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Abstract

We present a simple but powerful algorithm for optimizing the usage of hardware occlusion queries in arbitrary
complex scenes. Our method minimizes the number of issued queries and reduces the delays due to the latency of
query results. We reuse the results of occlusion queries from the last frame in order to initiate and schedule the
queries in the next frame. This is done by processing nodes of a spatial hierarchy in a front-to-back order and
interleaving occlusion queries with rendering of certain previously visible nodes. The proposed scheduling of the
queries makes use of spatial and temporal coherence of visibility. Despite its simplicity, the algorithm achieves
good culling efficiency for scenes of various types. The implementation of the algorithm is straightforward and it
can be easily integrated in existing real-time rendering packages based on common hierarchical data structures.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism

1. Introduction

Visibility culling is one of the major acceleration techniques
for the real-time rendering of complex scenes. The ultimate
goal of visibility culling techniques is to prevent invisible
objects from being sent to the rendering pipeline. A standard
visibility-culling technique is view-frustum culling, which
eliminates objects outside of the current view frustum. View-
frustum culling is a fast and simple technique, but it does
not eliminate objects in the view frustum that are occluded
by other objects. This can lead to significant overdraw, i.e.,
the same image area gets covered more than once. The over-
draw causes a waste of computational effort both in the pixel
and the vertex processing stages of modern graphic hard-
ware. The elimination of occluded objects is addressed by
occlusion culling. In an optimized rendering pipeline, occlu-
sion culling complements other rendering acceleration tech-
niques such as levels of detail or impostors.

Occlusion culling can either be applied offline or online.
When applied offline as a preprocess, we compute a poten-
tially visible set (PVS) for cells of a fixed subdivision of

the scene. At runtime, we can quickly identify a PVS for
the given viewpoint. However, this approach suffers from
four major problems: (1) the PVS is valid only for the origi-
nal static scene configuration, (2) for a given viewpoint, the
corresponding cell-based PVS can be overly conservative,
(3) computing all PVSs is computationally expensive, and
(4) an accurate PVS computation is difficult to implement
for general scenes. Online occlusion culling can solve these
problems at the cost of applying extra computations at each
frame. To make these additional computations efficient, most
online occlusion culling methods rely on a number of as-
sumptions about the scene structure and its occlusion char-
acteristics (e.g. presence of large occluders, occluder con-
nectivity, occlusion by few closest depth layers).

Recent graphics hardware natively supports an occlusion
query to detect the visibility of an object against the cur-
rent contents of the z-buffer. Although the query itself is
processed quickly using the raw power of the graphics pro-
cessing unit (GPU), its result is not available immediately
due to the delay between issuing the query and its actual
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processing in the graphics pipeline. As a result, a naive ap-
plication of occlusion queries can even decrease the overall
application performance due the associated CPU stalls and
GPU starvation. In this paper, we present an algorithm that
aims to overcome these problems by reducing the number of
issued queries and eliminating the CPU stalls and GPU star-
vation. To schedule the queries, the algorithm makes use of
both the spatial and the temporal coherence of visibility. A
major strength of our technique is its simplicity and versatil-
ity: the method can be easily integrated in existing real-time
rendering packages on architectures supporting the underly-
ing occlusion query.

2. Related Work

With the demand for rendering scenes of ever increasing
size, there have been a number of visibility culling meth-
ods developed in the last decade. A comprehensive survey
of visibility culling methods was presented by Cohen-Or
et al. [COCSD03]. Another recent survey of Bittner and
Wonka [BW03] discusses visibility culling in a broader con-
text of other visibility problems.

According to the domain of visibility computation,
we distinguish between from-point and from-region
visibility algorithms. From-region algorithms com-
pute a PVS and are applied offline in a preprocessing
phase [ARB90, TS91, LSCO03]. From-point algo-
rithms are applied online for each particular view-
point [GKM93, HMC∗97, ZMHH97, BHS98, WS99, KS01].
In our further discussion we focus on online occlusion
culling methods that exploit graphics hardware.

A conceptually important online occlusion culling method
is the hierarchical z-buffer introduced by Greene et
al. [GKM93]. It organizes the z-buffer as a pyramid, where
the standard z-buffer is the finest level. At all other levels,
each z-value is the farthest in the window corresponding to
the adjacent finer level. The hierarchical z-buffer allows to
quickly determine if the geometry in question is occluded.
To a certain extent this idea is used in the current generation
of graphics hardware by applying early z-tests of fragments
in the graphics pipeline (e.g., Hyper-Z technology of ATI or
Z-cull of NVIDIA). However, the geometry still needs to be
sent to the GPU, transformed, and coarsely rasterized even
if it is later determined invisible.

