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Figure 1: (Left) umbrella diversification: the columns show, from left to right, the 4 base umbrellas, color modification, 2-D
shape modification, and both color and 2-D shape modification. (Middle) texture synthesized with our method by diversifying
the 4 base umbrellas. (Right) texture with same arrangement but only using the 4 base umbrellas, for comparison.

Abstract
Texture bombing is a texture synthesis approach that saves texture memory by stopping short of assembling the
output texture from the arragnement of input texture pataches; instead, the arrangement is used directly at run
time to texture surfaces. However, several problems remain in need of better solutions. One problem is improving
texture diversification. A second problem is that conventional mipmapping cannot be used since the texel data
is not stored explicitly. The lack of an appropriate level-of-detail (LoD) scheme results in severe minification
artifacts. We present a just-in-time texturing method that addresses these two problems. Texture diversification is
achieved by modeling a texture patch as an umbrella, a versatile hybrid 3-D geometry and texture structure with
parameterized appearance. The LoD is adapted with a hierarchical algorithm that acts directly on the arrangement
map. Results show that our method can model and render the diversity present in nature with only small texture
memory requirements.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism-Texture—Color, shading, shadowing, and texture

1. Introduction

Texture mapping is a uniquely powerful method for en-
hancing surface appearance in interactive computer graph-
ics. Texture synthesis research efforts have produced tech-
niques that construct high resolution textures based on input
texture patches and patterns. Unfortunately, the high reso-
lution synthesized texture requires large amounts of texture
memory. Texture bombing addresses this challenge by stop-
ping short of assembling the high-resolution texture from the
arrangement of patches; instead, the arrangement is used di-

rectly at run time to texture surfaces. The texture is synthe-
sized just in time and is never stored explicitly, which brings
considerable texture memory savings.

Figure 3: 3-D shape diversification.

However, several problems related to texture bombing re-
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Figure 2: Just-in-time texture synthesis (left, 9MB) and conventional texture of equivalent resolution (right, 190MB).

main in need of better solutions. One problem is improv-
ing texture diversification. Given a small number of input
patches, a plausible large texture can only be synthesized if
the appearance of the input patches is modulated sufficiently
to reflect the diversity present in nature. A second problem
is that conventional mipmapping cannot be used in since the
texel data is not stored explicitly. The lack of an appropriate
level-of-detail (LoD) scheme results in severe minification
artifacts.

In this paper we present a just-in-time texture synthesis
method that addresses these two problems. Texture diversi-
fication is achieved by modeling a texture patch as an um-
brella, a versatile hybrid 3-D geometry and texture struc-
ture with parameterized appearance. The input patch um-
brellas are modified and arranged to synthesize a large, high-
resolution, and diverse texture (Figure 1). The input patch
is modified substantially by interpolation to new colors and
2-D shapes (left). The 4 base umbrellas are sufficient to cre-
ate hundreds of unique modified umbrellas, so the synthe-
sized texture (middle) does not suffer from repetitiveness.
The repetitiveness artifact would be readily noticeable if the
texture were synthesized only from the 4 base umbrellas
(right). Moreover, an umbrella does not need to be planar,
and it can assume a concave or convex 3-D shape, which
further increases the diversification capability of our method
(Figure 3). XXX We need to add an example w/ and w/out
3-D leafs XXX

To address the second problem we propose a hierarchical
LoD algorithm for just-in-time texturing that acts directly
on the arrangement map. Lower LoD arrangement maps are
computed offline by merging modified umbrellas and are
then used at run-time to avoid minification artifacts. In Fig-
ure 2 our method provides similar quality to conventional
mipmapping for less than 1/20th of the storage cost. Please
also see the accompanying video illustrating our results.

2. Related Work

2.1. Texture synthesis

A variety of texture synthesis methods have been devel-
oped [WLKT09]. Methods can be classified according to
the periodicity of the data of the generated texture, which

can be regular, such as a brick wall, irregular, such as fallen
leafs on the ground or a wall built from fitted river stones, or
purely stochastic, such as a rough surface or the waves of the
sea. One method that excels at synthesizing regular textures
is based on modeling sample textures procedurally [LP00].
Other methods separate the sample texture into a regular
and an irregular component, for example by using fractional
Fourier analysis [NMMK05], which are then modeled inde-
pendently, diversified and combined during texture synthe-
sis [LTcL05]. We target the synthesis of irregular textures.

