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Figure 1: (Left) umbrella diversification: the columns show, from left to right, the 4 base umbrellas, color modification, 2-D
shape modification, and both color and 2-D shape modification. (Middle) texture synthesized with our method by diversifying
the 4 base umbrellas. (Right) texture with same arrangement but only using the 4 base umbrellas, for comparison.

Abstract
Texture bombing is a texture synthesis approach that saves memory by stopping short of assembling the output
texture from the arragnement of input texture pataches; instead, the arrangement is used directly at run time to
texture surfaces. However, several problems remain in need of better solutions. One problem is improving texture
diversification. A second problem is that mipmapping cannot be used since texel data is not stored explicitly. The
lack of an appropriate level-of-detail (LoD) scheme results in severe minification artifacts. We present a just-in-
time texturing method that addresses these two problems. Texture diversification is achieved by modeling a texture
patch as an umbrella, a versatile hybrid 3-D geometry and texture structure with parameterized appearance. The
LoD is adapted with a hierarchical algorithm that acts directly on the arrangement map. Results show that our
method can model and render the diversity present in nature with only small texture memory requirements.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism-Texture—Color, shading, shadowing, and texture

1. Introduction

Texture mapping is a uniquely powerful method for en-
hancing surface appearance in interactive computer graph-
ics. Texture synthesis research efforts have produced tech-
niques that construct high resolution textures based on input
texture patches and patterns. Unfortunately, the high reso-
lution synthesized texture requires large amounts of texture
memory. Texture bombing addresses this challenge by stop-
ping short of assembling the high-resolution texture from the
arrangement of patches; instead, the arrangement is used di-
rectly at run time to texture surfaces. The texture is synthe-

sized just in time and is never stored explicitly, which brings
considerable texture memory savings.

However, several problems related to texture bombing re-
main in need of better solutions. One problem is improv-
ing texture diversification. Given a small number of input
patches, a plausible large texture can only be synthesized if
the appearance of the input patches is modulated sufficiently
to reflect the diversity present in nature. A second problem
is that mipmapping cannot be used since texel data is not
stored explicitly. The lack of an appropriate level-of-detail
(LoD) scheme results in severe minification artifacts.
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Figure 2: Just-in-time texture synthesis (left, 9MB) and conventional texture of equivalent resolution (right, 190MB).

Figure 3: 3-D shape diversification (top) and comparison be-
tween texture with and without 3-D detail.

In this paper we present a just-in-time texture synthesis
method that addresses these two problems. Texture diversi-
fication is achieved by modeling a texture patch as an um-
brella, a versatile hybrid 3-D geometry and texture struc-
ture with parameterized appearance. The input patch um-
brellas are modified and arranged to synthesize a large, high-
resolution, and diverse texture. The input patch is modified
substantially by interpolation to new colors and 2-D and 3-
D shapes. In Figure 1 the 4 base umbrellas are sufficient to
create hundreds of unique modified umbrellas (left), so the
synthesized texture (middle) does not suffer from repetitive-
ness, which would be readily noticeable if the texture were
synthesized only from the 4 base umbrellas (right). Modify-
ing umbrellas to assume convex and concave 3-D shapes al-
lows adding 3-D detail to the synthesized texture (Figure 3).

For the second problem we propose a hierarchical LoD
algorithm for just-in-time texturing that acts directly on the
arrangement map. Lower LoD arrangement maps are com-
puted offline by merging umbrellas and are used at run-time
to avoid minification artifacts. The result is quality similar to
that of conventional mipmapping at a fraction of the storage
cost (Figure 2). Please also see the accompanying video.

2. Related Work

A variety of texture synthesis methods have been developed
[WLKT09]. Methods can be classified according to the peri-
odicity of the data of the generated texture, which can be reg-

ular, such as a brick wall, irregular, such as fallen leafs on the
ground, or purely stochastic, such as a rough surface. Regu-
lar textures have been modeled procedurally [LP00]. Other
methods separate the sample texture into a regular and an
irregular component, e.g. by using fractional Fourier analy-
sis [NMMK05], which are then modeled independently, di-
versified and combined during texture synthesis [LTcL05].
We target the synthesis of irregular textures.

Texture synthesis methods can also be classified as pro-
cedural or sample-based methods. Procedural methods use
the input texture to derive a complex model that allows
synthesizing new textures of the same type as the input
provided, e.g. based on Markov Random Fields [Pag04].
Sample-based methods, like ours, assemble the texture from
modified versions of the input patches. A sample-based tex-
ture synthesis method needs to address three tasks.