Zhang [ZMHH97] proposed hierarchical occlusion maps,
which do not rely on the hardware support for the z-pyramid,
but instead make use of hardware texturing. The hierarchical
occlusion map is computed on the GPU by rasterizing and
down sampling a given set of occluders. The occlusion map
is used for overlap tests whereas the depths are compared
using a coarse depth estimation buffer. Wonka and Schmal-
stieg [WS99] use occluder shadows to compute from-point
visibility in 2 1

2 D scenes with the help of the GPU. This
method has been further extended to online computation of
from-region visibility executed on a server [WWS01].

Bartz et al. [BMH98] proposed an OpenGL extension
for occlusion queries along with a discussion concerning
a potential realization in hardware. A first hardware im-
plementation of occlusion queries came with the VISU-
ALIZE fx graphics hardware [SOG98]. The corresponding
OpenGL extension is called HP_occlusion_test. A more re-
cent OpenGL extension, NV_occlusion_query, was intro-
duced by NVIDIA with the GeForce 3 graphics card and it
is now also available as an official ARB extension.

Hillesland et al. [HSLM02] have proposed an algorithm
which employs the NV_occlusion_query. They subdivide
the scene using a uniform grid. Then the cubes are traversed
in slabs roughly perpendicular to the viewport. The queries
are issued for all cubes of a slab at once, after the visible
geometry of this slab has been rendered. The method can
also use nested grids: a cell of the grid contains another grid
that is traversed if the cell is proven visible. This method
however does not exploit temporal and spatial coherence of
visibility and it is restricted to regular subdivision data struc-
tures. Our new method addresses both these problems and
provides natural extensions to balance the accuracy of visi-
bility classification and the associated computational costs.

Recently, Staneker et al. [SBS04] developed a method
integrating occlusion culling into the OpenSG scene graph
framework. Their technique uses occupancy maps main-
tained in software to avoid queries on visible scene graph
nodes, and temporal coherence to reduce the number of oc-
clusion queries. The drawback of the method is that it per-
forms the queries in a serial fashion and thus it suffers from
the CPU stalls and GPU starvation.

On a theoretical level, our paper is related to methods aim-
ing to exploit the temporal coherence of visibility. Greene
et al. [GKM93] used the set of visible objects from one
frame to initialize the z-pyramid in the next frame in or-
der to reduce the overdraw of the hierarchical z-buffer. The
algorithm of Coorg and Teller [CT96] restricts the hierar-
chical traversal to nodes associated with visual events that
were crossed between successive viewpoint positions. An-
other method of Coorg and Teller [CT97] exploits temporal
coherence by caching occlusion relationships. Chrysanthou
and Slater have proposed a probabilistic scheme for view-
frustum culling [SC97].

The above mentioned methods for exploiting temporal co-
herence are tightly interwoven with the particular culling al-
gorithm. On the contrary, Bittner et al. [BH01] presented
a general acceleration technique for exploiting spatial and
temporal coherence in hierarchical visibility algorithms. The
central idea, which is also vital for this paper, is to avoid re-
peated visibility tests of interior nodes of the hierarchy. The
problem of direct adoption of this method is that it is de-
signed for the use with instantaneous CPU based occlusion
queries, whereas hardware occlusion queries exhibit signif-
icant latency. The method presented herein efficiently over-
comes the problem of latency while keeping the benefits of
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a generality and simplicity of the original hierarchical tech-
nique. As a result we obtain a simple and efficient occlusion
culling algorithm utilizing hardware occlusion queries.

The rest of the paper is organized as follows: Section 3
discusses hardware supported occlusion queries and a ba-
sic application of these queries using a kD-tree. Section 4
presents our new algorithm and Section 5 describes several
additional optimizations. Section 6 presents results obtained
by experimental evaluation of the method and discusses its
behavior. Finally Section 7 concludes the paper.

3. Hardware Occlusion Queries

Hardware occlusion queries follow a simple pattern: To test
visibility of an occludee, we send its bounding volume to the
GPU. The volume is rasterized and its fragments are com-
pared to the current contents of the z-buffer. The GPU then
returns the number of visible fragments. If there is no vis-
ible fragment, the occludee is invisible and it need not be
rendered.