Texture synthesis methods can also be classified as proce-
dural or sample-based methods. Procedural methods use the
input texture to derive a complex model that allows synthe-
sizing new textures of the same type as the input provided
(e.g. based on Markov Random Fields [Pag04]). Sample-
based methods use input texture patches repeatedly with mi-
nor modifications induced by changing a few parameters.
Our method falls in the sample-based category, which we
review in more detail.

A sample-based texture synthesis method needs to ad-
dress three tasks. The first task is to extract the texture patch
from input images. Extraction is usually done with the help
of image processing techniques for finding features and for
segmentation [DMLG02, ZZV∗03, WY04, LH06], but can
also proceed through random selection of a rectangular win-
dow [LLX∗01, KSE∗03]. The second task is to arrange the
extracted texture patches in the output texture domain. Some
textures require an overlapping arrangement, which can be
achieved by random placement of patches while control-
ling patch density [DMLG02, HQXT05]. Other textures re-
quire a seamless tiling of patches, achieved using graph
cut techniques [KSE∗03, EF01], patch stitching [DLC05],
wang tiles [CSHD03], or sparse linear system optimization
[PFH00]. The arrangement is either learned from an exam-
ple [IMIM08, MWT11], random [KCoDL06, TW08], or de-
fined with the help of user input [LN03].

The third task in sample-based texture synthesis is to al-
low for the diversification of the appearance of input patches
such that large textures that convey the diversity present
in nature can be synthesized from only a small number of
input patches. Diversification methods rely on many-knot
spline interpolation [HQXT05], on regular lattice combined
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Figure 4: Overview of the just-in-time texture synthesis pipeline.

with deformation fields [LLH04], on texture meshes inspired
from image meshes [DZ06], or on multi-scale descriptors
which allow for appearance-space jitter that retains the struc-
ture on the input texture patches [RHDG10].

The goal of our work is the development of a texture syn-
thesis method for real time rendering that achieves good di-
versity of the output texture without requiring considerable
texture memory resources. We rely on prior art solutions for
the problems of patch extraction and arrangement, while we
focus on achieving powerful patch diversification.

2.2. Texture bombing

Texture bombing–the idea of saving texture memory by
reusing a few texture patches placed at random locations–
was pioneered over thirty years ago [SA79]. The advent
of programmable graphics hardware brought renewed in-
terest in the approach [Gla04]. Texture sprites [LHN05]
are image patches projected onto geometry at run-time,
which bypasses the need of a global planar parameterization.
The texture bombing approach can be used in conjunction
with any patch arrangement method, including wang tiles
[CSHD03,Wei04,LD05], lapped textures [PFH00], and user
input based [LN03]. The problem of level-of-detail adapta-
tion for conventional texturing has been solved by mipmap-
ping [Wil83]. Since texture bombing renders directly from
patches, mipmapping can only be used within individual
patches, and cannot be used between different patches as
required for high levels of minification. Compared to these
previous techniques, our method improves patch 2-D, 3-D
and color diversification, and supports arbitrary minification.

2.3. Texture compression

Our method saves texture memory by taking the texture
bombing approach. Texture memory can also be saved by
compression at texel level. The need for rapid decoding
has spawned research targeting texture compression specif-
ically. The main approaches are based on block partition-
ing [KE02, SR06], on vector quantization [BAC96, TF08],
and on wavelets [BIP00, DCH05, STC09]. All of these tech-
niques allow looking up the compressed texture directly. For
example wavelet data has been encoded into a standard 2-D

texture memory region that is then sampled directly using
drop-in shaders [DCH05]. Compared to texture compres-
sion, our method achieves compact storage while avoiding
compression artifacts: powerful diversification allows cre-
ating a large texture from only a small number of input
patches, which are stored uncompressed.