The first task is to extract the texture patch from input im-
ages. Extraction is usually done with the help of image pro-
cessing techniques [DMLG02, ZZV∗03, WY04, LH06], but
can also proceed through random selection of a rectangular
window [LLX∗01, KSE∗03]. The second task is to arrange
the extracted texture patches in the output texture domain.
Some textures require an overlapping arrangement, which
can be achieved by random placement of patches while con-
trolling patch density [DMLG02, HQXT05]. Other textures
require a seamless tiling of patches, achieved using graph
cut techniques [KSE∗03, EF01], patch stitching [DLC05],
wang tiles [CSHD03], or sparse linear system optimization
[PFH00]. The arrangement is either learned from an exam-
ple [IMIM08, MWT11], random [KCoDL06, TW08], or de-
fined with the help of user input [LN03]. The third task is
to diversify a small number of input patches to convey the
diversity present in nature. Diversification methods rely on
many-knot spline interpolation [HQXT05], on regular lat-
tice combined with deformation fields [LLH04], on texture
meshes inspired from image meshes [DZ06], or on multi-
scale descriptors which allow for appearance-space jitter that
retains the structure on the input texture patches [RHDG10].

Texture bombing–the idea of saving memory by reusing
a few texture patches placed at random locations–was pi-
oneered over thirty years ago [SA79]. The advent of pro-
grammable graphics hardware brought renewed interest in
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Figure 4: Overview of the just-in-time texture synthesis pipeline.

the approach [Gla04]. Texture sprites [LHN05] are image
patches projected onto geometry at run-time, which by-
passes the need of a global planar parameterization. The tex-
ture bombing approach can be used in conjunction with any
patch arrangement method, including wang tiles [CSHD03,
Wei04, LD05], lapped textures [PFH00], and user input
based [LN03]. Since texture bombing renders directly from
patches, mipmapping [Wil83] cannot be used across patches
as required for high levels of minification.

The goal of our work is the development of a texture syn-
thesis method for real time rendering that achieves good di-
versity of the output texture without requiring considerable
texture memory resources. We rely on prior art solutions for
patch extraction and arrangement, while we focus on achiev-
ing powerful patch diversification through color, 2-D, and 3-
D shape diversification and we introduce and LoD algorithm
for texture bombing that supports arbitrary minification.

Our method saves texture memory by taking the texture
bombing approach. Texture memory can also be saved by
compression at texel level. The main approaches are based
on block partitioning [KE02, SR06], on vector quantization
[BAC96, TF08], and on wavelets [BIP00, DCH05, STC09].
All of these techniques allow looking up the compressed tex-
ture directly (e.g. [DCH05]). Compared to texture compres-
sion, our method achieves compact storage while avoiding
compression artifacts: powerful diversification allows cre-
ating a large texture from only a small number of input
patches, which are stored uncompressed.

Several procedural geometric modeling methods target fo-
liage specifically. The methods rely on L-Systems [RSL∗02,
PTMG08], on probabilistic [DGAG06] algorithms, on di-
versification of low-count polygonal models [MGGA10],
and/or on particle systems [RCS04] to simulate ecosystems
and autumn scenery. Compared to these methods, our tech-
nique achieves diversification based on examples and not
based on rules, and our technique generates a texture defined
compactly in a 2-D domain as opposed to a 3-D geometric
model which needs to be processed in its expanded form.

Finally, our method captures 3-D surface detail. Previous
techniques include bump mapping [Bli78], horizon mapping
[Max88, SC00, HDKS00], displacement mapping [Coo84,
KS01], view dependent displacement mapping [WWT∗03],

parallax mapping [KTI∗01], and relief texture mapping
[POC05]. Compared to these techniques, our method trades
3-D modeling fidelity for rendering efficiency by mapping
an umbrella patch to an ellipsoid. The ellipsoid can be
rendered efficiently on the GPU [Gum03]. Moreover, our
method only renders 3-D detail where needed and transitions
smoothly from 3-D to 2-D.

