
EUROGRAPHICS 2013 / I. Navazo, P. Poulin
(Guest Editors)

Volume 32 (2013), Number 2

Analytic Visibility on the GPU

T. Auzinger‡, M. Wimmer and S. Jescke

Vienna University of Technology, Austria

Abstract

This paper presents a parallel, implementation-friendly analytic visibility method for triangular meshes. Together
with an analytic filter convolution, it allows for a fully analytic solution to anti-aliased 3D mesh rendering on par-
allel hardware. Building on recent works in computational geometry, we present a new edge-triangle intersection
algorithm and a novel method to complete the boundaries of all visible triangle regions after a hidden line elimi-
nation step. All stages of the method are embarrassingly parallel and easily implementable on parallel hardware.
A GPU implementation is discussed and performance characteristics of the method are shown and compared to
traditional sampling-based rendering methods.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Antialiasing I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—Visible
line/surface algorithms

1. Introduction

An essential task in rendering a 3D scene to a 2D image is
the determination of the (partial) visibility of the scene ob-
jects. Object visibility exhibits discontinuities at object sil-
houettes, causing infinitely high frequencies in the output.
In order to suppress the resulting aliasing artifacts when ren-
dering to an image of finite resolution, it is necessary to ap-
ply low-pass filtering on the scene data. To address this is-
sue, one choses a suitable filter and performs a convolution
with the scene data. This is especially relevant in current and
future rendering and visualization tasks, due to increasing
model complexity.

The standard method in depth-buffered rasterization is to
approximate the convolution integral by choosing for ev-
ery output pixel a single or multiple sampling locations.
A weighted sum of the sample values gives the final pixel
value. If both the visibility and scene data are evaluated
at each sample point, we have common supersampling. If
we just sample the visibility data at each sampling loca-
tion and choose a lower number of scene samples, we obtain
multisampling [Ake93]. In both methods, the choice of the
sample locations and weights is crucial for the visual qual-
ity [RKLC∗11].

‡ thomas.auzinger@cg.tuwien.ac.at

A different approach to the aliasing problem is to compute
the filter convolution analytically, i.e., to obtain a symbolic
formula for the result and supply the scene data as param-
eters. A sketch of such a system for CPUs was developed
by Catmull already in 1984 [Cat84]. In recent years we saw
works on the exact computation of the convolution of polyg-
onal data with box filters by Manson and Schaefer [MS11]
and of polygonal and polyhedral data with radial filters by
Auzinger et al. [AGJ12]. Both methods, while efficiently im-
plementable on GPUs, do not address scene visibility.

In this paper, we try to close this gap and present two
new algorithms that allow for the efficient computation of
analytic visibility on parallel hardware. Together with the
methods above, fully analytic anti-aliased 3D scene display
is enabled and, by utilizing the improved programmability
of recent graphics hardware, interactive frame rates can be
achieved.

2. Related Work

Analytic visibility methods were developed early in
the history of computer graphics, with the first hidden
line/surface elimination algorithms by Appel [App67] and
Robert [Rob63]. Sutherland et al. [SSS74] presented an ex-
cellent survey of other methods and their close relationship
to sorting [SSS73].

c© 2013 The Author(s)
Computer Graphics Forum c© 2013 The Eurographics Association and Blackwell Publish-
ing Ltd. Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ,
UK and 350 Main Street, Malden, MA 02148, USA.

DOI: 10.1111/cgf.12061

T. Auzinger, M. Wimmer and S. Jeschke / Analytic Visibility on the GPU

Plenty of early algorithms exist for the elimination of hid-
den lines [Gal69, Hor82] or general curves [EC90]. Line
drawings depend in general on these techniques, with the
first halo rendering presented by Appel et al. [ARS79], and
recent development covered in the course by Rusinkiewicz
et al. [RCDF08].

Extensions to analytic hidden surface elimination were
conducted by Weiler et al. [WA77], who clips polygonal
regions against each other until trivial depth sorting is ob-
tained, by Franklin [Fra80], who uses a tiling and block-
ing faces to establish run-time guarantees, and by Cat-
mull [Cat78, Cat84], who sketches a combination of ana-
lytic visibility and integration for CPUs. An early paral-
lelization is described by Chang et al. [CJ81]. McKenna
was the first to rigorously show a worst-case optimal se-
quential algorithm with complexity O(n2) in the number
of polygons [McK87]. Improvements were made by Mul-
muley [Mul89] and Sharir et al. [SO92] with the goal of
output-sensitive algorithms, i.e. to base the run-time com-
plexity on the actual number of intersections between the
polygons. One of the first parallel algorithms was the terrain
visibility method by Reif and Sen [RS88], later improved
by Gupta and Sen [GS98]. The general setting was treated
by Randolph Franklin et al. [RFK90] but with worst case
asymptotics independent of processor count. Once hardware
limitations disappeared, the focus of the community moved
to approximate, sampling-based visibility. Raytracing and its
variants rely on object space visibility, e.g. space partition-
ing hierarchies, while rasterization mainly uses the z-buffer
methodology; an overview is given in the course by Du-
rand [Dur00].

The computational geometry community showed contin-
ued interest in analytic visibility, and in recent years Dévai
gave an easier-to-implement optimal sequential algorithm
and an optimal parallel algorithm that runs in Θ(logn) us-
ing n2/logn processors in the CREW PRAM model (Con-
current Read Exclusive Write Parallel Random Access Ma-
chine) [Dév11]. However, such optimal algorithms use intri-
cate data structures and are highly non-trivial to implement
on actual GPU hardware.