3.1. Advantages of hardware occlusion queries

There are several advantages of hardware occlusion queries:

• Generality of occluders. We can use the original scene ge-
ometry as occluders, since the queries use the current con-
tents of the z-buffer.

• Occluder fusion. The occluders are merged in the z-buffer,
so the queries automatically account for occluder fusion.
Additionally this fusion comes for free since we use the
intermediate result of the rendering itself.

• Generality of occludees. We can use complex occludees.
Anything that can be rasterized quickly is suitable.

• Exploiting the GPU power. The queries take full advan-
tage of the high fill rates and internal parallelism provided
by modern GPUs.

• Simple use. Hardware occlusion queries can be easily inte-
grated into a rendering algorithm. They provide a power-
ful tool to minimize the implementation effort, especially
when compared to CPU-based occlusion culling.

3.2. Problems of hardware occlusion queries

Currently there are two main hardware supported variants
of occlusion queries: the HP test (HP_occlusion_test) and
the more recent NV query (NV_occlusion_query, now also
available as ARB_occlusion_query). The most important
difference between the HP test and the NV query is that mul-
tiple NV queries can be issued before asking for their results,
while only one HP test is allowed at a time, which severely
limits its possible algorithmic usage. Additionally the NV
query returns the number of visible pixels whereas the HP
test returns only a binary visibility classification.

The main problem of both the HP test and the NV query is

the latency between issuing the query and the availability of
the result. The latency occurs due to the delayed processing
of the query in a long graphics pipeline, the cost of process-
ing the query itself, and the cost of transferring the result
back to the CPU. The latency causes two major problems:
CPU stalls and GPU starvation. After issuing the query, the
CPU waits for its result and does not feed the GPU with new
data. When the result finally becomes available, the GPU
pipeline can already be empty. Thus the GPU needs to wait
for the CPU to process the result of the query and to feed the
GPU with new data.

A major challenge when using hardware occlusion
queries is to avoid the CPU stalls by filling the latency time
with other tasks, such as rendering visible scene objects or
issuing other, independent occlusion queries (see Figure 1)
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Figure 1: (top) Illustration of CPU stalls and GPU starva-
tion. Qn, Rn, and Cn denote querying, rendering, and culling
of object n, respectively. Note that object 5 is found invis-
ible by Q5 and thus not rendered. (bottom) More efficient
query scheduling. The scheduling assumes that objects 4 and
6 will be visible in the current frame and renders them with-
out waiting for the result of the corresponding queries.

3.3. Hierarchical stop-and-wait method

Many rendering algorithms rely on hierarchical structures in
order to deal with complex scenes. In the context of occlu-
sion culling, such a data structure allows to efficiently cull
large scene blocks, and thus to exploit spatial coherence of
visibility and provide a key to achieving output sensitivity.

This section outlines a naive application of occlusion
queries in the scope of a hierarchical algorithm. We refer
to this approach as the hierarchical stop-and-wait method.
Our discussion is based on kD-trees, which proved to
be efficient for point location, ray tracing, and visibility
culling [MB90, HMC∗97, CT97, BH01]. The concept ap-
plies to general hierarchical data structures as well, though.

The hierarchical stop-and-wait method proceeds as fol-
lows: Once a kD-tree node passes view-frustum culling, it is
tested for occlusion by issuing the occlusion query and wait-
ing for its result. If the node is found visible, we continue by
recursively testing its children in a front-to-back order. If the
node is a leaf, we render its associated objects.
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The problem with this approach is that we can continue
the tree traversal only when the result of the last occlusion
query becomes available. If the result is not available, we
have to stall the CPU, which causes significant performance
penalties. As we document in Section 6, these penalties to-
gether with the overhead of the queries themselves can even
decrease the overall application performance compared to
pure view-frustum culling. Our new method aims to elimi-
nate this problem by issuing multiple occlusion queries for
independent scene parts and exploiting temporal coherence
of visibility classifications.

4. Coherent Hierarchical Culling

In this section we first present an overview of our new algo-
rithm. Then we discuss its steps in more detail.

4.1. Algorithm Overview

Our method is based on exploiting temporal coherence of
visibility classification. In particular, it is centered on the fol-
lowing three ideas:

• We initiate occlusion queries on nodes of the hierar-
chy where the traversal terminated in the last frame.
Thus we avoid queries on all previously visible interior
nodes [BH01].