3. Just-in-time texture synthesis overview

The texture is synthesized offline in four major steps (Fig-
ure 4). First, a small number of base umbrellas (e.g. 4 in
Figure 1) are constructed from input images and shapes con-
taining the desired texture elements. Second, the base um-
brellas are diversified to hundreds of unique modified um-
brellas by varying color, 2-D shape, and 3-D shape parame-
ters. Third, the modified umbrellas are arranged in the 2-D
texture domain. Umbrella construction, diversification, and
arrangment are described in Section 4. Fourth, the umbrel-
las and the arrangement map are fed into an algorithm that
computes the LoDs needed to accommodate any minifica-
tion level (Section 5). The umbrellas, the arrangement map,
and the LODs are then used at run-time to texture surfaces
as needed for the current output image (Section 6).

4. Umbrella Texture Patches

4.1. Construction

We define an umbrella as a texture-mapped 2-D geometric
primitive with a central vertex C and peripheral vertices Vi
(Figure 5, left). The umbrella need not be convex, but all
segments ViC have to be inside the umbrella. The umbrella
is a flexible light-weight representation that captures many
texture elements present in nature with high fidelity.

The texture of the base umbrella is derived from input im-
ages that contain the desired texture elements. We construct
base umbrellas with an interactive editor. The user first lays
down the polyline defining the contour of the umbrella and
then selects the center. For texture elements where features
converge, the center is chosen at the convergence point for
improved diversification results as discussed below. For ex-
ample in the case of a leaf (Figure 5, left) the center is chosen
at the convergence of the leaf veins. For the berry example
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Figure 5: Base umbrellas (left) and 3-D shape modif. (right).

Figure 6: Umbrella color modification.

the center is simply chosen as the centroid of the periph-
eral vertices. The interactive editor allows creating a base
umbrella in seconds. Only a few umbrellas are needed (e.g.
4-10), which are then diversified automatically.

4.2. Diversification

In order to modify the color of a base umbrella, its vertices
are assigned colors that are used to modulate the texture of
the umbrella. The color cp at a point P inside the umbrella is
computed as follows:

cp = ct + f cv

cv = ∑dici/∑di
(1)

where ct is the color looked up in the base umbrella texture
and cv is a weighted average of the vertex colors ci. A weight
di is defined as an inverse of the distance between vertex
i and P. The coefficient f controls how much the original
texture colors are modified. cp is clamped to [0,1].

We set the vertex colors using additional reference im-
ages of similar texture elements. In Figure 6, an image of a
leaf with different colors (left) was used to set the colors of
the peripheral vertices of the base umbrella (middle) which
yields a realistic leaf with significantly different colors, at
only a small additional storage cost.

The 2-D shape of a base umbrella is modified by moving
peripheral vertices. A vertex can move to any new location as
long as this does not create a fold. In order to allow for com-
plex shape modifications, some base umbrella edges might
be split into multiple segments. In Figure 7 the base umbrella
has collinear peripheral vertices (blue) which can move pro-
gressively to create significantly different leaf shapes. The
shape morph is specified with a second position for each of
the peripheral vertices. These positions can be designed by
the user, or can be derived from the shapes of other leafs.
The morph produces a large number of plausible 2-D leaf
shapes without a significant storage cost increase.

We support modeling of 3-D surface detail by mapping
umbrellas to ellipsoids (Figure 5, right), which provide a
good tradeoff between modeling power and rendering cost.

Figure 7: 2-D shape diversification by morphing.

3-D shape is diversified using curvature magnitude and di-
rection (i.e. convex or concave).

4.3. Arrangement

The texture is synthesized by arranging modified umbrel-
las in the 2-D texture domain. Depending on the texture a
tiling or an overlapping arrangement is needed. The um-
brella shape is sufficiently flexible to be compatible with pre-
viously developed arrangement methods. We exemplify our
just-in-time texturing method using an overlapping arrange-
ment defined using a regular grid. Modified umbrellas are
assigned to grid cells. A grid cell is assigned all umbrellas
that intersect it (Figure ??). The umbrellas are stored in back
to front order. For the examples shown in this paper the base
umbrella color and shape diversification parameter values,
as well as the location, rotation, and scale of the modified
umbrellas are chosen randomly.