As our method provides the correct input for analytic anti-
aliasing methods, we give a short overview of this field here.
The aliasing problem in computer graphics was rigorously
treated for the first time by Crow [Cro77] and over the years
various filters have been proposed by Turkowski [Tur90],
Mitchell and Netravali [MN88] and others, but simple box
filtering still stays relevant for current analytic methods such
as wavelet rasterization by Manson et al. [MS11]. While dif-
ferent approaches to (semi-)analytic anti-aliasing have been
proposed throughout the years, e.g. by McCool [McC95] and
Guenter and Tumblin [GT96], sampling is still the preferred
method, either in its stochastic variant originated by Dippe
et al. [DW85] or with (semi)-regular sampling patterns. Es-
pecially the latter is still a research focus in stratified Monte-

Carlo methods and GPU rasterization; the course by Keller
et al. [KPRG12] give an overview. Analytic methods show
an increase in popularity in the field of motion blur and depth
of field rendering; Gribel et al. use exact visibility along cuts
through the scene in depth direction for point [GDAM10]
and line [GBAM11] samples for stochastic sampling on the
CPU. Auzinger et al. [AGJ12] use analytic integration to ob-
tain anti-aliased sampling of 2D and 3D scenes on the GPU.

3. Analytic Visibility

Adapting a visibility algorithm to massive SIMD architec-
tures has many objectives. Ideally it allows the workload to
be split into a predictable and large number of small and
independent subtasks. Furthermore it should accommodate
simple data structures that can be accessed in coalesced par-
allel fashion. Additionally, the actual computations should
rely on basic data types such as integral or floating point
values. These restriction rule out methods that internally use
arbitrary polygons or generate complex graphs, as well as ar-
bitrary precision arithmetics. Furthermore, acceleration data
structures are needed to avoid the O(n2) complexity of in-
tersecting all triangles with each other. Visibility algorithms
generally contain a sorting routine, which has to be mapped
to efficient methods on the GPU.

Our visibility algorithm takes the normalized device co-
ordinates of all 3D triangles as input and outputs a list of all
2D line segments, which constitute the borders of all visible
polygonal regions of the scene when projected onto the view
plane. It is assumed that the triangles are consistently orien-
tated (to allow backface culling) and non-intersecting in 3D.
Note that cyclic overlap of triangles is permitted. The result
gives a complete description of the boundaries of all visi-
ble regions and matches the input requirements of analytic
anti-aliasing approaches [MS11, AGJ12].

Our method performs the visibility computation indepen-
dently for each edge, which yields an embarrassingly par-
allel workload. Building on a method of Dévai [Dév11],
we present a new edge-triangle intersection method that al-
lows replacing the theoretical ‘black hole’ treatment of Dé-
vai with a novel, implementation-friendly boundary comple-
tion stage. Both algorithms and the additional hidden line
elimination stage are presented in the next sections.

3.1. Edge Intersections

To determine the visible parts of the scene edges, we first
project them onto the view plane and compute the intersec-
tion in this space. Given a projected edge e and a projected
triangle t, we can assume that an occlusion, if it exists, is
a connected set of e, i.e. a line segment in the view plane,
due to the convexity of triangles. This well-defined output
enables efficient parallel calculations of all occlusions be-
tween edges and triangles. A high-level view of this method
is given in algorithm 1 with an example in figure 2.

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

410

T. Auzinger, M. Wimmer and S. Jeschke / Analytic Visibility on the GPU

(a) View plane projection (b) 2D view (c) Edge intersections (d) Hidden line
elimination

(e) Boundary
completion

Figure 1: Overview of our analytic visibility method. The scene triangles are projected onto the view plane (a) since the edge
intersection phase (see section 3.1) operates mostly in 2D (b). It determines for each edge the (possible) intersections with all
other triangles (c). The intersection data is used in the second phase to determine the visible line segments (see section 3.2). A
hidden line elimination algorithm gives the visible segments of each edge (d) and a final boundary completion (e) completes all
visible line segments. These segments are the boundaries of the visible regions of the scene triangles.

Algorithm 1 Edge intersection phase
Input: T is the set of all scene triangles. E is the set of all

their edges.
Output: Data is the resulting intersection data, where

Data(e) gives the intersection data for edge e. Each en-
try of Data(e) is the 3-tuple (p, f lag, type) consisting
of an intersection point p, a flag that indicates if p is
starting or ending a line segment, and a type describing
the relative depth relation between e and p (i.e. one of
occluding, occluded, or self).

1: procedure EDGEINTERSECTIONS(E,T)
2: Data←{}
3: for all edge e ∈ E do in parallel
4: Data(e)←{}
5: for all triangle t ∈ T,e /∈ t do in parallel
6: if AREOVERLAPPING(e, t) then
7: (p0, p1)← INTERSECT(e, t)
8: if ISBEHIND(e, p0, p1) then
9: type← occluded

10: else
11: type← occluding
12: end if
13: APPENDTO(Data(e),(p0,starting, type))
14: APPENDTO(Data(e),(p1,ending, type))
15: end if
16: end for
17: type← sel f
18: (p0, p1)← ENDPOINTS(e)
19: APPENDTO(Data(e),(p0,starting, type))
20: APPENDTO(Data(e),(p1,ending, type))
21: end for
22: return Data
23: end procedure

z

e

type • s • • ◦ • ◦ ◦ s ◦
flag s s s e s e s e e e

Figure 2: Example result of the EDGEINTERSECTIONS pro-
cedure (see algorithm 1) for a single edge e (in magenta).
The plane which contains e and extends into z direction in-
tersects two triangles in front of e (in blue) and two triangles
behind e (in yellow). All four triangles overlapping e and the
resulting intersection points are the endpoints of the associ-
ated line segments. Each point is associated with a type, de-
noting if e is occluded by its triangle (•), if it is an endpoint
of e (s), or if its triangle is occluded by e (◦). Additionally, a
flag stores if the intersection points starts (s) or ends (e) an
occlusion.