• We assume that a previously visible leaf node remains vis-
ible and render the associated geometry without waiting
for the result of the corresponding occlusion query.

• Issued occlusion queries are stored in a query queue until
they are known to be carried out by the GPU. This allows
interleaving the queries with the rendering of visible ge-
ometry.

The algorithm performs a traversal of the hierarchy that is
terminated either at leaf nodes or nodes that are classified as
invisible. Let us call such nodes the termination nodes, and
interior nodes that have been classified visible the opened
nodes. We denote sets of termination and opened nodes in
the i-th frame Ti and Oi, respectively. In the i-th frame, we
traverse the kD-tree in a front-to-back order, skip all nodes
of Oi−1 and apply occlusion queries first on the termination
nodes Ti−1. When reaching a termination node, the algo-
rithm proceeds as follows:

• For a previously visible node (this must be a leaf), we is-
sue the occlusion query and store it in the query queue.
Then we immediately render the associated geometry
without waiting for the result of the query.

• For a previously invisible node, we issue the query and
store it in the query queue.

When the query queue is not empty, we check if the result
of the oldest query in the queue is already available. If the
query result is not available, we continue by recursively pro-
cessing other nodes of the kD-tree as described above. If the
query result is available, we fetch the result and remove the

Algorithm: Traversal of the kD-tree
1: TraversalStack.Push(kDTree.Root);
2: while ( not TraversalStack.Empty() or
3: not QueryQueue.Empty() ) {
4: //—- PART 1: processing finished occlusion queries
5: while ( not QueryQueue.Empty() and
6: (ResultAvailable(QueryQueue.Front()) or
7: TraversalStack.Empty()) ) {
8: N = QueryQueue.Dequeue();
9: // wait if result not available
10: visiblePixels = GetOcclussionQueryResult(N);
11: if ( visiblePixels > VisibilityThreshold ) {
12: PullUpVisibility(N);
13: TraverseNode(N);
14: }

15: }

16: //—- PART 2: kd-tree traversal
17: if ( not TraversalStack.Empty() ) {
18: N = TraversalStack.Pop();
19: if ( InsideViewFrustum(N) ) {
20: // identify previously visible nodes
21: wasVisible = N.visible && (N.lastVisited == frameID -1);
22: // identify previously opened nodes
23: opened = wasVisible && !IsLeaf(N);
24: // reset node’s visibility classification
25: N.visible = false;
26: // update node’s visited flag
27: N.lastVisited = frameID;
28: // skip testing all previously opened nodes
29: if ( !opened ) {
30: IssueOcclusionQuery(N); QueryQueue.Enqueue(N);
31: }

32: // traverse a node unless it was invisible
33: if ( wasVisible )
34: TraverseNode(N);
35: }

36: }

37: }

38: TraverseNode(N) {
39: if ( IsLeaf(N) )
40: Render(N);
41: else
42: TraversalStack.PushChildren(N);
43: }

44: PullUpVisibility(N) {
45: while (!N.visible) { N.visible = true; N = N.parent; }
46: }

Figure 2: Pseudo-code of coherent hierarchical culling.

node from the query queue. If the node is visible, we process
its children recursively. Otherwise, the whole subtree of the
node is invisible and thus it is culled.

In order to propagate changes in visibility upwards in the
hierarchy, the visibility classification is pulled up according
to the following rule: An interior node is invisible only if all
its children have been classified invisible. Otherwise, it re-
mains visible and thus opened. The pseudo-code of the com-
plete algorithm is given in Figure 2. An example of the be-
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Figure 3: (left) Visibility classification of a node of the kD-tree and the termination nodes. (right) Visibility classification after
the application of the occlusion test and the new set of termination nodes. Nodes on which occlusion queries were applied are
depicted with a solid outline. Note the pull-up and pull-down due to visibility changes.

havior of the method on a small kD-tree for two subsequent
frames is depicted Figure 3.

The sets of opened nodes and termination nodes need
not be maintained explicitly. Instead, these sets can be eas-
ily identified by associating with each node an information
about its visibility and an id of the last frame when it was
visited. The node is an opened node if it is an interior visible
node that was visited in the last frame (line 23 in the pseu-
docode). Note that in the actual implementation of the pull
up we can set all visited nodes to invisible by default and
then pull up any changes from invisible to visible (lines 25
and line 12 in Figure 2). This modification eliminates check-
ing children for invisibility during the pull up.