5. Level of detail pre-processing

We adapt the level of detail in two ways. First, expensive 3-D
detail should only be rendered where it matters, i.e. close to
the eye. This requires switching gradually from 3-D detail to
a flat surface. Second, when umbrellas have a small image
footprint, mipmapping individual umbrella textures is not
sufficient to avoid minification artifacts, and umbrellas have
to be merged. Whereas traditional texture synthesis methods
actually compute a large texture and individual patches are
merged implicitly through mipmapping, just-in-time texture
synthesis requires merging umbrellas explicitly to compute
coarser LoDs of the arrangement grid. Figure 8 illustrates
how, at the highest level of detail, the synthesized texture
is rendered with full 3-D detail, then the height of the 3-D
detail is tapered off gradually, and then coarser and coarser
LoDs of the arrangement grid are used. Whereas tapering off
3-D detail can be done at run-time, the coarser LoDs of the
arrangement grid have to be pre-computed offline, akin to
pre-computing the mipmap levels of a conventional texture.

We pre-compute coarser levels of detail of the arrange-
ment grid hierarchically from the bottom up. Consider a grid
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with at most k modified umbrellas per grid cell. The next
coarser level is computed by merging 4 neighboring cells
into 1 cell with k umbrellas using Algorithm 1.

Algorithm 1 Arrangement map LoD computation.

Group up to 4k umbrellas into k clusters
for each cluster Ci do

Compute center oi of Ci
Compute convex hull hi of Ci
Simplify hi to si
Create new umbrella {oi,si}
Compute new umbrella vertex colors

end for

The up to 4k umbrellas are grouped into k clusters by run-
ning the k-means algorithm on the umbrella centers. In Fig-
ure 9 each of the 4 cells (left, white squares) contains up to
k=8 umbrellas (leafs delimited by blue lines), also counting
umbrellas that only partially overlap with a cell. The cells
are merged into a single cell (right, white square) with k=8
new umbrellas (red lines). A new umbrella is constructed for
each cluster. The center oi of the new umbrella is set as the
center of mass of the centers of the umbrellas in the cluster.
The peripheral vertices si of the new umbrella are derived
from the convex hull hi of the cluster. hi is simplified to stop
the proliferation of vertices as the algorithm is run hierarchi-
cally. A maximum number of peripheral vertices is enforced
by removing vertices with edge angles closest to 180◦.

Once the shape of the new umbrella is known, its color
is defined by computing colors for each of its vertices. New
umbrellas are not texture mapped, thus they do not incur a
significant additional storage cost. Figure 9 right shows the
vertex colors for the new umbrellas. The color of a vertex
is computed as a weighted sum of the color samples in the
neighborhood of the vertex and inside the new umbrella. We
use a raised cosine reconstruction filter with a base of half
the distance from the vertex to the umbrella center. For the
center, the base is half the distance to the peripheral vertices.

Our LoD algorithm essentially implements mipmapping
directly in the grid of umbrellas. Just like in conventional
mipmapping, LoDs are pre-computed offline to avoid the
performance penalty of on-the-fly LoD adaptation. The algo-
rithm resorts to two main approximations. First, the cluster
of umbrellas is approximated with its convex hull. Second,
the color information stored in the textures of the umbrellas
is approximated using vertex colors. These approximations
work well since the output image footprint of the umbrellas

Figure 8: Just-in-time texture synthesis LoD continuum.

is small. Figure 10 (left) shows the output of our algorithm
for the case shown in Figure 9. The output image footprint of
the merged cell is 8×8 pixels, shown here magnified for il-
lustration purposes. The result is comparable to mipmapping
the corresponding high resolution texture (right).

6. Just-in-time texture mapping

The synthesized texture is encoded using a 1-D array of base
umbrellas, a 1-D array of modified umbrellas, and a hierar-
chy of 2-D arrays for the arrangement grid. A base umbrella
is encoded with a texture map and with the texture coordi-
nates of its vertices. A modified umbrella is encoded with
the index of its base umbrella, with per vertex color and po-
sition, and, if 3-D shape is desired, with parameters defining
the underlying ellipsoid. The arrangement grid stores an ar-
ray of modified umbrella indices for each cell. This encoding
is used to texture surfaces as required by the output frame.

Consider a polygon to be textured with our technique. In
order to render the 3-D detail with the correct silhouette, the
polygon is extruded to form a prism with height h, where h
is the maximum height of the 3-D detail. Each pixel touched
by the prism is textured with using Algorithm 2.