The core routines INTERSECT and ISBEHIND need to be
further discussed. The intersection routine INTERSECT re-
duces to a geometrical computation in 2D, as both its input
parameters, edge e and triangle t, are projected onto the view
plane. AREOVERLAPPING is a conservative test to discard
triangles that do not intersect e. In general we expect the in-
tersection to consist of a whole line segment; INTERSECT

outputs the segment’s end points in 3D, where the depth co-
ordinate is chosen such that the point lies on the plane of t.
It should be noted that we discard single-point intersections
in this phase, as zero-length line segments do not contribute
to the final image. Additionally, each endpoint is marked as
either starting or ending the occlusion.

A hidden line elimination algorithm considers only the
occlusion of edge e [App67]. In our case, as we want full
hidden surface removal, we have to take into account all the
triangles that are occluded by e, too. ISBEHIND compares

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

411

T. Auzinger, M. Wimmer and S. Jeschke / Analytic Visibility on the GPU

z

e

type • s • • ◦ • ◦ ◦ s ◦
flag s s s e s e s e e e

init 1 -1 1 -1 7 -1 7 7 1 7

scan 1 0 1 0 7 -1 7 7 0 7

out 7 7 7 7 7 3 7 7 3 7

Figure 3: Example result of the HIDDENLINEELIMINA-
TION procedure (see algorithm 2) for the scene in figure 2.
The table gives type and flag information after the edge in-
tersection phase and at various stages of the hidden line
elimination algorithm. The state of V after the initialization
(after line 20) is shown in row init, while the state of S after
the inclusive scan (after line 21) is given by scan. The en-
try 7 denotes a removed index. The check marks 3 in row
out show which intersection points are reported as visible
edge segments.

the relative depth of an edge e and the line segment given
by p0 and p1. Since we assume non-intersecting triangles as
input, their depth ordering can be determined and we store
this information in type.

Great care has to be taken to ensure the robustness of such
geometrical calculations on the used hardware. Fixed preci-
sion or floating point arithmetics lead to round-off errors and
can cause erroneous results in binary geometric decisions
(e.g. is a point on a line?). Exact geometric computation is
the most commonly used technique to solve this problem.
But since it relies on a combinatorial analysis of the geo-
metric calculation at hand and on the use of arbitrary pre-
cision numbers, it is not suited for practical implementation
on graphics hardware. We chose an ε-prefiltering approach
by Frankel et al. [FNS04] and compute parallelism queries
of lines in double precision. This enables us to reliably de-
termine the correct intersections for geometrically complex
models (see figure 5).

3.2. Visible Line Segments

Having obtained the intersections for each scene edge, we
employ two procedures to determine all visible line seg-
ments necessary for the final integration stage. We present
this as two separate methods. The first is a simple hidden
line elimination algorithm (see figure 1d) while the second
method completes the boundaries of the visible regions of
each triangle and thus provides full hidden surface elimina-
tion (see figure 1e).

Hidden line elimination is a standard technique in line
rendering and was first introduced by Appel [App67]. We
adapt a recent result of Dévai [Dév11] on the optimal run-

Algorithm 2 Determine the visible parts of all scene edges
Input: The sorted output of EDGEINTERSECTIONS (see al-

gorithm 1).
Output: REPORTSEGMENT outputs the visible line seg-

ments of all edges.

1: procedure HIDDENLINEELIMINATION(E)
2: for all e ∈ E do in parallel
3: I← Data(e)
4: for n← 1, |I| do in parallel
5: (∼,∼, type)← I(n)
6: if type = occluding then
7: REMOVEINDEX(I,n)
8: end if
9: end for

10: for n← 1, |I| do in parallel
11: (∼, f lag, type)← I(n)
12: if f lag = starting then
13: V (n)← 1
14: else
15: V (n)←−1
16: end if
17: if type = sel f then
18: V (n)←−V (n)
19: end if
20: end for
21: S← INCLUSIVESCAN(V)
22: for n← 1, |I| do in parallel
23: v←V (n),s← S(n)
24: if (v = 1∧ s > 0)∨ (v =−1∧ s >−1) then
25: REMOVEINDEX(I,n)
26: end if
27: end for
28: for n← 1,n≤ |I|,n← n+2 do in parallel
29: (p0,∼,∼)← I(n)
30: (p1,∼,∼)← I(n+1)
31: REPORTSEGMENT(p0, p1)
32: end for
33: end for
34: end procedure

time of parallel hidden surface algorithms for our method.
We use a scan-based approach which walks along the line of
a given edge e and determines for each intersection point if
it is an endpoint of a visible segment of e. This requires an
ordering of the intersections along e, which is achieved by a
intermediate sorting step. An overview of hidden-line elim-
ination assuming a sorted input is given by algorithm 2 and
an example in figure 3. For each edge in parallel, we first re-
move all data from intersections that originate from triangles
that lie behind the edge (lines 4-9). Depending on the type
of each intersection point, we assign a value (0 or ±1) to a
list V (lines 10-20). The following INCLUSIVESCAN creates
a list S that holds a measure on how many triangles occlude e

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

412

T. Auzinger, M. Wimmer and S. Jeschke / Analytic Visibility on the GPU

z

e

o

type • s • • ◦ • ◦ ◦ s ◦
flag s s s e s e s e e e

vis F F F F T T
front T T
init 0 0 0 0 -1 -1 1 1 1 -1
scan 1 1 1 1 0 -1 0 1 2 1
out 7 7 7 7 7 3 3 7 7 7

Figure 4: Example result of the BOUNDARYCOMPLETION

procedure (see algorithm 3) for the scene in figure 2. The
table shows type and flag information after the edge inter-
section phase, and the program’s state at various stages for
a selected iteration step in n, such that the occluded line seg-
ment o (see figure above) is given by the intersections with
indices nstart and nend. The boolean values of Vis after its
initialization (after line 6) are given by the row vis, while
the results of the INFRONT check can be found in row front.
The last three rows show the resulting values of V , S and
REMOVEINDEX (consult figure 3).

at a given intersection. We remove all occluded edge seg-
ments (line 25) and report the remaining ones as endpoints
of visible edge segments. The criterion for removal (line 24)
reflects the fact that for a given intersection index n a visible
edge segment starts at n, if V (n) = −1 and S(n) = 1. The
end of such a segment is given by V (n) = 1 and S(n) = 0.

