
Hierarchical Visibility Culling with Occlusion Trees

Jiřı́ Bittner Vlastimil Havran Pavel Slavı́k

Department of Computer Science and Engineering, Czech Technical University,
Karlovo náměstı́ 13, 121 35 Praha 2, Czech Republic

E-mail:fbittner,havran,slavikg@fel.cvut.cz
Abstract

In the scope of rendering complex models with high
depth complexity, it is of great importance to designoutput-
sensitivealgorithms, i.e., algorithms with the time complex-
ity proportional to the number of visible graphic primitives
in the resulting image. In this paper an algorithm allow-
ing efficient culling of the invisible portion of the rendered
model is presented. Our approach uses a spatial hierarchy
to represent the topology of the model. For a current view-
point a set of polygonaloccludersis determined that are
used to build theocclusion tree. In the occlusion treeoc-
clusion volumesof the selected occluders are merged. Vis-
ibility from the viewpoint is determined by processing the
spatial hierarchy and classifying the visibility of its regions.
In this process the occlusion tree is used to determine the
viewpoint-to-region visibility efficiently. The algorithm is
well-suited for complex models where large occluders are
present.

Keywords: visibility, occlusion culling, spatial partition-
ing, real time rendering, virtual reality, BSP1 .

1. Introduction

Visibility determination is an important task in computer
graphics. The goal of visibility determination (also known
as hidden surface removal) is to efficiently determine vis-
ible parts of the model, given a viewpoint and a viewing
direction.

1Copyright 1998 IEEE. Published in the Proceedings of CGI’98, 22
June 1998 Hannover, Germany. Personal use of this material is permitted.
However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted component of
this work in other works, must be obtained from IEEE. Contact: Manager,
Copyrights and Permissions / IEEE Service Center / 445 Hoes Lane / P.O.
Box 1331/ Piscataway, NJ 08855–1331, USA. Telephone: ++ 732–562–
3966.

Many algorithms to solve the hidden surface removal
have been developed, two of them most commonly used.
TheBinary Space Partitioning(BSP) preserves the topolog-
ical information about the model in a binary tree [5]. It is an
example of an algorithm resolving visibility in object space.
Knowing the viewpoint, rendering order can be determined
by appropriate traversal of the BSP tree. Thez-buffer is
an image-space oriented algorithm, which solves the visi-
bility problem for each pixel of the screen. This is simple
to implement in hardware, thus commonly used in today’s
rendering systems. Both these algorithms are notoutput-
sensitive, since they may spend significant time processing
parts of the model actually invisible.

To achieve the output-sensitivity of the visibility algo-
rithm we exploit the idea ofvisibility culling. Visibility
culling is used to quickly determine a subset of occluded
objects. These need not be considered for exact visibility
determination (e.g. z-buffer rendering). The use ofocclu-
sion treesis a novel approach in the context of visibility
culling. In the next two sections work related to this paper
is presented followed by an overview of our algorithm.

1.1. Related Work

Some algorithms attempt to solve the visibility prob-
lem by building data structures allowing fastexact visibility
queries. For example, the aspect graph [13] subdivides the
space intoO(n9) regions where visibility does not change
qualitatively. For each such region the visible portion of
the model can be determined. Unfortunately, the high com-
plexity restricts this approach to models containing only
a few objects. Recently Durand et al. [4] introduced the
3D visibility complex, which captures the visibility in line-
space. The authors claim that its worst case space complex-
ity O(n4) is much better in practice. However, its contri-
bution to the real time rendering of complex models seems
unclear.

The conservative visibilityidentifies the superset of the
visible portion of the model. Only this superset is used to
solve exact visibility. Often, this can be carried out using a

hardware z-buffer.
Teller and Séquin [16, 17] use the concept ofpoten-

tially visible sets(PVS). Potentially visible regions are de-
termined for each region of the spatial subdivision using
a region-to-region visibility through the set of transparent
polygonalportals. Another algorithm based on PVS was
introduced by Luebke and Georges in [11]. These meth-
ods achieve good performance if applied to static densely
occluded environments with a particular structure, such as
models of architectural interiors. However, for less struc-
tured models they can face a combinatorial explosion of
complexity. Yagel and Ray [19] present an algorithm,
which uses a regular spatial subdivision. Although it is not
sensitive to the structure of the model in terms of complex-
ity, its efficiency can be significantly lower compared with
the portal based methods.

Recently, algorithms based on the idea of fasthierarchi-
cal visibility culling were published. The hierarchical z-
buffer [8] algorithm uses a z-pyramid to represent occlu-
sion. It exploits spatial coherence by processing an ob-
ject hierarchy through the z-pyramid. Although it is a very
promising approach if using hardware resources, the simu-
lation of the z-pyramid in software would cause a significant
overhead. Similar methods, which use an image space rep-
resentation of the selected occluders, appeared in [20, 7].
While taking advantage of hardware rendering, these meth-
ods can suffer if the rendering support is insufficient.

The work presented in this paper is closely related to
object space occlusion culling algorithms presented in [9]
and [3]. In [9] a shadow frustum is constructed for each of
the selected occluders. These frusta are used to detect the
invisible regions of the spatial hierarchy. A possible draw-
back with this method is the independent visibility testing
against each frustum. Therefore, the occlusion caused by
multiple occluders is not discovered.

1.2. Algorithm Overview

The algorithm presented addresses the problem of con-
servative visibility from a point (viewpoint). It identifies a
superset of objects visible from the viewpoint. For com-
plex models, where many objects are not visible from a
given viewpoint, this superset is only a fraction of the whole
model. The exact visibility is solved by simply rendering
the superset of visible objects using the z-buffer algorithm.
Assume we are able to determine visibility of a region from
the viewpoint. This visibility reaches one of the following
states:fully visible, partially visible, invisible. We can ap-
ply the visibility test to all bounding volumes of objects in
the model. The superset to be considered for exact visi-
bility consists solely of objects classified as fully visible or
partially visible. Nevertheless, for a complex model the vis-
ibility testing of all objects would be very time consuming.