The ray at the current pixel is first intersected with the
prism to find the ray segment P0P1 (see also Figure 11). Then

Figure 9: Arrangement grid LoD. Four neighboring grid
cells (top) are merged into one (bottom).
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P0P1 is traced through the 3-D grid of cells, starting from the
grid cell that contains the starting point P0. The first step in
processing a cell is to set the amount of 3-D detail that has
to be rendered based on the current ray. In Figure 11 the ray
traverses cells c0 to c6. Cells c0 and c1 have full-height 3-D
detail, the height of the 3-D detail is tapered off over cells
c2 - c4, and then cells c5 and c6 have no 3-D detail (see red
line). A cell with 3-D detail is intersected with the ray as de-
scribed in Section 6.1. If an intersection is found, the traver-
sal stops and the sample is returned. When no intersection
is found with the current 3-D cell, the algorithm continues
with the next cell traversed by the ray. The traversal termi-
nates the first time a 2-D cell is encountered, i.e. a cell where
the 3-D detail has been tapered off completely. The texture
is looked up at the intersection point between the ray and the
base polygon and the sample is returned. The lookup algo-
rithm is given in Section 6.2. In our example the texture is
looked up at P1 when 2-D cell c4 is processed.

Algorithm 2 Per-pixel just-in-time texturing.

P0P1 = pixel ray intersected with prism
cell = GetCell(P0)
while cell do

Set3DLoD(cell)
if cell is 3-D then

if (S = Intersect3D(cell, P0P1)) != 0 then return S
cell = NextCell(cell, P0P1)
continue

end if
return LookUp2D(P1) . cell is 2-D

end while
return no-sample

6.1. 3-D texture lookup

A grid cell with 3-D detail (cell) is intersected with a ray
(P0P1) according to Algorithm 3. The ray P0P1 is first clipped
with the axis aligned bounding box of the cell, obtaining
R0R1. The ray segment R0R1 is then modified to account for
the possible reduction in height of the 3-D detail. Modifying

Figure 10: Comparison between minification with our LoD
algorithm (left) and with mipmapping (right).

the ray and intersecting the uncompressed cell with the mod-
ified ray is easier than compressing the cell and intersecting
it with the original ray. In Figure 11 the ray is not modified
for cells c0 and c1 which are rendered with full-height 3-D
detail, but ray segment ab is modified for cell c2 to ab′, by
moving b to b′. b′ is found such that b′b0 / h = bb0 / b1b0.
The resulting ray ab′ has the same endpoints with respect
to the uncompressed cell as the original ray segment ab with
respect to the compressed cell. ab′ is intersected with the un-
compressed cell. Similarly, bd is modified to b′d′, maintain-
ing ray continuity from cell c2 to cell c3 (green line ab′d′).
For cell c4 de is above the compressed cell thus no intersec-
tion needs to be computed (dotted green line).

Algorithm 3 Intersection of pixel ray with 3-D cell.

R0R1 = ClipRayWithCellBoundingBox(P0P1, cell)
Q0Q1 = ModifyRay(R0R1, cell)
S = no-sample
for all modified umbrellas u in cell do

if (Q = Intersect(Q0Q1, u.ellipsoid)) != 0 then
if (Si = LookUp(Q, u.2Dpolygon)) != 0 then
S = ClosestToEye(S, Si);

end for
return S

The cell is intersected with the modified ray by intersect-
ing each umbrella in the cell, and by recording the closest
intersection. An umbrella is intersected by first intersecting
the ellipsoid defining its 3-D shape and then by intersecting
the polygon defining its 2-D shape. The ellipsoid intersec-
tion implies solving a quadratic. The ellipsoid surface pa-
rameter values at the intersection define the 2-D point where
the polygon is looked up, as described in Section 6.2.

6.2. 2-D texture lookup

Given point P on the base polygon with texture coords (s, t),
the color at P is looked up with Algorithm 4. Since the grid
is uniform, the cell containing P is found directly by divid-
ing s and t by the width and height of the cell. The modified
umbrellas in the cell are traversed in front to back order in
search of an intersection. The base umbrella sector possibly
containing P is found using the angle ϕ between the vector
defined by P and the horizontal axis (Figure 12). If P is actu-
ally inside the triangle sector, an intersection has been found
and a color is returned. The color is computed by blending

Figure 11: Intersection between ray and grid cells (c0−c6).
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Algorithm 4 2-D texture lookup at point P.