4.2. Reduction of the number of queries

Our method reduces the number of visibility queries in two
ways: Firstly, as other hierarchical culling methods we con-
sider only a subtree of the whole hierarchy (opened nodes +
termination nodes). Secondly, by avoiding queries on opened
nodes we eliminate part of the overhead of identification of
this subtree. These reductions reflect the following coher-
ence properties of scene visibility:

• Spatial coherence. The invisible termination nodes ap-
proximate the occluded part of the scene with the smallest
number of nodes with respect to the given hierarchy, i.e.,
each invisible termination node has a visible parent. This
induces an adaptive spatial subdivision that reflects spa-
tial coherence of visibility, more precisely the coherence
of occluded regions. The adaptive nature of the subdivi-
sion allows to minimize the number of subsequent occlu-
sion queries by applying the queries on the largest spatial
regions that are expected to remain occluded.

• Temporal coherence. If visibility remains constant the set
of termination nodes needs no adaptation. If an occluded
node becomes visible we recursively process its children
(pull-down). If a visible node becomes occluded we prop-
agate the change higher in the hierarchy (pull-up). A pull-

down reflects a spatial growing of visible regions. Simi-
larly, a pull-up reflects a spatial growing of occluded re-
gions.

By avoiding queries on the opened nodes, we can save
1/k of the queries for a hierarchy with branching factor k
(assuming visibility remains constant). Thus for the kD-tree,
up to half of the queries can be saved. The actual savings in
the total query time are even larger: the higher we are at the
hierarchy, the larger boxes we would have to check for oc-
clusion. Consequently, the higher is the fill rate that would
have been required to rasterize the boxes. In particular, as-
suming that the sum of the screen space projected area for
nodes at each level of the kD-tree is equal and the opened
nodes form a complete binary subtree of depth d, the fill rate
is reduced (d +2) times.

4.3. Reduction of CPU stalls and GPU starvation

The reduction of CPU stalls and GPU starvation is achieved
by interleaving occlusion queries with the rendering of vis-
ible geometry. The immediate rendering of previously visi-
ble termination nodes and the subsequent issuing of occlu-
sion queries eliminates the requirement of waiting for the
query result during the processing of the initial depth layers
containing previously visible nodes. In an optimal case, new
query results become available in between and thus we com-
pletely eliminate CPU stalls. In a static scenario, we achieve
exactly the same visibility classification as the hierarchical
stop-and-wait method.

If the visibility is changing, the situation can be differ-
ent: if the results of the queries arrive too late, it is possi-
ble that we initiated an occlusion query on a previously oc-
cluded node A that is in fact occluded by another previously
occluded node B that became visible. If B is still in the query
queue, we do not capture a possible occlusion of A by B
since the geometry associated with B has not yet been ren-
dered. In Section 6 we show that the increase of the number
of rendered objects compared to the stop-and-wait method is
usually very small.
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4.4. Front-to-back scene traversal

For kD-trees the front-to-back scene traversal can be eas-
ily implemented using a depth first traversal [BH01]. How-
ever, at a modest increase in computational cost we can also
use a more general breadth-first traversal based on a prior-
ity queue. The priority of the node then corresponds to an
inverse of the minimal distance of the viewpoint and the
bounding box associated with the given node of the kD-
tree [KS01, SBS04].

In the context of our culling algorithm, there are two main
advantages of the breadth-first front-to-back traversal :

• Better query scheduling. By spreading the traversal of the
scene in a breadth-first manner, we process the scene in
depth layers. Within each layer, the node processing order
is practically independent, which minimizes the problem
of occlusion query dependence. The breadth-first traver-
sal interleaves occlusion-independent nodes, which can
provide a more accurate visibility classification if visibil-
ity changes quickly. In particular, it reduces the problem
of false classifications due to missed occlusion by nodes
waiting in the query queue (discussed in Section 4.3).

• Using other spatial data structures. By using a breadth-
first traversal, we are no longer restricted to the kD-tree.
Instead we can use an arbitrary spatial data structure such
as a bounding volume hierarchy, octree, grid, hierarchical
grid, etc. Once we compute a distance from a node to the
viewpoint, the node processing order is established by the
priority queue.

When using the priority queue, our culling algorithm can
also be applied directly to the scene graph hierarchy, thus
avoiding the construction of any auxiliary data structure for
spatial partitioning. This is especially important for dynamic
scenes, in which maintenance of a spatial classification of
moving objects can be costly.

