tests, but simply by traversing
a BSP-tree containing the adequate data.
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