We can exploit the spatial coherence of visibility by
grouping close objects together. Applying this step recur-
sively, we can build a spatial hierarchy, keeping links to the
objects in its leaf nodes2. Each node of the hierarchy cor-
responds to certain spatial region. Starting from the root
node of the hierarchy, visibility of each node can be deter-
mined as follows: If a node is found fully visible, all of
its descendants are fully visible (assuming that the spatial
hierarchy meets certain criteria, as it will be mentioned in
Section 2.2). Similarly, if a node is found invisible, all its
children are invisible. Descendants of nodes classified as
partially visible must be further tested to refine their visibil-
ity. When the visibility of all leaves is known, objects from
fully visible and partially visible leaves are gathered and
rendered using a low-level exact visibility solver (hardware
z-buffer).

plane
viewpoint

occluder

shadow planes

occluder supporting

Figure 1. Occlusion volume of a polygon. The
occlusion volume is formed by three shadow
planes and the supporting plane of the poly-
gon.

It remains to show how to determine the visibility of a
region from the viewpoint. It is often the case that most of
the occlusion is due to a few large objects (occluders) close
to the viewpoint. In this paper we require the occluders to
be convex polygons. Assume we are able to identify several
such occluders for each viewpoint. For each polygon the
occlusion volume (frustum) can be determined. It is an in-
tersection of(e+1)-half-spaces, wheree is number of edges
of the polygon. The half-spaces are formed by planes pass-
ing through the viewpoint and the particular edge and the
supporting plane of the polygon (see Figure 1). We merge
these occlusion volumes into a unified data structure – the

2Such grouping corresponds to so called bottom-up approach.Here it
is used for explanation purposes. In our implementation thehierarchy is
actually built in top-down fashion, as mentioned in Section2.2.

occlusion tree, that is a variant of theshadow volume BSP
tree introduced by Chin and Feiner [2].

We show that the visibility of a closed polyhedral region
can be determined by combining visibility states of its faces.
Assuming the faces are convex polygons, these tests are per-
formed efficiently using the occlusion tree. In particular,
the regions of our spatial hierarchy are axis-aligned boxes
(parallelepipeds), that are closed polyhedra with six convex
faces. We also present amodified occlusion tree(MOBSP).
With this data structure visibility of a region can be estab-
lished without testing the visibility of its boundaries (faces).
The only operation involved in the visibility test is the de-
termination of the position of a region relative to a plane.
Although this method can identify an invisible region as
partially visible (with respect to the selected occluders), we
observed its good performance in practice.

The paper is organized as follows: Section 2 describes
preprocessing of the model that includes the algorithm
building the spatial hierarchy. The occluder selection is out-
lined in Section 3. In Section 4 we discuss the motivation
for building a unified data structure representing the merged
occlusion volumes of the selected occluders. In Section 5
the occlusion tree and algorithms of its construction and
traversal are presented. The modified occlusion tree is intro-
duced in Section 6. In Section 7 we present results obtained
on several different models and discuss the behaviour of the
algorithm. Finally, Section 8 concludes and in Section 9 we
point out some topics for future work.

2. Preprocessing

2.1. Occluder Identification

Previous methods of hierarchical visibility culling [3, 9]
attempt to create anoccluder databasein preprocessing.
They subdivide the space into a set of non-overlapping re-
gions (cells). Within each cell a certain number of polygo-
nal occluders are determined and stored.

We do not attempt to build such occluder database. In-
stead, we only identify and markpotential occluderpoly-
gons. In our implementation these are identified taking
advantage of the knowledge of the model structure. Pre-
processing and visibility culling have been applied usually
on models of architectural interiors. A typical such model
consists of walls, ceilings, floors, and detailed objects. All
polygons belonging to detailed objects (flowers, chairs, ...)
are considered non-occluding. All remaining polygons are
marked as potential occluders (assuming these are walls,
ceilings and floors). These potential occluders are used in
the algorithm of dynamic occluder selection (Section 3).

2.2. Spatial Hierarchy

As we already mentioned, the hierarchical visibility al-
gorithm assumes that a spatial hierarchy is built over all ob-
jects of the model. In the case of static scenes this can be
done in preprocessing. There is an important requirement
imposed on the hierarchy. Regions corresponding to de-
scendants of any node of the hierarchy must be completely
contained in the region corresponding to that node. Other-
wise, no assumptions of the visibility of the node’s descen-
dants could be made based on knowledge of the visibility of
their parent. In previous work bounding volume hierarchies
and hierarchical spatial subdivisions (octree, BSP tree) were
used.

We use an axis-aligned BSP tree [10] (sometimes re-
ferred to as kD-tree), because of its high flexibility and
simplicity of building and traversal. This selection implies
that the regions corresponding to nodes of the hierarchy are
parallelepipeds. Naturally, the BSP tree meets the criterion
mentioned above.

The most important step during the building of the BSP
tree is the choice of the splitting plane. This plane subdi-
vides the current node into two descendants. Objects are
distributed into the descendants according to their position
to the splitting plane. Initially the root node of the BSP tree
corresponds to the bounding box of the model. Applying
the algorithm recursively, the whole BSP tree is built. The
recursion is terminated when the number of objects in the
current node falls under the specified threshold or the spec-
ified maximum depth of the hierarchy is reached.

In certain cases an object lies on both sides of the plane
(i.e. in both positive and negative half-spaces induced by
the plane). Such objects must be “duplicated” in both new
nodes. We want the object duplications in leaf nodes of the
tree to be minimized while keeping a well-balanced tree. To
achieve this goal the following strategy of the splitting plane
selection was used:

For the current node we identify the axis with the largest
extent of the parallelepiped corresponding to the node. We
search for a splitting plane perpendicular to the selected
axis. We identify boundaries of object bounding boxes lo-
cated within a certain distance from the spatial median of
the node’s parallelepiped. Each identified boundary induces
oneboundary plane. We evaluate a number of objects split
by each boundary plane. The boundary plane with the low-
est number of split objects is selected as the splitting plane.