To complete the boundary of each visible region, we pro-
pose an extension to the parallel hidden line elimination
above. In conjunction, they give a full hidden surface elimi-
nation. Intuitively, we want to determine which triangles lie
‘on the other side’ of the visible edge segments (figure 1e
shows the missing segments that complete the visible edge
segments of figure 1d to yield the boundaries of the visible
regions in figure 1b). This is a harder problem than hidden
line elimination, as we are interested in the triangles that are
right behind a given edge e (as opposed to just knowing that
e lies behind one or more triangles). Hence our algorithm 3
executes a modified hidden line elimination for every line
segment o that is occluded by e (lines 7-39). The initializa-
tion of V is changed in such a way that the visible parts of e
act as anti-occlusions, i.e. all segments o are occluded unless
they lie behind a visible part of e (see figure 4). Each inter-
section along e is assigned a value (0 or ±1) (lines 21-24),
perform an inclusive scan on the list (line 25), remove in-
visible line segments (lines 27-32), and report the remaining
segments (lines 33-37).

In the initialization phase we have to resolve the relative
depth layering of the occluded line segments, too. Our algo-
rithm achieves this by pairwise comparison of the line seg-

Algorithm 3 Determine the missing boundaries of the visi-
ble regions
Input: The sorted output of EDGEINTERSECTIONS (see al-

gorithm 1).
Output: REPORTSEGMENT outputs the missing line seg-

ments.

1: procedure BOUNDARYCOMPLETION(E)
2: for all e ∈ E do in parallel
3: I← Data(e)
4: for n← 1, |I| do in parallel
5: Vis(n)← INTERSECTIONISVISIBLE(I,n)
6: end for
7: for n← 1, |I| do
8: (∼, f lag, type)← I(n)
9: if type = occluding∧ f lag = starting then

10: ID← GETTRIANGLEID(T,e,n)
11: (nstart ,nend)← GETINDICES(I, ID)
12: for k← 1, |I| do in parallel
13: if k 6= nstart ∧ k 6= nend then
14: (∼,∼, typek)← I(k)
15: if typek = occluding then
16: IDk← GETID(T,e,k)
17: F(k) ← ISIN-

FRONT(IDk, ID)
18: end if
19: end if
20: end for
21: for k← 1, |I| do in parallel
22: (∼, f lagk, typek)← I(k)
23: V (k) ←

INIT(k,nstart ,nend , f lagk, typek,Vis(k),F(k))
24: end for
25: S← INCLUSIVESCAN(V,1)
26: In← I(n)
27: for k← 1, |I| do in parallel
28: v←V (k),s← S(k)
29: if (v= 1∧s> 0)∨(v=−1∧s>−1)

then
30: REMOVEINDEX(In,k)
31: end if
32: end for
33: for k← 1,k ≤ |I|,k← k+ 2 do in par-

allel
34: (p0,∼,∼)← In(k)
35: (p1,∼,∼)← In(k+1)
36: REPORTSEGMENT(p0, p1)
37: end for
38: end if
39: end for
40: end for
41: end procedure

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

413

T. Auzinger, M. Wimmer and S. Jeschke / Analytic Visibility on the GPU

42: procedure INIT(n,nstart ,nend , f lag, type,visible, inFront)
43: if n = nstart then return −1 end if
44: if n = nend then return 1 end if
45: if type = occluding∧ inFront = true then
46: if f lag = ending then
47: return −1
48: else [f lag = starting]
49: return 1
50: end if
51: end if
52: if visible = true then
53: if (type = sel f ∧ f lag = starting) ∨ (type =

occluded∧ f lag = ending) then
54: return −1
55: end if
56: if (type = sel f ∧ f lag = ending) ∨ (type =

occluded∧ f lag = starting) then
57: return 1
58: end if
59: end if
60: return 0
61: end procedure

ments which are subsets of their respective triangles. This
is a standard geometric computation and is denoted by the
procedure ISINFRONT in line 17. As already mentioned, we
only report line segments that are only occluded by e. This
requires the knowledge of all visible line segments of e,
which is exactly the result of HIDDENLINEELIMINATION.
We abbreviate it with the call of INTERSECTIONISVISIBLE

in line 5.

4. Implementation

Our analytic visibility method targets massively parallel
SIMD architectures with current GPUs as a prime exam-
ple. We make use of their large amount of moderately sized
SIMD units by implementing a software rendering pipeline
on NVidia hardware using the CUDA C programming lan-
guage [NVI]. We give a short review of this environment and
continue with a detailed explanation of our design choices.

4.1. Hardware

We use NVidia’s nomenclature and refer to the SIMD units
as warps and assume their size to be 32 threads. They are
grouped into thread blocks which enables the use of a pro-
cessor’s fast on-chip memory as shared memory by all the
block’s threads. The much larger and considerably slower
global memory allows data transfer and synchronization
across thread blocks, where the latter is enabled by atomic
memory accesses. The amount of registers and shared mem-
ory is limited and the excessive use of one resource can de-
crease the amount of warps that can run in parallel, leading to

device underutilization. While our design can also be imple-
mented on other parallel hardware, such as multi-core CPUs,
our algorithm benefits from the huge amount of threads that
are kept active by a GPU, thus hiding memory latency.