2.4. Procedural geometric modeling

Several procedural geometric modeling methods target fo-
liage specifically. The methods rely on L-Systems [RSL∗02,
PTMG08], on particle systems [RCS04] and probabilistic
[DGAG06] algorithms, and on the diversification of low-
count polygonal models [MGGA10] to capture leaf shape
and color variation, and to simulate ecosystems and autumn
scenery. Compared to these methods, our technique achieves
diversification based on examples and not based on rules,
and our technique generates a texture defined compactly in
a 2-D domain which is used directly during rendering as op-
posed to a 3-D geometric model which needs to be processed
in its expanded form.

2.5. 3-D surface detail

Our method allows modeling and rendering 3-D surface
detail. Previous techniques include simulating 3-D surface
detail through bump mapping [Bli78], horizon mapping
[Max88, SC00, HDKS00], displacement mapping [Coo84,
KS01], view dependent displacement mapping [WWT∗03],
parallax mapping [KTI∗01], and relief texture mapping
[POC05]. Compared to these techniques, our method trades
3-D modeling fidelity for rendering efficiency by mapping
an umbrella patch to an ellipsoid. The ellipsoid can be ren-
dered efficiently on the GPU as has also been shown in prior
work [Gum03]. Moreover, our method only renders 3-D de-
tail where needed, i.e. for patches close to the viewpoint, and
collapses 3-D detail into the base plane gradually as needed
for a smooth transition.

3. Algorithm overview

Just-in-time texture synthesis proceeds according to the dia-
gram shown in Figure 4. The texture is synthesized offline
in four major steps. First, base umbrellas are constructed
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Figure 5: Base umbrella examples.

Figure 6: Reference image (left), base umbrella and vertex
colors (middle), and umbrella with modified color (right).

from input photographs, renderings, and shapes containing
the desired texture elements. A base umbrella is a param-
eterized encoding of the texture coordinates and color of a
texture patch. Only a small number of base umbrellas are
constructed (e.g. 4 for the texture in Figure 1). Second, the
base umbrellas are diversified to hundreds of texture patches
with unique appearance. Diversification is achieved by vary-
ing base umbrella color, 2-D shape, and 3-D shape parame-
ters. Third, the modified umbrellas are arranged in the 2-D
texture domain. Umbrella construction, diversification, and
arrangment are described in Section 4. Fourth, the umbrel-
las and the arrangement map are fed into an algorithm that
computes the levels of detail needed to accommodate any
minification level (Section 5). The umbrellas, the arrange-
ment map, and the LODs are then used at run-time to texture
surfaces as needed for the current output image (Section 6).

4. Umbrella Texture Patches

4.1. Construction

We define an umbrella as a texture-mapped 2-D geometric
primitive with a central vertex C and peripheral vertices Vi
(Figure 5). The umbrella need not be convex, but all seg-
ments ViC have to be inside the umbrella. The umbrella is a
flexible light-weight representation that captures many tex-
ture elements present in nature with high fidelity.

The texture of the base umbrella is derived from input im-
ages that contain the desired texture elements. We construct
base umbrellas with an interactive editor. The user first lays
down the polyline defining the contour of the umbrella and
then selects the center. For texture elements where features
converge, the center is chosen at the convergence point for
improved diversification results as discussed below. For ex-
ample in the case of a leaf (Figure 5) the center is chosen
at the convergence of the leaf veins. For the berry example
the center is simply chosen as the centroid of the periph-
eral vertices. The interactive editor allows creating a base
umbrella in seconds. Only a few umbrellas are needed (e.g.
4-10), which are then diversified automatically.

Figure 7: Shape diversification by morphing.

4.2. Color diversification

In order to modify the color of a base umbrella, its vertices
are assigned colors that are used to modulate the texture of
the umbrella. The color cp at a point P inside the umbrella is
computed as follows:

cp = ct + f cv

cv = ∑dici/∑di
(1)

where ct is the color looked up in the base umbrella texture
and cv is a weighted average of the vertex colors ci. A weight
di is defined as an inverse of the distance between vertex
i and P. The coefficient f controls how much the original
texture colors are modified. cp is clamped to [0,1].

The colors of the vertices are chosen to produce realis-
tic modified colors. The approach we use is to derive these
colors from additional reference images of similar texture
elements. For example, in Figure 6, an image of a leaf with
different colors (left) was used to set the colors of the pe-
ripheral vertices of the base umbrella (middle). Such color
diversification keeps the number of base textures low, while
capturing a wide range of realistic color patterns (right).