The binary tree structure can be easily used to simulate
irregular quad-trees and octrees in the scope of the hierar-
chical visibility algorithm.

3. Dynamic Occluder Selection

The goal of the dynamic occluder selection is to obtain
a specified number of occluders, given a viewpoint and a
viewing direction. The algorithm uses thearea-anglemea-
sure [3] to estimate the quality of an occluder. The area-
angle is expressed as:M = �A(~N � ~V)k ~Dk2 (1)

whereA is the area of the occluder,~N denotes the oc-
cluder normal,~V the viewing direction and~D corresponds
to the vector from the viewpoint to the center of the occluder
(k ~Nk = k~V k = 1).

As mentioned in the previous section, the potential oc-
cluders are identified in preprocessing. The dynamic oc-
cluder selection is performed after each change of the view-
point or the viewing direction. The set of occluders obtained
in the current frame is used to perform visibility culling in
the next frame.

The dynamic occluder selection proceeds as follows: We
identify all visible or partially visible leaves of the hierar-
chy, whose centers are located within a certain distance�
of the viewpoint. For each potential occluder referred in
these leaves the area-angle is computed. These values are
used to selectk occluders with the largest area-angle, that
form the desired occluder set for the next rendering frame.

The distance� has an impact on the time spent by the
occluder selection. In our implementation it is a multiple of
the observer’s step size (� = 100 � step). The number of
selected occluders (k) influences the size of the occlusion
tree, the time of visibility determination as well as its effi-
ciency. We have usedk between6 and256. More details
about this selection are given in Section 7.

4. Representation of Occlusion Information

In this section we discuss the crucial part of the visibility
culling algorithm – representation of the occlusion caused
by a set of convex polygonal occluders for a given view-
point. In many cases treating the occlusion volumes sepa-
rately identifies the invisible region as partially visible.

Unlike previous methods used in the field of visibility
culling, we build an additional object space data structure
for the current viewpoint. It efficiently merges the occlu-
sion volumes of the selected occluders. This allows us to
discover occlusion caused by multiple connected occluders
and even occluders completely disjunct in space.

It is obvious that merging occlusion volumes requires an
additional time to build the appropriate data structure. We
observed that by exploiting the spatial coherence of occlud-
ers in this data structure, the additional time is recovered
during the visibility queries.

As a basis for our research we adopted the concept of
shadow volume BSP trees(SVBSP) introduced by Chin and
Feiner [2]. They used the SVBSP for fast generation of
shadows cast by polygonal objects in scenes with point light
sources.

Next we present a brief overview of the SVBSP data
structure and the algorithm suitable for the generation of
shadows. Further, we discuss how to adapt the concept
of SVBSP for the viewpoint-to-region visibility determina-
tion.

4.1. Generation of Shadows with SVBSP

The SVBSP is a variant of the BSP tree for representing
polyhedra [12, 18]. It represents a union of shadow vol-
umes cast by convex polygons (occluders) facing a point
light source. Each internal node of the tree is associated
with a shadow planepassing through the light source and
an edge of the occluder.

The direction of the shadow plane normal is used to de-
termine a half-space in which the occluder and its shadow
are located. The normals are oriented so that the shadow
volume and the occluder itself lie in the negative half-space
(back side) of the plane. Each leaf node of the tree cor-
responds to a semi-infinite polyhedral cell (frustum). The
leaves are classified asin or out. A leaf is marked as in-leaf
if the corresponding cell lies in shadow. Similarly, an out-
leaf indicates that the corresponding cell is lit by the light
source. Thus the shadow volume is a union of all cells cor-
responding to in-leaves. An example of the SVBSP tree is
depicted in Figure 2.

Assume that the polygons (occluders) are ordered in
a front-to-back manner with respect to the light source.
We know that farther polygons cannot cast shadows
on polygons lying closer to the light source. The
SVBSP can be constructed by incrementally processing
the polygons in the given order. The contribution of
one polygon to the SVBSP is determined as follows:� Lit fragments of the polygon are determined.� The SVBSP is enlarged by shadow volumes cast by

these fragments.

The lit fragments of the polygon are determined byfil-
tering the polygon down the SVBSP. The filtering is applied
recursively on certain nodes of the SVBSP, starting from the
root. For the current node the position of the polygon with
respect to node’s shadow plane is determined. If the poly-
gon is located completely on the back or front side of the
node’s shadow plane, it is filtered down the back or front
child of the node, respectively. Otherwise, the polygon is
split by the shadow plane into two fragments. These frag-
ments are filtered down the both children of the node.

a

b

c

d

in

out

outin

in out

out

fba
c

e

e

f

d

light source

shadow volumes

SVBSP

shadow planes

shadowed
fragment

Figure 2. A 2D example of three polygons fac-
ing a point light source and the correspond-
ing SVBSP tree.

Reaching leaf nodes a set of convex polygonal fragments
is obtained. These are either lit (out-leaves) or shadowed
(in-leaves). In the appropriate out-leaves the tree is enlarged
by the shadow volumes cast by the lit fragments. For each lit
fragmente new nodes are used to replace the corresponding
leaf (e is the number of edges of the fragment). The algo-
rithm including shadows of one polygon into the SVBSP is
given in Figure 3.

For shadow generation purposes, the lit and shadowed
fragments can be stored within the original polygon. Dur-
ing rendering the colour of these fragments can be set ac-
cordingly.

The front-to-back ordering of polygons can be achieved
by building a BSP tree and its appropriate traversal [5]. Al-
ternatively, thefeudal priority tree[1] could be used.

4.2. Visibility Determination and SVBSP

The SVBSP tree is a hierarchical data structure allow-
ing fast incremental determination of lit and shadowed frag-
ments of scene polygons.