4.5. Checking the query result

The presented algorithm repeatedly checks if the result of
the occlusion query is available before fetching any node
from the traversal stack (line 6 in Figure 2). Our practical ex-
periments have proven that the cost of this check is negligi-
ble and thus it can used frequently without any performance
penalty. If the cost of this check were significantly higher,
we could delay asking for the query result by a time estab-
lished by empirical measurements for the particular hard-
ware. This delay should also reflect the size of the queried
node to match the expected availability of the query result as
precise as possible.

5. Further Optimizations

This section discusses a couple of optimizations of our
method that can further improve the overall rendering per-
formance. In contrast to the basic algorithm from the previ-
ous section, these optimizations rely on some user specified

parameters that should be tuned for a particular scene and
hardware configuration.

5.1. Conservative visibility testing

The first optimization addresses the reduction of the num-
ber of visibility tests at the cost of a possible increase in the
number of rendered objects. This optimization is based on
the idea of skipping some occlusion tests of visible nodes.
We assume that whenever a node becomes visible, it remains
visible for a number of frames. Within the given number of
frames we avoid issuing occlusion queries and simply as-
sume the node remains visible [BH01].

This technique can significantly reduce the number of vis-
ibility tests applied on visible nodes of the hierarchy. Espe-
cially in the case of sparsely occluded scenes, there is a large
number of visible nodes being tested, which does not pro-
vide any benefit since most of them remain visible. On the
other hand, we do not immediately capture all changes from
visibility to invisibility, and thus we may render objects that
have already become invisible from the moment when the
last occlusion test was issued.

In the simplest case, the number of frames a node is as-
sumed visible can be a predefined constant. In a more com-
plicated scenario this number should be influenced by the
history of the success of occlusion queries and/or the current
speed of camera movement.

5.2. Approximate visibility

The algorithm as presented computes a conservative visi-
bility classification with respect to the resolution of the z-
buffer. We can easily modify the algorithm to cull nodes
more aggressively in cases when a small part of the node
is visible. We compare the number of visible pixels returned
by the occlusion query with a user specified constant and
cull the node if this number drops below this constant.

5.3. Complete elimination of CPU stalls

The basic algorithm eliminates CPU stalls unless the traver-
sal stack is empty. If there is no node to traverse in the
traversal stack and the result of the oldest query in the query
queue is still not available, it stalls the CPU by waiting for
the query result. To completely eliminate the CPU stalls, we
can speculatively render some nodes with undecided visibil-
ity. In particular, we select a node from the query queue and
render the geometry associated with the node (or the whole
subtree if it is an interior node). The node is marked as ren-
dered but the associated occlusion query is kept in the queue
to fetch its result later. If we are unlucky and the node re-
mains invisible, the effort of rendering the node’s geometry
is wasted. On the other hand, if the node has become visible,
we have used the time slot before the next query arrives in
an optimal manner.
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To avoid the problem of spending more time on rendering
invisible nodes than would be spent by waiting for the re-
sult of the query, we select a node with the lowest estimated
rendering cost and compare this cost with a user specified
constant. If the cost is larger than the constant we conclude
that it is too risky to render the node and wait till the result
of the query becomes available.

6. Results

We have incorporated our method into an OpenGL-based
scene graph library and tested it on three scenes of differ-
ent types. All tests were conducted on a PC with a 3.2GHz
P4, 1GB of memory, and a GeForce FX5950 graphics card.

6.1. Test scenes

The three test scenes comprise a synthetic arrangement of
5000 randomly positioned teapots (11.6M polygons); an ur-
ban environment (1M polygons); and the UNC power plant
model (13M polygons). The test scenes are depicted in Fig-
ure 8. All scenes were partitioned using a kD-tree con-
structed according to the surface-area heuristics [MB90].

Although the teapot scene would intuitively offer good
occlusion, it is a complicated case to handle for occlusion
culling. Firstly, the teapots consist of small triangles and so
only the effect of fused occlusion due to a large number of
visible triangles can bring a culling benefit. Secondly, there
are many thin holes through which it is possible to see quite
far into the arrangement of teapots. Thirdly, the arrangement
is long and thin and so we can see almost half of the teapots
along the longer side of the arrangement.

The complete power plant model is quite challenging even
to load into memory, but on the other hand it offers good
occlusion. This scene is an interesting candidate for testing
not only due to its size, but also due to significant changes in
visibility and depth complexity in its different parts.