4.2. Design Considerations

Our algorithm shows a distinct two-level parallelism in all its
core procedures (see algorithm 1-3). The outer loop iterates
over all edges in parallel. Since the number of intersections
per edge varies greatly, we cannot employ a SIMD model
at this level without incurring a severe under-utilization
penalty. Therefore, we assign edges to separate SIMD units
and parallelize the inner loops across their threads.

In the edge intersection phase (see section 3.1) we assign
a given edge to a warp and fetch a triangle per thread until
the pool of relevant triangles is depleted. Both the assign-
ment of edges to warps and the computations of the offset
into the output array are done with atomic memory func-
tions on global counters. In our tests the large number of
active warps efficiently hide the memory latency associated
with the triangle fetches.

The sorting of intersections along the edges is executed
for all edges in parallel by using a key-value radix sort. The
key of each intersection holds a reference to its edge and a
parameter that increases along the edge. Knowing the num-
ber of intersections per edge allows efficient retrieval of the
sorted intersection for each edge.

The hidden line elimination and boundary completion are
executed similar to the edge intersection. The edges are as-
signed to warps and the inner loops parallelized across their
threads.

4.3. Analytic Visibility Pipeline

In this section we will provide an overview of the actual
pipeline we implemented and essential details of the adap-
tation to the CUDA framework as well as vital optimiza-
tions. Our algorithm to intersect edges with triangles has an
outer loop over all edges and an inner loop over all trian-
gles. A quadratic complexity in the number of triangles will
become prohibitively costly for large scenes and thus we as-
sign the scene triangles to subsets of the view plane – in our
case quadratic bins. This preserves spatial coherence in the
memory accesses and enables load balancing by prioritizing
bins with a high number of assigned triangles. We generate
a list of overlapped bins per triangle and then use a fast radix
sort [MG11] to obtain a list of triangles per bin (similar to
the work on voxelization by Pantaleoni [Pan11]). Our use of
fixed bins can be improved upon by employing an adaptive
scene subdivision to enhance the load balancing.

Furthermore we accelerate the procedure AREOVERLAP-
PING (see algorithm 1 line 6) by assigning an axis-aligned

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

414

T. Auzinger, M. Wimmer and S. Jeschke / Analytic Visibility on the GPU

bounding box to each projected scene triangle. By quantiz-
ing the box coordinates we compress the full description into
32 bits. A fast rejection of non-overlapping triangles can be
executed with just a few compare operations.

As each thread handles the intersection of an overlapping
triangle with the warp’s edge, we obtain either two or zero
intersections per thread. The final storage address in global
memory is the sum of two offsets. A global offset which
is acquired on a per-warp basis via global memory atomics
and a per-thread offset which is obtained by computing a
warp-wide scan of the number of intersections. Sorting the
intersections along each edge is achieved by a key-value sort
which arranges all intersections according to edge index and
position along their respective edge. The edge index (a 32
bit integer) and the position along the edge (a 32 bit float) of
each intersection is combined into a 64 bit radix sortable key.
We use the radix sort method of the thrust library [BH11] in
our implementation.

The core parts of both algorithm 2 and 3 are the initial-
ization, execution and evaluation of INCLUSIVESCAN. For
a given edge e with n intersections, the number of values
which have to be scanned can be up to n. A first approach
would be to store these values in fast shared on-chip memory
and execute the scan over the whole array. Shared memory
is a very limited resource (∼ 48kB per SM) and thus only a
limited amount of values can be stored before the number of
warps per SM, which can be launched in parallel, is signifi-
cantly reduced. Storing the intermediate values in the much
larger global memory is prohibitively expensive in terms of
memory access times. Our solution is to conduct the inclu-
sive scan in parallel for chunks of warp size and execute the
chunks sequentially. This allows the full utilization of the
GPU’s SIMD parallelism with a small shared memory foot-
print.

The procedure REPORTSEGMENT uses the same scan
method to obtain the correct offset in order to write the line
segments into the output buffer. As before, the line segments
are output in a non-deterministic fashion and we again em-
ploy a radix sort to assign the segments to their respective
edges. This list of line segments constitutes the output of our
analytic visibility method and provides the necessary infor-
mation to employ an analytic anti-aliasing method.

4.4. Analytic Integration

We implemented the analytic sampling of Auzinger et
al. [AGJ12] to render the final output image using CUDA
C. It should be noted that the input to this stage is an un-
ordered list of line segments per tile. A reconstruction of the
visible regions is not needed explicitly, since the integration
is evaluated over their boundary segments. As shown in al-
gorithm 4, we again employ a two-level parallelization. The
output image is subdivided into tiles that are assigned to the
warps of the GPU. Each warp alternately executes two dis-
tinct stages; in the first stage each thread loads an input line

segment whereas in the second stage, each thread computes
the contribution of all loaded segments to a single pixel of
the tile. This reduces the shared memory needs as all input
segments reside in the threads’ registers, and beginning with
the Kepler architecture of NVidida GPUs, register data can
be shared by the threads of a warp without shared memory
transfers. Once the contributions of all input line segments to
the pixels of a tile are computed, the tile is written to the out-
put texture in global memory. Only the assignment of tiles to
the warps has to be synchronized, since access to a tile is ex-
clusive for a single warp. As before, we use global memory
atomics for this purpose.

Algorithm 4 Analytic filter convolution.
Input: L is the set of all visible line segments (with a refer-

ence to their respective triangle). Lτ denotes the subset
of L which is relevant for tile τ of the output texture. F
is the supplied convolution filter.

Output: WRITETILE writes a tile of the output texture.