Find grid cell that contains P
for all modified umbrellas u in cell do

Compute angle ϕ of P with the horizontal axis
Use ϕ to find sector triangle Tj containing P
if P outside peripheral edge e j then continue
Compute barycentric coords. (α , β , γ) of P in Tj
Lookup base umbrella texture color ct at (α , β , γ)
Compute interpolated vertex color cv
return blended final color ct+ f cv

end for
return background color

Figure 12: Identification of umbrella triangle containing
lookup point and approximate shadow computation.

the base umbrella texture color with the interpolated color of
the triangle sector (found using Equation 1). If no modified
umbrella covers P, the background color is returned.

The level of detail is adapted by examining the derivatives
of the texture coordinates in arrangement grid units. While
these derivatives are sufficiently small (i.e. 0.125), the LoD
is simply adapted by looking up the base umbrella textures
with mipmapping. Once the derivatives become too large,
the coarser LoDs of the arrangement grid will be used. The
lookup algorithm is run on two adjacent LoDs that bracket
the desired LoD, and a linear interpolation produces the final
color, similarly to the trilinear interpolation of conventional
mipmapping. The algorithm provides a smooth transition be-
tween LoDs (Figure 2 and video).

Figure 13: Texture with (left) and without (right) shadows.

Figure 14: Additional texture synthesis examples and corre-
sponding base umbrellas.

We enhance the appearance of the texture by approxi-
mating shadows with a small addition to Algorithm 4 (Fig-
ure 13). As the umbrellas of the cell are traversed we also test
whether the lookup point is in the shadow cast by the current
umbrella. This is done by moving the point towards the light
on the texture plane, and by testing whether the displaced
point is inside the umbrella, which would indicate that the
original point is in the umbrella’s shadow. In Figure 12 P1 is
translated along the light vector l to P′1 which is inside the
umbrella thus P1 is in shadow.

7. Results and Discussion

We have applied our technique to generate and use several
textures: Fall Leafs (Figure 1), Berries (Figure 14, row 1),

submitted to EUROGRAPHICS 2012.



8 paperID / 1022

Pepper (row 2), Green Leafs (row 3), and Flowers (row 4).
The resolution of the base umbrella textures is 256× 256,
which allows zooming in with good detail. Our LoD algo-
rithm provides quality results even at extreme minification
rates. As illustrated in the video, our technique is stable
which preserves quality in sequences of frames. Umbrella
edges are antialiased using conventional multisampling.

7.1. Storage Reduction Performance

In order to quantify the texture memory savings brought by
our just-in-time texture encoding, let′s assume that there are
b base umbrellas, each with v vertices and with a texture of
resolution w× h. The storage cost of a base umbrella is wh
+ 2v four-byte words, where we counted 2 floats per vertex
for the texture coordinates. Let n be the number of modi-
fied umbrellas. The cost of a modified umbrella is 1 + 3v
words, which accounts for the base umbrella index and for
the positions and colors of the vertices. Let us assume that
the arrangement grid has a resolution of W×H and that there
are at most k modified umbrellas per grid cell. Each grid cell
records the modified umbrellas it stores with k integer in-
dices. The overall cost in four-byte words J of the just-in-
time texture encoding is thus

J = bwh+2bv+n(1+3v)+ kWH (2)

In order to compare this cost to that of a conventional
approach storing the synthesized texture explicitly, first we
have to determine the resolution of the synthesized texture.
Since modified umbrellas have different sizes, the resolution
of the texture has to be determined by examining the res-
olution at individual modified umbrellas. A modified um-
brella Ui with an arrangement grid axis aligned bounding
box of xi × yi implies a synthesized texture resolution of
w/xi×h/yi×W×H. The dimensions xi and yi are measured
in grid cell units. In order to not lose information at any of
the modified umbrellas, the synthesized texture should have
a resolution T of

T = max(w/xi)×max(h/yi)×W ×H (3)

where the maxima are computed over all modified umbrel-
las. Using min instead of max in the equation above corre-
sponds to a synthesized texture that loses color resolution at
all modified umbrellas but the one with the largest arrange-
ment grid footprint. A third option is to use the average res-
olution over all modified umbrellas. Table 1 gives the stor-
age reduction factors achieved by our method versus conven-
tional texture synthesis, for each of these 3 options. Just-in-
time texture synthesis achieves non-lossy compression with
substantial factors. Base umbrella texture resolution w× h
is 256×256, arrangement grid resolution W ×H is 64×24
(10× 13 for Flowers), and the values for the other texture
synthesis parameters are given in the table.