The city scene is a classical target for occlusion culling al-
gorithms. Due to the urban structure consisting of buildings
and streets, most of the model is occluded when viewed from
the streets. Note that the scene does not contain any detailed
geometry inside the buildings. See Figure 4 for a visualiza-
tion of the visibility classification of the kD-tree nodes for
the city scene.

6.2. Basic tests

We have measured the frame times for rendering with only
view-frustum culling (VFC), the hierarchical stop-and-wait
method (S&W), and our new coherent hierarchical culling
method (CHC). Additionally, we have evaluated the time for
an “ideal” algorithm. The ideal algorithm renders the visi-
ble objects found by the S&W algorithm without performing
any visibility tests. This is an optimal solution with respect

Figure 4: Visibility classification of the kD-tree nodes in the
city scene. The orange nodes were found visible, all the other
depicted nodes are invisible. Note the increasing size of the
occluded nodes with increasing distance from the visible set.

Figure 5: Frame times for the teapot scene.

to the given hierarchy, i.e., no occlusion culling algorithm
operating on the same hierarchy can be faster. For the basic
tests we did not apply any of the optimizations discussed in
Section 5, which require user specified parameters.

For each test scene, we have constructed a walkthrough
which is shown in full in the accompanying video. Fig-
ures 5, 6, and 7 depict the frame times measured for the
walkthroughs. Note that Figure 7 uses a logarithmic scale
to capture the high variations in frame times during the
power plant walkthrough. To better demonstrate the behav-
ior of our algorithm, all walkthroughs contain sections with
both restricted and unrestricted visibility. For the teapots, we
viewed the arrangement of teapots along the longer side of
the arrangement (frames 25–90). In the city we elevated the
viewpoint above the roofs and gained sight over most of the
city (frames 1200–1800). The power plant walkthrough con-
tains several viewpoints from which a large part of the model
is visible (spikes in Figure 7 where all algorithms are slow),
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Figure 6: Frame times for the city walkthrough. Note the
spike around frame 1600, where the viewpoint was elevated
above the roofs, practically eliminating any occlusion.

Figure 7: Frame times for the power plant walkthrough. The
plot shows the weakness of the S&W method: when there is
not much occlusion it becomes slower than VFC (near frame
2200). The CHC can keep up even in these situations and in
the same time it can exploit occlusion when it appears (e.g.
near frame 3700).

viewpoints along the border of the model directed outwards
with low depth complexity (holes in Figure 7 where all algo-
rithms are fast), and viewpoints inside the power plant with
high depth complexity where occlusion culling produces a
significant speedup over VFC (e.g. frame 3800).

As we can see for a number frames in the walkthroughs,
the CHC method can produce a speedup of more than one or-
der of magnitude compared to VFC. The maximum speedup
for the teapots, the city, and the power plant walkthroughs is
8, 20, and 70, respectively. We can also observe that CHC
maintains a significant gain over S&W and in many cases
it almost matches the performance of the ideal algorithm.
In complicated scenarios the S&W method caused a signif-
icant slowdown compared to VFC (e.g. frames 1200–1800
of Figure 6). Even in these cases, the CHC method main-
tained a good speedup over VFC except for a small number
of frames.

Next, we summarized the scene statistics and the average
values per frame in Table 1. The table shows the number of
issued occlusion queries, the wait time representing the CPU
stalls, the number of rendered triangles, the total frame time,
and the speedup over VFC.

We can see that the CHC method practically eliminates
the CPU stalls (wait time) compared to the S&W method.
This is paid for by a slight increase in the number of rendered
triangles. For the three walkthroughs, the CHC method pro-
duces average speedups of 4.6, 4.0, and 4.7 over view frus-
tum culling and average speedups of 2.0, 2.6, and 1.6 over
the S&W method. CHC is only 1.1, 1.7, and 1.2 times slower
than the ideal occlusion culling algorithm. Concerning the
accuracy, the increase of the average number of rendered tri-
angles for CHC method compared to S&W was 9%, 1.4%,
and 1.3%. This increase was always recovered by the reduc-
tion of CPU stalls for the tested walkthroughs.

6.3. Optimizations

First of all we have observed that the technique of complete
elimination of CPU stalls discussed in Section 5.3 has a very
limited scope. In fact for all our tests the stalls were almost
completely eliminated by the basic algorithm already (see
wait time in Table 1). We did not find constants that could
produce additional speedup using this technique.