1: procedure INTEGRATION(L)
2: for all tile τ do in parallel
3: for all batch b in Lτ do
4: for all pixel p ∈ τ do in parallel
5: for all segment l ∈ b do
6: τ(p)← INTEGRATE(l, p,F)
7: end for
8: end for
9: end for

10: WRITETILE(τ)
11: end for
12: end procedure

While being exact, analytic integration methods suffer the
drawback of requiring a mathematical description that can be
evaluated symbolically, i.e. the associated integrals need to
have a closed-form solution. Wavelet rasterization [MS11]
integrates constant functions, while the method we ap-
ply also accommodates linear functions in screen space.
Gouraud shading is linear in object space but is represented
as a ratio of polynomials in screen space, due to perspec-
tive distortions. This complicates its analytic evaluation and
it will not evaluate to polynomials. We leave this extension
for future work.

5. Results

We evaluated the performance of our analytic visibility im-
plementation on a GeForce GTX 680 GPU with 4GB RAM
and a Core i7 CPU clocked at 2.67 Ghz and with 12GB
RAM. The operating system was Windows 7 with the CUDA
framework 4.2. Four scenes with different characteristics
were used (see figure 5). ZONEPLATES exhibits very fine
scale geometry and serves as a test for the numerical ro-
bustness of our method. As can be seen in figure 5b, even

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

415

T. Auzinger, M. Wimmer and S. Jeschke / Analytic Visibility on the GPU

(a) PLANETS (b) ZONEPLATES (c) SPIKES (d) BUNNY

Figure 5: Our test scenes with low (b) & (d) to high (c) depth complexity and low (d) to high (b) & (c) geometrical detail. The
images were generated with our method using a Gaussian filter kernel with a radius of 2.3 pixel [AGJ12] and a resolution of
10242. The ZONEPLATES scene (b) consists of two superposed zone plates while SPIKES is a regular grid of square pyramids.

geometric intersections of subpixel scale of the two super-
posed zone plates are correctly resolved. SPIKES serves as
stress test for a large edge intersection count, due to its high
depth complexity. As standard scenes we use a stylized sys-
tem of PLANETS and the Stanford BUNNY. All scenes were
rendered with a Gaussian filter kernel with a radius of 2.3
pixel [AGJ12].

As a first step, we investigated the algorithm’s behavior
with different bin sizes (see section 4.3 for information on
the bins). As the integration stage benefits from localized
line segments, it executes fastest for the smallest bin size
(in our case 82 pixel). However, the visibility stage shows
the best performance at certain bin sizes relative to the im-
age size, i.e. for a certain ratio between resolution and bin
size (see table 1). Smaller bin sizes quadratically increase
the number of bins that a given triangle is assigned to. This
could cause multiple computation of the same intersection
between an edge and a triangle in different bins, thus incur-
ring a performance penalty. For too large bins, the number of
triangles per bin increases and causes a quadratic increase in
the number of intersection computations. The preferred ra-
tio of the visibility phase for a given resolution is consistent
across scenes and can be taken as a performance guideline.
Due to the significant increase in computation time of the
whole pipeline for bin sizes greater than 82, caused by the
integration stage, we use bin size 82 for the following mea-
surements.

Table 2 gives a detailed overview of the statistics and tim-
ings of our method when rendering different levels of detail
(LoDs) of the BUNNY test scene. The first and fourth col-
umn show the triangle count of the model and the number
of bins that had at least one triangle assigned to. All other
columns give the execution time of the respective kernels in
milliseconds. The values in brackets is the number of out-
put elements of the column’s computation. They are, from
left to right, frontfacing triangles, bin-triangle-assignments,
edge intersections, visible edge segments, and the line seg-

Scene Reso-
lution

Visibility (R/B) Int (B)
1282 642 322 82 162

BUNNY

(70k)

5122 7 155 141 56 236
10242 122 95 96 51 155
20482 83 73 81 71 174

PLANETS

(37k)

5122 7 121 111 59 229
10242 94 74 77 31 141
20482 64 56 63 40 100

Table 1: Determination of the optimal bin size for our im-
plementation. Columns Vis (R/B) give the timing of the ana-
lytical visibility for a bin size B, such that B times the Reso-
lution equals the header value. The timings of the integra-
tion stage are given in columns Int (B), with the header
value equaling the bin size. Note that the visibility computa-
tion benefits from a certain ration of bin size and resolution,
while the integration prefers the smallest bin size.

ments to complete the boundaries of the visible regions. The
overhead column gives the total of all intermediate radix
sorts, scans, and initializations. Column Total gives the total
time of all GPU operations. The rendering of all LoDs at the
given resolutions runs at interactive framerates and it can be
seen that most of the runtime of the visibility stage is spent
computing the edge intersections.

ZONEPLATES and SPIKES illustrate the robustness of our
geometric computations, and in table 3 we give an overview
of their render timings. As expected, we see that the run-
time of the visibility stage depends mainly on the number of
generated edge intersections, while the integration procedure
depends on the size of its line segment input.