4.3. Shape diversification

The 2-D shape of a base umbrella is modified by moving pe-
ripheral vertices. A vertex can move to any new location as
long as this does not create a fold. In order to allow for com-
plex shape modifications, some base umbrella edges might
be split into multiple segments. Figure 7 shows that the base
umbrella has collinear peripheral vertices (blue) which can
move progressively to create a final leaf shape that is signif-
icantly different from the starting shape. The shape morph
is specified with a second position for each of the peripheral
vertices. These positions can be designed by the user, or can
be derived from the shapes of other leafs. The shape morph
allows producing automatically a large number of plausible
2-D leaf shapes without a significant storage cost increase.

We support modeling of 3-D surface detail by mapping
umbrellas to ellipsoids (Figure ??), which provide a good
tradeoff between modeling power and rendering cost. 3-D
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shape is diversified using the ellispoid orientation–convex or
concave–and the ellipsoid curvature.

4.4. Arrangement

The texture is synthesized by arranging modified umbrel-
las in the 2-D texture domain. Depending on the texture a
tiling or an overlapping arrangement is needed. The um-
brella shape is sufficiently flexible to be compatible with pre-
viously developed arrangement methods. We exemplify our
just-in-time texturing method using an overlapping arrange-
ment defined using a regular grid. Modified umbrellas are
assigned to grid cells. A grid cell is assigned all umbrellas
that intersect it (Figure ??). The umbrellas are stored in back
to front order. For the examples shown in this paper the base
umbrella color and shape diversification parameter values,
as well as the location, rotation, and scale of the modified
umbrellas are chosen randomly.

5. Level of detail pre-processing

We adapt the level of detail in two ways. First, expensive 3-D
detail should only be rendered where it matters, i.e. close to
the eye. This requires switching gradually from 3-D detail to
a flat surface. Second, when umbrellas have a small image
footprint, mipmapping individual umbrella textures is not
sufficient to avoid minification artifacts, and umbrellas have
to be merged. Whereas traditional texture synthesis methods
actually compute a large texture and individual patches are
merged implicitly through mipmapping, just-in-time texture
synthesis requires merging umbrellas explicitly to compute
coarser LoDs of the arrangement grid. Figure 8 illustrates
how, at the highest level of detail, the synthesized texture
is rendered with full 3-D detail, then the height of the 3-D
detail is tapered off gradually, and then coarser and coarser
LoDs of the arrangement grid are used. Whereas tapering off
3-D detail can be done at run-time, the coarser LoDs of the
arrangement grid have to be pre-computed offline, akin to
pre-computing the mipmap levels of a conventional texture.

We pre-compute coarser levels of detail of the arrange-
ment grid hierarchically from the bottom up. Consider a grid
with at most k modified umbrellas per grid cell. The next
coarser level is computed by merging 4 neighboring cells
into a cell with k umbrellas using the following algorithm.
XXX We need to have a caption for the pseudocode algo-
rithms in the paperXXX

The 4 adjacent grid cells contain up to 4k umbrellas which

Figure 8: Just-in-time texture synthesis LoD continuum.

Group umbrellas into k clusters
for each cluster Ci do

Compute center oi of Ci
Compute convex hull hi of Ci
Simplify hi to si
Create new umbrella {oi,si}
Compute new umbrella vertex colors

end for

are grouped into k clusters by running the k-means algorithm
on the centers of the umbrellas. The algorithm is exempli-
fied in Figure 9. The 4 cells (top, white lines) containing
16 umbrellas (leafs delimited by blue lines) are merged into
a single cell (bottom, white lines) with k=8 new umbrellas
(red lines). A new umbrella is constructed for each cluster.
The shape of the umbrella is defined first. The center of the
umbrella oi is set to the center of mass of the centers of the
umbrellas in the cluster. The peripheral vertices si of the new
umbrella are derived from the convex hull hi of the original
umbrellas. The convex hull is simplified to stop the prolif-
eration of vertices as the algorithm is run hierarchically. A
maximum number of peripheral vertices is enforced by re-
moving the vertices with edge angles closest to 180◦.