We will refer to the algorithm described previously as
the original SVBSP algorithm. All lit fragments obtained
by the original SVBSP algorithm are visible from the light
source. Similarly, all fragments located in shadow are invis-
ible from the light source. From now on assume the position

Algorithm FilterDown(Node, Polygon, Viewpoint)
begin

if Node is leafthen
if Node is out-leafthen
replace Node by
OcclusionVolume(Polygon, Viewpoint)

else
do nothing

else
caseSplit(Polygon, Node.Plane, Back, Front)of
FRONT :(* pass the polygon to the front subtree *)

FilterDown(Node.FrontChild, Polygon, Viewpoint);
BACK : (* pass the polygon to the back subtree *)

FilterDown(Node.BackChild, Polygon, Viewpoint);
SPLIT : (* pass fragments to apropriate subtrees *)

FilterDown(Node.FrontChild, Front, Viewpoint)
FilterDown(Node.BackChild, Back, Viewpoint);

end
end

Figure 3. Pseudo-code of the algorithm pro-
cessing a polygon through the SVBSP tree.

of the point light source to be a viewpoint. Instead of lit and
shadowed, the terms visible and invisible (occluded) will be
used in the following text.

Assume the SVBSP is built with respect to the selected
set of occluders and the current viewpoint. Given a polyhe-
dral region (cell) we want to quickly determine if this region
is:� fully visible,� partially visible,� invisible.

We will use the termvisibility algorithm, referring to the
traversal of the SVBSP, which appropriately classifies the
visibility of a region.

The differences between the desired visibility algorithm
and the original SVBSP algorithm can be summarized as
follows:� Only selected occluders are used to build the tree. In

the scope of the visibility algorithm the tree is not mod-
ified any more. The original SVBSP algorithm as-
sumes all polygons to be processed and the tree to be
always updated accordingly.� The subject of the visibility algorithm is a polyhedral
region, whereas in the original SVBSP algorithm the
subject is a convex polygon.

� The region of which the visibility is determined may
lie in front of some occluders. Hence the front-to-back
ordering is not satisfied in the visibility algorithm.� Only one of the three visibility states is the result of the
visibility algorithm. In the original SVBSP algorithm
the goal is to obtain lit and shadowed fragments of a
polygon.

With these differences in mind, we designed the concept
of occlusion trees(OBSP) and appropriate visibility algo-
rithms (i.e. algorithms of their traversal).

5. Occlusion Tree

An occlusion treeis a BSP tree built with respect to a set
of occluders and a viewpoint. By relevant traversal of the
OBSP we determine visibility of a polyhedral region with
respect to the selected occluders either exactly orconser-
vatively. Conservatively means that a region with any of
its part visible is never classified as invisible, but invisible
regions can be classified as partially visible.

To meet the criteria mentioned above we build the OBSP
as follows: The selected occluders are used to build a BSP
tree. This tree is used to establish the front-to-back order of
the occluders. The occluders are processed in this order and
their occlusion volumes are used to enlarge the OBSP. The
OBSP construction process is essentially the same as the
one of SVBSP. Additionally, in each in-leaf we store a link
to a fragment occluding the frustum, which corresponds to
this leaf. These links are needed in the visibility algorithm
to determine if a polyhedron tested for visibility lies behind
the occluder.

It remains to show how to determine visibility of a poly-
hedral region using the OBSP. For a closed polyhedron it
is sufficient to combine visibility of its faces appropriately.
We assume that these faces are convex polygons. In the
next section we describe how to classify visibility of a con-
vex polygon using the OBSP. In Section 5.2 we present the
visibility algorithm for a convex polyhedron. Both these al-
gorithms classify the visibilityexactlywith respect to the
occluders the OBSP was built for. Since these occluders are
only a subset of all objects in the model, the hierarchical vis-
ibility algorithm presented later gives conservative results.

5.1. Visibility of Polygon

The visibility of a polygon can be determined filtering it
down the occlusion tree. When a leaf is reached, the vis-
ibility of the current fragment of the polygon is classified.
For out-leaves the fragment is fully visible. The visibility
in the in-leaves can reach any of the three possible states,
hence, an additional test must be applied. This test will be
explained later in this section.

If there is no fragment of the polygon which is fully vis-
ible, the polygon is invisible. Similarly, if no invisible frag-
ment exists, the polygon is fully visible. In all other cases
the polygon is partially visible with respect to the occluders
the tree was built for.

Given a polygon the OBSP is traversed bydepth first
search(DFS). In each internal node of the OBSP the po-
sition of the polygon with respect to the plane referred in
the node is determined. It is essentially the same procedure
as the polygon filtering in the construction of the OBSP. If
the polygon lies completely in front or back of the plane,
the visibility algorithm is applied on the appropriate child
of the current node. Otherwise the polygon is split in two
fragments and the algorithm is applied on both children us-
ing the relevant fragments. In this case, the visibility states
of the fragments must be combined to classify visibility of
their union (see Table 1).

Fragment A Fragment B A [B

F F F
I I I
P X P
X P P

Table 1. Combining visibility states of frag-
ments. Abbreviations: I – Invisible; P – Par-
tially visible; F – Fully visible; X – any of the
I,P,F states.

Thus, in each node reached by the DFS the visibility of
the corresponding fragment of the polygon is computed.
The visibility of the whole polygon corresponds to a visi-
bility state of the root node of the OBSP. Nevertheless, the
DFS can be terminated whenever a fragment is found par-
tially visible. It follows from the fact that if a fragment of
the polygon is partially visible, the polygon itself is par-
tially visible (see Table 1). This constraint can accelerate
the visibility algorithm significantly. The speedup is partic-
ularly remarkable for large polygons, which are likely to be
partially visible.

As already mentioned, the polygon tested for visibil-
ity need not lie behind all occluders. Therefore, reaching
an in-leaf node the additional test must be applied. We
use the link to the occluder-fragment occluding the frus-
tum corresponding to the leaf. The supporting plane of the
occluder-fragment is used to establish visibility of the frag-
ment, which reached the leaf during the DFS. If the frag-
ment is completely in front of the plane, it is fully visible.
If it is completely on the back side of the plane, it is invis-
ible. Otherwise, it lies on both sides of the plane and it is
partially visible.

The visibility algorithm for a polygon with respect to the

occlusion tree is summarized in Figure 4.