An informal comparison with traditional sampling-based
rasterization is given in figure 6 using multi pass hardware
rasterization with DirectX. Although a substantial amount
of samples is needed for scenes with high anti-aliasing re-

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

416

T. Auzinger, M. Wimmer and S. Jeschke / Analytic Visibility on the GPU

Tri.
count Setup Reso-

lution
Filled
Bins

Edge
intersections

Hidden line
elimination

Boundary
completion

Inte-
gration

Over-
head Total

7k
0.04
(3k)

5122 918 (16k) 6.3 (0.5M) 0.4 (75k) 1.0 (25k) 7.4 6.4 25
10242 3.4k (29k) 9.9 (0.6M) 0.8 (0.1M) 1.6 (33k) 9.1 7.8 34
20482 13k (68k) 21 (1.2M) 1.6 (0.3M) 2.7 (55k) 16 8.8 56

26k
0.16
(13k)

5122 910 (44k) 31 (1.5M) 1.1 (0.2M) 3.5 (87k) 23 9.4 75
10242 3.4k (63k) 26 (1.9M) 1.6 (0.3M) 4.2 (0.1M) 21 10 71
20482 13k (116k) 37 (2.7M) 2.8 (0.5M) 6.0 (0.1M) 33 13 100

70k
0.42
(30k)

5122 906 (102k) 116 (3.9M) 2.6 (0.5M) 10 (0.3M) 56 16 212
10242 3.3k (134k) 77 (4.5M) 3.4 (0.7M) 11 (0.3M) 51 18 172
20482 12k (212k) 79 (5.9M) 5.3 (1.0M) 14 (0.4M) 72 22 208

Table 2: Statistics from rendering the BUNNY model at different levels of detail with our method. See the text for details.

Scene Size Inter-
sections

Seg-
ments

Visi-
bility

Inte-
gration

PLANETS 37k 3.7M 576k 94 31
SPIKES 5.0k 25M 973k 448 43
ZPLATE 14k 4.7M 1.6M 165 104
BUNNY 70k 4.5M 941k 122 51

Table 3: Statistics from rendering the test scenes (see fig-
ure 5) with our method using a bin size of 82 and a resolu-
tion of 10242. Size gives the number of scene triangles, in-
tersections the number of edge intersections, and segments
the number of visible line segments. The timings of the com-
plete visibility stage and the analytic integration are given
in milliseconds. See the text for details.

quirements, traditional sampling still has a runtime advan-
tage over our method.

6. Conclusions and Future Work

We have presented an analytic visibility method to perform
exact hidden surface removal on the GPU. We showed that
with an adequate geometric computation scheme and adapta-
tion to the two-level parallelism of SIMD architectures, it is
possible to robustly perform analytic anti-aliased rendering
of 3D scenes at interactive frame rates on GPUs. A possible
future extension of our pipeline can be the use of dynamic
load balancing with adaptive scene subdivisions in contrast
to our static tiling. Future development in GPU architecture
(e.g. Dynamic Parallelism of NVidia) seem to support such
approaches.

As already mentioned in section 4.4, Gouraud shading or
more complex shading variants were not treated so far due to
their complicated (or possibly non-existent) closed form so-
lutions. This could constitutes a worthwhile research avenue
to generalize analytic anti-aliased rendering.

While sampling based rasterization proves hard to beat
in terms of speed, we see our work as a first step to bring
back analytic methods to rendering. The applications of our
method are plenty and largely unexplored. Just employing

the hidden-line elimination stage allows analytic line render-
ing. The output of our visibility stage gives a full description
of the scene visibility from a viewpoint and can be used to
generate an analytic visibility map, analytic shadow maps or
direct rendering to vector graphics. Furthermore, the method
does not depend on the final image resolution and will have
advantages for large scale images. In the integration phase,
the polynomial filter function can be altered on the fly, which
allows the use of different filters in the same output image.
This can be applicable for motion blur or depth-of-field ef-
fects. A change in the visibility algorithm could allow an-
alytic depth peeling and support analytic anti-aliased trans-
parency effects.

7. Acknowledgments

We want to thank the reviewers for their insightful and
helpful remarks and Gernot Ziegler for providing help with
CUDA. Funding was provided by the FWF grant P20768-
N13.

References
[AGJ12] AUZINGER T., GUTHE M., JESCHKE S.: Analytic Anti-

Aliasing of Linear Functions on Polytopes. Computer Graphics
Forum 31, 2 (2012), 335–344. 1, 2, 7, 8

[Ake93] AKELEY K.: Reality engine graphics. SIGGRAPH ’93,
pp. 109–116. 1

[App67] APPEL A.: The notion of quantitative invisibility and the
machine rendering of solids. ACM ’67, pp. 387–393. 1, 3, 4

[ARS79] APPEL A., ROHLF F. J., STEIN A. J.: The haloed line
effect for hidden line elimination. SIGGRAPH ’79, pp. 151–157.
2

[BH11] BELL N., HOBEROCK J.: Thrust: A productivity-
oriented library for cuda. In GPU Computing Gems (2011). 7

[Cat78] CATMULL E.: A hidden-surface algorithm with anti-
aliasing. SIGGRAPH ’78, pp. 6–11. 2

[Cat84] CATMULL E.: An analytic visible surface algorithm for
independent pixel processing. SIGGRAPH ’84, pp. 109–115. 1,
2

[CJ81] CHANG P., JAIN R.: A multi-processor system for hidden-
surface-removal. SIGGRAPH Comput. Graph. 15, 4 (1981), 405–
436. 2

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

417

T. Auzinger, M. Wimmer and S. Jeschke / Analytic Visibility on the GPU

Our method (3.1 fps)

42 samples (∼900 fps)

162 samples (∼100 fps)

1282 samples (1.7 fps)

PSNR∞

PSNR 25.78

PSNR 42.80

PSNR 62.26

Figure 6: Comparison of our method with massive super-
sampling at a resolution of 10242. The left column shows a
detailed view of a ZONEPLATES rendering with our method
(top) and with a supersampling approach with three differ-
ent sampling densities. The sample count is per-pixel and the
timings are for the full render cycle. The right column gives
the corresponding difference images and the peak signal-to-
noise ratio (PSNR) when compared with our rendering. The
supersampling method uses stratified sampling and sample
sharing by collecting the samples over multiple rendering
passes. Note that for highly detailed models, 162 samples
are not sufficient to faithfully approximate the Gaussian fil-
ter kernel that is evaluated analytically with our method. A
break-even in terms of fps with our method is reached for
approximately 1002 samples and the reference solution with
1282 samples gives near-identical results.