Once the shape of the new umbrella is known, its color

Figure 9: Arrangement grid LoD. Four neighboring grid
cells (top) are merged into one (bottom).
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is defined by computing colors for each of its vertices. New
umbrellas are not texture mapped, thus they do not incur a
significant additional storage cost. Figure 9 bottom shows
the vertex colors for the new umbrellas. The color of a vertex
is computed as a weighted sum of the color samples in the
neighborhood of the vertex and inside the new umbrella. We
use a raised cosine reconstruction filter with a base of half
the distance from the vertex to the umbrella center. For the
center, the base is half the distance to the peripheral vertices.

Our LoD algorithm essentially implements mipmapping
directly in the grid of umbrellas. Just like in conventional
mipmapping, LoDs are pre-computed offline to avoid the
performance penalty of on-the-fly LoD adaptation. The algo-
rithm resorts to two main approximations. First, the cluster
of umbrellas is approximated with its convex hull. Second,
the color information stored in the textures of the umbrellas
is approximated using vertex colors. These approximations
work well since the output image footprint of the umbrellas
is small. Figure 10 (left) shows the output of our algorithm
for the case shown in Figure 9, for an output image footprint
of the merged cell of 8×8 pixels. The 8×8 image is shown
magnified for illustration purposes. The result is comparable
to mipmapping of actual texture (right).

6. Just-in-time texture mapping

The synthesized texture is encoded using a 1-D array of base
umbrellas, a 1-D array of modified umbrellas, and a hierar-
chy of 2-D arrays for the arrangement grid. A base umbrella
is encoded with a texture map and with the texture coordi-
nates of its vertices. A modified umbrella is encoded with
the index of its base umbrella, with per vertex color and po-
sition, and, if 3-D shape is desired, with parameters defining
the underlying ellipsoid. The arrangement grid stores an ar-
ray of modified umbrella indices for each cell. This encoding
is used to texture surfaces as required by the output frame.

Consider a polygon to be textured with our technique. In
order to render the 3-D detail with the correct silhouette, the
polygon is extruded to form a prism with height h, where

Figure 10: Comparison between minification with our LoD
algorithm (left) and with mipmapping (right).

h is the maximum height of the 3-D detail. The following
algorithm is run for each pixel touched by the prism.

P0P1 = pixel ray intersected with prism
cell = GetCell(P0)
while cell do

Set3DLoD(cell)
if cell is 3-D then

Intersect3D(cell, P0P1), return if found;
cell = NextCell(cell, P0P1)
continue

end if
return LookUp2D(P1) . cell is 2-D

end while
return no-sample

The ray at the current pixel is first intersected with the
prism to find the ray segment P0P1 (see also Figure 11). Then
P0P1 is traced through the 3-D grid of cells, starting from the
grid cell that contains the starting point P0. The first step in
processing a cell is to set the amount of 3-D detail that has
to be rendered based on the current ray. In Figure 11 the ray
traverses cells c0 to c6. Cells c0 and c1 havefull height 3-D
detail, the height of the 3-D detail is tapered off over cells
c2 - c4, and then cells c5 and c6 have no 3-D detail (see red
line). A cell with 3-D detail is intersected with the ray as de-
scribed in Section 6.1. If an intersection is found, the traver-
sal stops and the sample is returned. When no intersection
is found with the current 3-D cell, the algorithm continues
with the next cell traversed by the ray. The traversal termi-
nates the first time a 2-D cell is encountered, i.e. a cell where
the 3-D detail has been tapered off completely. The texture
is looked up at the intersection point between the ray and the
base polygon and the sample is returned. The lookup algo-
rithm is given in Section 6.2. In our example the texture is
looked up at P1 when 2-D cell c4 is processed.

6.1. 3-D texture lookup

A grid cell with 3-D detail (cell) is intersected with a ray
(P0P1) according to the following algorithm.