Algorithm Visibility(Node, Polygon)
begin

if Node is leafthen
if Node is out-leafthen
Visibility VISIBLE

else
Visibility visibility state based on
FragmentIntersection(Node.Fragment, Polygon);

else
caseSplit(Polygon, Node.Splitter, Back, Front)of
FRONT :(* pass the polygon to the front subtree *)

Visibility Visibility(Node.FrontChild, Polygon);
BACK : (* pass the polygon to the back subtree *)

Visibility Visibility(Node.BackChild, Polygon);
SPLIT : (* pass fragments to apropriate subtrees *)

Visibility Visibility(Node.FrontChild, Front)
if Visibility <> PARTIALLY then
begin

aux Visibility(Node.BackChild, Back)
Visibility CombineVisibility(aux, Visibility);

end
end

end

Figure 4. Pseudo-code of the polygon visibil-
ity algorithm using the OBSP.

5.2. Visibility of Polyhedron

In this section we show how the visibility of a closed
polyhedron from a viewpoint is determined. The polyhe-
dron visibility test will be used extensively during the hier-
archical visibility culling.

As already mentioned the visibility state of a closed
polyhedron can be determined by combining the visibility
of its faces. Assuming these faces are convex polygons,
the above presented polygon visibility algorithm can be ap-
plied. The visibility of the polyhedron is refined incremen-
tally, processing its faces one by one. We call thecurrent
visibility of the polyhedron the visibility of the union of
those polyhedron faces which were already processed. Vis-
ibility of a face of the polyhedron which is facing the view-
point is computed using the polygon visibility algorithm. If
it is not the first face processed, the visibility of the poly-
hedron is updated using the method given in Table 1. The
current polyhedron visibility is combined with the visibil-
ity of the face recently processed. Whenever the current
polyhedron visibility reaches the partially visible state, the
algorithm can be terminated. Otherwise, it proceeds with a
next face until all faces are visited.

In following sections the polyhedron visibility test will
be applied on regions (cells) of the spatial hierarchy. In our
case these cells are parallelepipeds. To determine visibility
of such a cell at most three rectangular polygons must be
tested for visibility (these polygons can be determined by a
table lookup).

5.3. Hierarchical Visibility Culling

The visibility algorithms mentioned above are used dur-
ing the hierarchical visibility culling. Starting from the root
node of the hierarchy, the visibility of each node is deter-
mined using the polyhedron visibility algorithm. Recall that
if a node is found fully visible, all its descendants are fully
visible. Similarly, if a node is found invisible, all its chil-
dren are invisible. Descendants of nodes classified as par-
tially visible are further tested to refine their visibility (see
Figure 5).

The view-frustum culling can be easily merged into the
algorithm. Before the visibility test, the position of the
polyhedron with respect to the view-frustum is computed.
If the polyhedron is lying outside the frustum, the corre-
sponding node is marked invisible. When the visibility of
all leaves is known, objects from fully visible and partially
visible leaves are gathered and rendered using a low-level
exact visibility solver (hardware z-buffer).

To avoid visibility testing of hierarchy nodes where only
few objects are contained, we use anode-cost, which is de-
termined during preprocessing. The node-cost is compared
with a certain threshold (minimum cost). If the node-cost is
lower than the threshold, the node is simply classified fully
visible. The node-cost is based on costs of objects contained
in the region corresponding to the node. As the cost of an
object we use the number of polygons forming the object.

The hierarchical visibility algorithm can be applied to
various kinds of spatial hierarchies. For example, the hierar-
chy of polyhedral bounding volumes could be used without
any modification of the algorithm.

5.4. Temporal Coherence

The visibility algorithms presented in this paper make
good use of the spatial coherence. However, the temporal
coherence has not been exploited so far.

Suppose the observer (viewpoint) moves smoothly. It is
of high probability, that hierarchy nodes classified as par-
tially visible remain partially visible in the following visi-
bility test. This holds especially for nodes at the top of the
spatial hierarchy.

During the hierarchical visibility determination we mark
nodes where the visibility is ambiguously determined (par-
tially visible). When the visibility of any node is unambigu-
ously determined, its parent node is unmarked. When a leaf

viewpoint occluders

invisible visible
partailly

visible
fully

Figure 5. A 2D example of the hierarchical
visibility culling. Regions classified invisible
are shown in dark; partially visible ones are
marked lighter. The spatial subdivision is as-
sumed to be an octree.

node is reached it is always unmarked, regardless of its vis-
ibility. When processing the hierarchy in the next frame the
visibility tests are not applied on nodes marked in the pre-
vious pass of the algorithm. The effect of this modification
is illustrated in Figure 6.

Suppose all nodes of the hierarchy are classified as par-
tially visible. In the next pass of the algorithm all inner
nodes are skipped. The visibility test is applied only on the
leaf nodes. Hence, for a binary tree hierarchy the modifica-
tion saves up to 50% of the visibility tests which would be
applied on the inner nodes.

6. Modified Occlusion Tree

In this section we introduce amodified occlusion tree
(MOBSP) and the algorithm of its construction. Further,
we present a fast conservative visibility algorithm using the
MOBSP.

The OBSP data structure is used extensively in the hi-
erarchical visibility algorithm. The elementary operation
taking place in both the tree construction and the visibil-
ity algorithms is apolygon splitting. Recall that the split-
ting operation determines fragments of the polygon lying in
negative and positive half-spaces induced by a plane.

frame 2

Tested

Marked Visible
Invisible
Partially

frame 1

Figure 6. Illustration of the temporal coher-
ence heuristics. In the first frame no nodes
were skipped and four nodes were marked.
In the second frame the four nodes were
skipped and three nodes were marked. These
three will be skipped in the third frame.

Although the splitting can be implemented quite effi-
ciently, the overhead of fragment allocation remains when
the polygon is split by the plane. The splitting operation was
also a reason that the polyhedra visibility could not be effi-
ciently determined by processing the polyhedra itself. This
is due to the complexity of the splitting operation for poly-
hedra (parallelepipeds) as well as maintaining its fragments.
Therefore, the decomposition of polyhedra and the combi-
nation of visibility states of its faces has been used.