The measurements for the other optimizations discussed
in Section 5 are summarized in Table 2. We have measured
the average number of issued queries and the average frame
time in dependence on the number of frames a node is as-
sumed visible and the pixel threshold of approximate visi-
bility. We have observed that the effectiveness of the opti-
mizations depends strongly on the scene. If the hierarchy is
deep and the geometry associated with a leaf node is not too
complex, the conservative visibility testing produces a sig-
nificant speedup (city and power plant). For the teapot scene
the penalty for false rendering of actually occluded objects
became larger than savings achieved by the reduction of the
number of queries. On the other hand since the teapot scene
contains complex visible geometry the approximate visibil-
ity optimization produced a significant speedup. This is how-
ever paid for by introducing errors in the image proportional
to the pixel threshold used.

6.4. Comparison to PVS-based rendering

We also compared the CHC method against precalculated
visibility. In particular, we used the PVS computed by an of-
fline visibility algorithm [WWS00]. While the walkthrough
using the PVS was 1.26ms faster per frame on average, our
method does not require costly precomputation and can be
used at any general 3D position in the model, not only in a
predefined view space.
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scene method #queries wait time [ms] rendered triangles frame time [ms] speedup

Teapots VFC — — 11,139,928 310.42 1.0
11,520,000 triangles S&W 4704 83.19 2,617,801 154.95 2.3

21,639 kD-Tree nodes CHC 2827 1.31 2,852,514 81,18 4.6
Ideal — — 2,617,801 72.19 5.2

City VFC — — 156,521 19.79 1.0
1,036,146 triangles S&W 663 9.49 30,594 19.9 1.5

33,195 kD-Tree nodes CHC 345 0.18 31,034 8.47 4.0
Ideal — — 30,594 4.55 6.6

Power Plant VFC — — 1,556,300 138.76 1.0
12,748,510 triangles S&W 485 16.16 392,962 52.29 3.2

18,719 kD-Tree nodes CHC 263 0.70 397,920 38.73 4.7
Ideal — — 392,962 36.34 5.8

Table 1: Statistics for the three test scenes. VFC is rendering with only view-frustum culling, S&W is the hierarchical stop and
wait method, CHC is our new method, and Ideal is a perfect method with respect to the given hierarchy. All values are averages
over all frames (including the speedup).

scene tav nvp #queries frame time [ms]

Teapots
0 0 2827 81.18
2 0 1769 86.31
2 25 1468 55.90

City
0 0 345 8.47
2 0 192 6.70
2 25 181 6.11

Power Plant
0 0 263 38.73
2 0 126 31.17
2 25 120 36.62

Table 2: Influence of optimizations on the CHC method. tav
is the number of assumed visibility frames for conservative
visibility testing, nvp is the pixel threshold for approximate
visibility.

7. Conclusion

We have presented a method for the optimized scheduling of
hardware accelerated occlusion queries. The method sched-
ules occlusion queries in order to minimize the number of
the queries and their latency. This is achieved by exploit-
ing spatial and temporal coherence of visibility. Our results
show that the CPU stalls and GPU starvation are almost
completely eliminated at the cost of a slight increase in the
number of rendered objects.

Our technique can be used with practically arbitrary scene
partitioning data structures such as kD-trees, bounding vol-
ume hierarchies, or hierarchical grids. The implementation
of the method is straightforward as it uses a simple OpenGL

interface to the hardware occlusion queries. In particular, the
method requires no complicated geometrical operations or
data structures. The algorithm is suitable for application on
scenes of arbitrary structure and it requires no preprocessing
or scene dependent tuning.

We have experimentally verified that the method is well
suited to the NV_occlusion_query supported on current con-
sumer grade graphics hardware. We have obtained an av-
erage speedup of 4.0–4.7 compared to pure view-frustum
culling and 1.6–2.6 compared to the hierarchical stop-and-
wait application of occlusion queries.

The major potential in improving the method is a better
estimation of changes in the visibility classification of hier-
archy nodes. If nodes tend to be mostly visible, we could
automatically decrease the frequency of occlusion tests and
thus better adapt the method to the actual occlusion in the
scene. Another possibility for improvement is better tuning
for a particular graphics hardware by means of more accu-
rate rendering cost estimation. Skipping occlusion tests for
simpler geometry can be faster than issuing comparably ex-
pensive occlusion queries.
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