Table 1: Storage reduction performance

Texture b v k
n

Min Avg Max(×1,000)
Fall L. 9 63 19 6.1 16:1 25:1 47:1
Berries 3 58 16 14 10:1 23:1 48:1

Green L. 6 51 68 25 5:1 13 :1 53 :1
Peppers 4 35 37 14 21:1 32:1 56:1
Flowers 6 74 12 .39 5:1 10:1 18:1

So far the storage cost analysis was conducted under the
assumption that texel data is stored uncompressed. This pre-
cludes any loss of quality due to compression and avoids
decoding costs. Texel data compression can be used with
just-in-time texture synthesis by compressing the base um-
brella textures. Compression benefits just-in-time texturing
less than it benefits conventional texture synthesis, because
the just-in-time encoding is already a compressed represen-
tation. Even so, for example for Fall Leafs, when both the
base umbrella textures and the conventional synthesized tex-
ture are stored in jpeg format with a quality factor of 50%,
just-in-time texture synthesis still achieves a storage reduc-
tion factor of 3:1.

7.2. Rendering Performance

Just-in-time texture synthesis achieves storage savings by
shifting the texture expansion from pre-processing to run-
time. This is a classic tradeoff between storage and compu-
tation cost. Instead of a single mipmapped lookup, the frag-
ment program has to compute the intersection between the
sampling location and the modified umbrellas at the current
grid cell. As such, the rendering cost depends on two main
factors: the number of modified umbrellas per grid cell k and
the complexity of the umbrellas v. Figure 15 shows the varia-
tion of the rendering performance with k and v for Fall Leafs.
The output image resolution is 512×512, W ×H = 32×32,
and w× h = 256× 256. Rendering was done with 4x mul-
tisampling and with the approximate shadow algorithm de-
scribed. The shadow algorithm brings only a small frame
rate penalty of under 2 Hz. Performance was measured on
an Intel Core i5-760 2.80GHz PC with an NVIDIA GeForce
GTX 470, 1,280 MB graphics card.

7.3. Limitations

Even though the umbrella is a versatile geometry and color
representation, not all texture elements can be modeled ef-
ficiently with umbrellas (e.g. grass blades). Another limi-
tation is that the LoD hierarchy is built using the convex
hull, which increases the size of markedly concave struc-
tures. Also in the case of umbrellas with great color varia-
tion, the color information culling from one level of the LoD
hierarchy to the next could be too aggressive–there is a sin-
gle color sample inside the convex hull. Finally, rendering
performance of just-in-time texture synthesis is lower than
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Figure 15: Rendering performance variation with k (top, v
= 77), and v (bottom, k = 13) for Fall Leafs.

for conventional texture mapping and it decreases with the
overlap factor.

8. Conclusions and Future Work

We have presented a novel texture synthesis approach that
models texture patches with parameterizable color, 2-D, and
3-D shape. A few input patches are sufficient to mimic the
diversity present in nature. Texel data is computed just-
in-time, which brings substantial storage savings. An LoD
scheme only renders 3-D detail where needed, and supports
artifact-free minification at any level.

One possible direction of future work is to alleviate some
of the limitations discussed above. The 2-D shape and color
modeling power of umbrellas can be further increased by
introducing additional vertices on the radii connecting the
center to the peripheral vertices. This would allow for greater
color diversification and LoD adaptation flexibility. The LoD
shape fidelity could be improved by not requiring that the
merged umbrella be convex, but rather by shrink wrapping
it to the actual perimeter of the umbrellas in the cluster it
replaces. The 3-D modeling power of our technique could
be increased by mapping the umbrella to a more flexible
3-D representation such as a height field. The high level
algorithm would remain the same, including the scheme
for smoothly transitioning from 3-D to 2-D, with the only
change of replacing the ray/ellipsoid intersection with a
more expensive iterative ray/height field intersection.

Our paper focuses on the texture synthesis sub-problems
of diversification, LoD adaptation, and run-time lookup. An-
other possible direction of future work is to integrate our

method with prior solutions to other texture synthesis sub-
problems such as automatic extraction of texture elements
and of arrangement patterns, and such as distortion-free
tiling on 2-D and 3-D domains.

Just-in-time texture synthesis takes advantage of the pro-
grammability sophistication of modern graphics hardware
by replacing the texel with a higher-level texturing primi-
tive. Our method brings benefits whose importance will only
grow as increases in computation performance continue to
outpace increases in storage and bandwidth.
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