Motivated by the idea of the visibility algorithm (tree
traversal) without the necessity of the polygon splitting, we
developed the concept of the MOBSP. It is based on obser-
vation that carefully removing some of the nodes (shadow
planes) of the OBSP, the new data structure still contains
all the information about the occlusion volumes. Addition-
ally such a data structure can be traversed easier using the
modified visibility algorithm. The algorithm is conserva-
tive with respect to the selected occluders (occluders used
to built the MOBSP). Recall that the algorithms presented
so far determine the visibility state exactly with respect to
the selected occluders. Although the modified visibility al-

gorithm is only conservative, we observed its very good per-
formance in practice.

6.1. Construction of the MOBSP

The MOBSP is constructed similarly to the OBSP. As-
sume an occlusion volume of a polygon is being merged
to the MOBSP. The polygon splitting operation used dur-
ing filtering is enriched byflagging(marking) edges of the
polygon embedded to the shadow planes. If new fragments
are created by the splitting operation, the edge of both frag-
ments embedded to the shadow plane that splits the polygon
is flagged as well.

When an out-leaf is reached during the polygon filtering,
only unflagged polygon edges are used to create shadow
planes enlarging the MOBSP. Shadow planes that would
have been created by flagged edges must be already present
in the MOBSP (otherwise the edges would not be flagged).
If an out-leaf is reached and all edges of the filtered frag-
ment are flagged, no internal nodes are added to the tree.
Instead, the out-leaf is replaced by an in-leaf and the link
to the fragment in the new in-leaf is set. The difference
between an occlusion tree and its modified version is illus-
trated in Figure 7.

It is obvious that the MOBSP contains lower or equal
number of nodes than the OBSP built using the same set of
occluders. It remains to show that the visibility algorithm
as described before gives a correct answer if applied to the
MOBSP. Let us focus again on the structure of the MOBSP.
Assume an out-leaf is reached during filtering and the cor-
responding fragment contains flagged edges. Some shadow
planes are not added to the tree because the corresponding
edges were flagged.

Ignoring some shadow planes the occlusion volume of
a fragment is enlarged. This larger occlusion volume is
merged to the tree by replacing certain out-leaf. Obviously,
each node of the tree implies a unique path from the root.
During the polygon visibility algorithm, the filtered poly-
gon is clipped by all the planes on the path to a node. In the
subtree of the node it is not necessary to clip the position of
the filtered fragment to any plane which already occurred
on the path. The flagged edges would generate exactly such
planes. Hence, ignoring these planes does not effect the
correctness of the visibility algorithm.

In the next section we present a modified visibility al-
gorithm for the MOBSP. In the previously presented algo-
rithms, the polygon visibility algorithm has been used to
determine the visibility of a polyhedron. The modified algo-
rithm determines the visibility of regions of various shapes
directly. It only uses the classification of the position of the
region with respect to a plane.

in out

out

out

out

out

in

in out

out

out

out

out

in

f

a) OBSP tree b) MOBSP tree

f
out

a

d

e

b

c

f

g

a

b

c e

d

b

c

a

e

d

g

edge
flagged

Figure 7. The difference between the OBSP
and the MOBSP. Both trees are constructed
with respect to the same occluders. The oc-
cluders are shown as seen from the view-
point. Node g is not present in the MOBSP,
since the corresponding occluder-edge was
flagged.

6.2. Conservative Visibility of a Region

Assume that the position of a region with respect to a
splitting plane can be determined. It indicates if the region
lies in negative (back), positive (front), or both half-spaces.

Given this operation, the MOBSP is traversed similarly
to the OBSP polygon visibility algorithm. In each inter-
nal node of the tree we determine the position of the region
with respect to the shadow plane and apply the algorithm
recursively on appropriate subtrees. No attempt to split the
region is made even if it lies on both sides of the plane.

The modified visibility algorithm is conservative only.
It implies that the results (i.e. visibility classification of
leaves) can vary comparing to the exact algorithms pre-
sented. Reaching an in-leaf, the region is tested for position
to the supporting plane of the occluder-fragment referred
in the leaf. Call this leaf the current leaf. As mentioned
previously, if the region lies on both sides (half-spaces) of
the supporting plane, it would be classified partially visible.
It is possible that a part of the region crossing the support-

ing plane is actually occluded by another occluder-fragment
than the one referred in the current leaf.

Such a situation can be discovered by testing the region
for an intersection with the occluder-fragment. If they do
not intersect, the region is classified invisible with respect
to the current leaf. In other words it is invisible in the frusta
induced by the viewpoint and the fragment. Note that the
region can still be found partially visible when the visibility
of all leaves reached during the visibility algorithm is com-
bined. In the case of an axis-aligned box, a fast algorithm
can be used for the box/polygon intersection[6]. In general,
it is unclear if the possible improvement in correctness of
the algorithm is worth the time spent by the additional in-
tersection test.

Here we mention another possible modification of the
algorithm. It is possible to apply similar intersection tests
also in the inner nodes of the MOBSP. Then the algorithm
always determines visibility exactly with regard to the se-
lected occluders. However, such a traversal can loose sev-
eral desired features of the modified visibility algorithm.
These are the simplicity of traversal, generality, and speed.
Due to lack of space we decided not to present the modifi-
cation in detail.

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

b

a

c

misclassification region

c

α

f

b

MOBSP

e

d

fa

misclassifing plane

e

d

misclassification
path

in

in

out

out

outout

out

Figure 8. An example of disadvantageous
configuration of occluders. The shadow
planes of the MOBSP are shown by thin lines.
The invisible polyhedra intersecting both the
shadow plane a and the marked region is said
to be partially visible.

We have mentioned that the modified visibility algorithm
is conservative. The situation when a region is misclassified
as partially visible is depicted in Figure 8. In general, it is
difficult to give a probabilistic analysis of the number of
cases when the algorithm fails to give an exact result. As-
sume the configuration of occluders as given in the figure. It
can be seen that the algorithm is likely to give an imprecise

(conservative) result if the angle� between the highlighted
shadow planes gets larger. Nevertheless, in most cases the
algorithm performs well in practice as documented in the
next section.