[Cro77] CROW F. C.: The aliasing problem in computer-
generated shaded images. Commun. ACM 20, 11 (1977). 2

[Dév11] DÉVAI F.: An optimal hidden-surface algorithm and its
parallelization. ICCSA’11, pp. 17–29. 2, 4

[Dur00] DURAND F.: A multidisciplinary survey of visibility. In
ACM SIGGRAPH Courses (2000). 2

[DW85] DIPPÉ M. A. Z., WOLD E. H.: Antialiasing through
stochastic sampling. SIGGRAPH ’85, pp. 69–78. 2

[EC90] ELBER G., COHEN E.: Hidden curve removal for free
form surfaces. SIGGRAPH ’90, pp. 95–104. 2

[FNS04] FRANKEL A., NUSSBAUM D., SACK J.-R.: Floating-
point filter for the line intersection algorithm. In Geographic
Information Science, vol. 3234. 2004, pp. 94–105. 4

[Fra80] FRANKLIN W. R.: A linear time exact hidden surface
algorithm. SIGGRAPH Comput. Graph. 14, 3 (July 1980), 117–
123. 2

[Gal69] GALIMBERTI R.: An algorithm for hidden line elimina-
tion. Commun. ACM 12, 4 (1969), 206–211. 2

[GBAM11] GRIBEL C. J., BARRINGER R., AKENINE-MÖLLER
T.: High-quality spatio-temporal rendering using semi-analytical
visibility. ACM Trans. Graph. 30, 4 (2011), 54:1–54:12. 2

[GDAM10] GRIBEL C. J., DOGGETT M., AKENINE-MÖLLER

T.: Analytical motion blur rasterization with compression. HPG
’10, pp. 163–172. 2

[GS98] GUPTA N., SEN S.: An improved output-size sensitive
parallel algorithm for hidden-surface removal for terrains. In
IPPS/SPDP 1998 (1998), pp. 215 –219. 2

[GT96] GUENTER B., TUMBLIN J.: Quadrature prefiltering for
high quality antialiasing. ACM Trans. Graph. 15, 4 (1996), 332–
353. 2

[Hor82] HORNUNG C.: An approach to a calculation-minimized
hidden line algorithm. Computers & Graphics 6, 3 (1982), 121 –
126. 2

[KPRG12] KELLER A., PREMOZE S., RAAB M., GRUEN-
SCHLOSS L.: Advanced (quasi) monte carlo methods for image
synthesis. In ACM SIGGRAPH Courses (2012). 2

[McC95] MCCOOL M. D.: Analytic antialiasing with prism
splines. SIGGRAPH ’95, pp. 429–436. 2

[McK87] MCKENNA M.: Worst-case optimal hidden-surface re-
moval. ACM Trans. Graph. 6, 1 (1987), 19–28. 2

[MG11] MERRILL D., GRIMSHAW A.: High performance and
scalable radix sorting. Parallel Processing Letters 21, 02 (2011),
245–272. 6

[MN88] MITCHELL D. P., NETRAVALI A. N.: Reconstruction
filters in computer-graphics. SIGGRAPH ’88, pp. 221–228. 2

[MS11] MANSON J., SCHAEFER S.: Wavelet rasterization. Com-
puter Graphics Forum 30, 2 (2011), 395–404. 1, 2, 7

[Mul89] MULMULEY K.: An efficient algorithm for hidden sur-
face removal. SIGGRAPH Comput. Graph. 23, 3 (1989), 379–
388. 2

[NVI] NVIDIA: Cuda technology. http://www.nvidia.
com/cuda. 6

[Pan11] PANTALEONI J.: Voxelpipe: A programmable pipeline
for 3d voxelization. In Proc. HPG 2011 (2011). 6

[RCDF08] RUSINKIEWICZ S., COLE F., DECARLO D.,
FINKELSTEIN A.: Line drawings from 3d models. In ACM
SIGGRAPH 2008 classes (2008), pp. 39:1–39:356. 2

[RFK90] RANDOLPH FRANKLIN W., KANKANHALLI M. S.:
Parallel object-space hidden surface removal. SIGGRAPH Com-
put. Graph. 24, 4 (1990), 87–94. 2

[RKLC∗11] RAGAN-KELLEY J., LEHTINEN J., CHEN J.,
DOGGETT M., DURAND F.: Decoupled sampling for graphics
pipelines. ACM Trans. Graph. 30, 3 (May 2011), 17:1–17:17. 1

[Rob63] ROBERTS L. G.: Machine Perception of Three-
Dimensional Solids. 1963. 1

[RS88] REIF J. H., SEN S.: An efficient output-sensitive hid-
den surface removal algorithm and its parallelization. SCG ’88,
pp. 193–200. 2

[SO92] SHARIR M., OVERMARS M. H.: A simple output-
sensitive algorithm for hidden surface removal. ACM Trans.
Graph. 11, 1 (1992), 1–11. 2

[SSS73] SUTHERLAND I. E., SPROULL R. F., SCHUMACKER
R. A.: Sorting and the hidden-surface problem. AFIPS ’73,
pp. 685–693. 1

[SSS74] SUTHERLAND I. E., SPROULL R. F., SCHUMACKER
R. A.: A characterization of ten hidden-surface algorithms. ACM
Comput. Surv. 6, 1 (1974), 1–55. 1

[Tur90] TURKOWSKI K.: Filters for common resampling tasks.
In Graphics gems. 1990, pp. 147–165. 2

[WA77] WEILER K., ATHERTON P.: Hidden surface removal us-
ing polygon area sorting. SIGGRAPH Comput. Graph. 11, 2
(July 1977), 214–222. 2

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

418

http://www.nvidia.com/cuda
http://www.nvidia.com/cuda