7. Results

In this section we document the behaviour of the algo-
rithm presented in this paper. Several models of architec-
tural interiors were used to compare efficiency of the algo-
rithms. As a reference we used thehierarchical frustum
culling [14] with no visibility processing. The results are
summarized in Table 2. Each line corresponds to average
values obtained in the scope of one walk-through.

The Time field is an average frame time. TheOver-
headfield depicts an additional overhead of the visibility
culling algorithms. This includes the dynamic occluder
selection, building of the BSP of occluders, building the
OBSP (MOBSP), and the hierarchical visibility culling.
The Speedupis a fraction of the average frame time of
the pure view-frustum culling and the actual average frame
time. TheRendered polygonsfield contains the average
number of polygons rendered in one frame. The other two
parameters shown in the table are user-specified constants
influencing behaviour of the algorithm. The number of oc-
cluders used to build the OBSP (MOBSP) is shown in the
Occludersfield. The field calledMethodrepresents the al-
gorithm used for visibility culling. Its meaning is explained
below the table. In all visibility culling algorithms the tem-
poral coherence heuristics was used. The minimum cost of
the node to be tested for visibility was50. Recall that the
cost of a node expresses the number of polygons referred in
the node. For each measurement100 detailed objects were
spread randomly in the scene. We used a virtual plant con-
sisting of644 polygons.

Plots of frame times and numbers of rendered polygons
measured during a walk-through of an architectural model
(big-7) are shown in Figures 9 and 10. The speedup of
the rendering achieved for the tested models varies between1:75 and3:75. We observed that the speedup is not linearly
proportional to the number of occluders used for the visi-
bility culling. Increasing the number of occluders used by
factor of two, the speedup is usually increased much less.
Important is that in such a situation the overhead of visibil-
ity culling is also increased less than two times.

Informally, we explain the behaviour of the algorithm
as follows: Firstly, assume the occlusion tree contains oc-
cluders that occlude large portion of the view. It is of high
probability that another occluder is found invisible. In this
case the occlusion tree is not enlarged. Secondly, the occlu-
sion tree inherits the logarithmic search properties of hier-
archies. Therefore, the number of steps of the polyhedron
visibility algorithm with the occlusion tree is usually much

Scene Method Occluders Rendered polygons Overhead [ms] Time [ms] Speedup

soda-5 F — 18192 — 276.5 1.00
soda-5 FME 8 9466 3.7 157.3 1.75
soda-5 FME 16 7390 5.9 139.0 1.99
soda-5 FME 24 6537 7.9 116.0 2.38
soda-5 FME 32 5941 9.8 109.8 2.52
soda-5 FME 50 5490 14.2 109.5 2.53
soda-5 FSE 16 6512 12.7 120.5 2.29
soda-5 FSE 24 5569 16.0 110.5 2.50
soda-5 FSE 32 4725 19.1 100.1 2.76
soda-5 FMC 16 7988 5.4 135.9 2.03
soda-5 FMC 24 7362 7.3 129.3 2.14

big-7 F — 12587 — 182.0 1.00
big-7 FME 16 3641 8.8 71.5 2.55
big-7 FME 24 2286 10.2 54.6 3.33
big-7 FME 32 1818 11.6 48.5 3.75
big-7 FSE 24 2214 19.9 63.4 2.87
big-7 FMC 16 3640 8.4 74.3 2.44
big-7 FMC 24 2263 9.7 51.4 3.54

soda F — 15297 — 315.2 1.00
soda FME 24 4744 10.1 119.7 2.63
soda FSE 24 4388 23.7 128.0 2.46

F – view-frustum culling
S – OBSP tree + standard visibility algorithm
M – MOBSP tree + conservative visibility algorithm
E – exact occluder-fragment/parallelepiped intersection test
C – conservative occluder-fragment/parallelepiped intersection test

Table 2. Results of the hierarchical visibility culling. Th e table shows the average number of polygons
rendered, the average frame-time and the speedup over the vi ew-frustum culling for different scenes
and methods of the visibility culling. Measured on SGI O 2, 64MB RAM.

lower than the number of occluders.
It follows from Table 2 that the best results were

achieved by the FME method. It is the combination of
the MOBSP and the conservative visibility algorithm with
the leaf-fragment-intersection test. Under certain circum-
stances, we observed that the FSE method led to better re-
sults. Particularly, when a detailed object was found invisi-
ble by FSE (and not by FME), the time saved in rendering
exceeded the time needed for more complex visibility de-
termination.

8. Conclusion

In this paper we have introduced the concept of occlu-
sion trees. It was shown that the occlusion trees can be used
to determine the viewpoint-to-region visibility efficiently
by exploiting the spatial coherence of occluders. We pre-
sented an algorithm determining the visibility of a polyhe-

dra exactly with respect to the selected occluders. Further,
a fast conservative visibility algorithm applicable to regions
of more general shape was described. Although the preci-
sion of the conservative algorithm is generally lower than
the exact one, it performs well in practice.

The concept of occlusion trees was used in the hierarchi-
cal visibility culling for the rendering of complex models. It
was shown that, using the occlusion tree, we can efficiently
avoid rendering of invisible parts of a model. For models
with high depth complexity, these savings are significant.
Since the visibility is determined in a hierarchical fashion,
the spatial coherence is exploited in the algorithm. We also
presented the temporal coherence heuristics for the hierar-
chical visibility culling.

9. Future Work

Many themes for future work have been encountered in
the paper. Some of the themes are related to the occlusion
tree data structure itself, others to the application of occlu-
sion trees in the scope of hierarchical visibility culling.

We assumed occluders to be sufficiently large convex
polygons. This assumption is often false in practice. We
propose model simplification for the purposes of visibility
algorithms. The simplified model description should con-
sist solely of convex polygons which should keep occlusion
properties of objects they were generated from.

Another topic for future work concerns the occluder se-
lection. It can be advantageous to determine the set of po-
tential occluders in preprocessing [9, 3]. We currently de-
velop an algorithm that computes the potential occluders for
a certain region. The algorithm uses a sophisticated sam-
pling scheme to determine the asset of an occluder.

We used a user-specified constant (minimum cost) to de-
cide if a node of the spatial hierarchy should be tested for
visibility. The minimum cost could be determined automat-
ically based on the ratio of the speed of the rendering sub-
system and the speed of the processor. It could also reflect
how the algorithm succeeds in the visibility culling for a
particular model.

Regarding the MOBSP, we are going to give a probabilis-
tic analysis of the conservative visibility algorithm. Based
on this analysis, we want to increase the precision of the al-
gorithm. It should be achieved by inserting additional nodes
to the MOBSP, where the probability of visibility misclas-
sification is high.

Currently, the occlusion tree is built from a scratch in
each rendering frame. We study the possibility of exploiting
the temporal coherence in the construction of the occlusion
tree. Finally, we would like to apply the occlusion trees
to accelerate the casting of shadow rays in the ray tracing
algorithm.

Acknowledgements

This work has been supported by a grant number
1252/1998 from the Grant Agency of the Ministry of Ed-
ucation of the Czech Republic.

References

[1] H. Chen and W. Wang. The feudal priority algorithm on
hidden-surface removal. InProceedings of SIGGRAPH ’96,
pages 55–64, Aug. 1996.

[2] N. Chin and S. Feiner. Near real-time shadow generation
using BSP trees. InProceedings of SIGGRAPH ’90, pages
99–106, Aug. 1990.

[3] S. Coorg and S. Teller. A spatially and temporally coherent
object space visibility algorithm. Technical Report TM-546,
Department of Computer Graphics, MIT, Feb. 1996.

[4] F. Durand, G. Drettakis, and C. Puech. The 3D Visibility
Complex, a new approach to the problems of accurate visi-
bility. In Eurographics Workshop on Rendering, June 1996.

[5] H. Fuchs, Z. M. Kedem, and B. F. Naylor. On visible sur-
face generation by a priori tree structures. InProceedings of
SIGGRAPH ’80, pages 124–133, July 1980.

[6] N. Greene. Detecting intersection of a rectangular solid and
a convex polyhedron. InGraphics Gems IV, pages 74–82.
Academic Press, Boston, 1994.

[7] N. Greene. Hierarchical polygon tiling with coverage masks.
In Proceedings of SIGGRAPH ’96, pages 65–74, Aug. 1996.

[8] N. Greene, M. Kass, and G. Miller. Hierarchical Z-buffer
visibility. In Proceedings of SIGGRAPH ’93, pages 231–
238. ACM Press, Aug. 1993.

[9] T. Hudson, D. Manocha, J.Cohen, M.Lin, K.Hoff, and
H.Zhang. Accelerated occlusion culling using shadow
frusta. InProceedings of the Thirteenth ACM Symposium on
Computational Geometry, June 1997, Nice, France, 1997.

[10] M. Kaplan. Space-tracing: A constant time ray-tracer.In
SIGGRAPH ’85 State of the Art in Image Synthesis seminar
notes, pages 149–158. Addison Wesley, July 1985.

[11] D. Luebke and C. Georges. Portals and mirrors: Simple,
fast evaluation of potentially visible sets. In1995 Sym-
posium on Interactive 3D Graphics, pages 105–106. ACM
SIGGRAPH, Apr. 1995.

[12] B. Naylor, J. Amanatides, and W. Thibault. Merging BSP
trees yields polyhedral set operations. InProceedings of
SIGGRAPH ’90, pages 115–124, Aug. 1990.

[13] H. Plantinga and C. Dyer. Visibility, occlusion, and the
aspect graph. International Journal of Computer Vision,
5(2):137–160, 1990.

[14] J. Rohlf and J. Helman. IRIS performer: A high perfor-
mance multiprocessing toolkit for real–Time 3D graphics.
In Proceedings of SIGGRAPH ’94, pages 381–395, July
1994.

[15] S. Teller and P. Hanrahan. Global visibility algorithms for
illumination computations. InProceedings of SIGGRAPH
’93, pages 239–246, 1993.

[16] S. J. Teller. Visibility Computations in Densely Occluded
Polyhedral Environments. PhD thesis, Dept. of Computer
Science, University of California, Berkeley, 1992. Also
available as Technical Report UCB//CSD-92-708.

[17] S. J. Teller and C. H. Séquin. Visibility preprocessing for in-
teractive walkthroughs. InProceedings of SIGGRAPH ’91,
pages 61–69, July 1991.

[18] W. C. Thibault and B. F. Naylor. Set operations on polyhe-
dra using binary space partitioning trees. InProceedings of
SIGGRAPH ’87, volume 21, pages 153–162, July 1987.

[19] R. Yagel and W. Ray. Visibility computation for efficient
walkthrough of complex environments.Presence: Teleop-
erators and Virtual Environments, 5(1), 1995.

[20] H. Zhang, D. Manocha, T. Hudson, and K. Hoff. Visibility
culling using hierarchical occlusion maps. Technical Report
TR97-004, Department of Computer Science, University of
North Carolina - Chapel Hill, Feb. 21 1997.

0

50

100

150

200

250

300

350

400

450

500

0 50 100 150 200 250 300 350 400

Rendering Time A [ms]
Rendering Time B [ms]

Figure 9. Rendering times obtained for a sequence of 400 fram es during walkthrough of the big-7
scene. Curve A corresponds to view-frustum culling only; cu rve B includes the hierarchical visibility
culling using 32 occluders (method FME).

0

5000

10000

15000

20000

25000

30000

35000

40000

0 50 100 150 200 250 300 350 400

Rendered Polygons A
Rendered Polygons B

Figure 10. The amount of polygons rendered during a sequence of 400 frames during walkthrough
the big-7 scene. Curve A corresponds to view-frustum cullin g only; curve B includes the hierarchical
visibility culling using 32 occluders (method FME).