The ray P0P1 is first clipped with the axis aligned bound-
ing box of the cell, obtaining R0R1. The ray segment R0R1 is
then modified to account for the possible reduction in height
of the 3-D detail. Modifying the ray and intersecting the un-

Figure 11: Intersection between ray and grid cells (c0−c6).

submitted to EUROGRAPHICS 2012.



paperID / 1022 7

R0R1 = ClipRayWithCellBoundingBox(P0P1, cell)
Q0Q1 = ModifyRay(R0R1, cell)
S = no-sample
for all modified umbrellas u in cell do

if (Q = Intersect(Q0Q1, u.ellipsoid)) != 0 then
if (Si = LookUp(Q, u.2Dpolygon)) != 0 then
S = Closest(S, Si);

end for
return S

compressed cell with the modified ray is easier than com-
pressing the cell and intersecting it with the original ray. In
Figure 11 the ray is not modified for cells c0 and c1 which
are rendered with 3-D detail with full height, but ray seg-
ment ab is modified to ab′, by moving b to b′. b′ is found
such that b′b0 / h = bb0 / b1b0. The resulting ray ab′ has the
same endpoints with respect to the uncompressed cell as the
original ray segment ab with respect to the compressed cell.
ab′ is intersected with the uncompressed cell. Similarly, ray
segment bd is modified to b′d′, maintaining ray continuity
from cell c2 to cell c3 (green line ab′d′). For cell c4 the ray
segment de is above the compressed cell thus no intersection
needs to be computed (dotted green line).

Cell c2 has 4 points a and b that are usually not copla-
nar, which implies that the roof of the compressed cell is a
(curved) bilinear patch. Applying this non-uniform scaling
to the 3-D detail contained by the cell would complicate the
ray-cell intersection, so we modify the ray instead. The mod-
ification to the ray has to be the inverse of the modification
desired for the 3-D detail. The true modified ray is a curve
which we approximate with a line connecting the true end-
points, for efficiency.

The cell is intersected by intersecting each umbrella con-
tained by the cell with the modified ray, and by recording
the intersection closest to the eye. An umbrella is intersected
by first intersecting the ellipsoid defining its 3-D shape and
then by intersecting the polygon defining its 2-D shape. The
ellipsoid intersection implies solving a quadratic. The sur-
face parameter values at the intersection define the 2-D point
where the polygon is looked up, as described in Section 6.2.

6.2. 2-D texture lookup

Given point P on the base polygon with texture coords (s, t),
the color at P is looked up with the following algorithm.

Since the grid is uniform, the cell containing P is found
directly by dividing s and t by the width and height of the
cell. The modified umbrellas in the cell are traversed in front
to back order in search of an intersection. The base umbrella
sector possibly containing P is found using the angle ϕ be-
tween the vector defined by P and the horizontal axis (Fig-
ure 12). If P is actually inside the triangle sector, an inter-
section has been found and a color is returned. The color is

Find grid cell that contains P
for all modified umbrellas u in cell do

Compute angle ϕ of P with the horizontal axis
Use ϕ to find sector triangle Tj containing P
if P outside peripheral edge e j then continue
Compute barycentric coords. (α , β , γ) of P in Tj
Lookup base umbrella texture color ct at (α , β , γ)
Compute interpolated vertex color cv
return blended final color ct+ f cv

end for
return background color

Figure 12: Identification of umbrella triangle containing
lookup point and approximate shadow computation.

computed by blending the base umbrella texture color with
the interpolated color of the triangle sector. The interpolated
color is found using Equation 1. If no modified umbrella
covers P, the background color is returned.

The level of detail is adapted by examining the derivatives
of the texture coordinates in arrangement grid units. While
these derivatives are sufficiently small (i.e. 0.125), the LoD
is simply adapted by looking up the base umbrella textures
with mipmapping. Once the derivatives become too large,
the coarser LoDs of the arrangement grid will be used. The
lookup algorithm is run on two adjacent LoDs that bracket
the desired LoD, and a linear interpolation produces the final
color, similarly to the trilinear interpolation of conventional
mipmapping. The algorithm provides a smooth transition be-
tween LoDs (Figure 2 and video).

Figure 13: Texture with (left) and without (right) shadows.
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6.3. Shadows

The synthesized texture is called upon to approximate sur-
face detail that is not truly flat. Consequently the visual qual-
ity of the resulting texture is greatly improved if neighboring
umbrellas cast shadows on each other. For arrangement grid
cells that contain 3-D detail, i.e. cells where the height of
3-D detail has not been tapered off completely, one could
compute shadows with a conventional algorithm that esti-
mates visibility to a light source. To avoid the cost of tracing
a second ray, and to ensure that shadows are also rendered
for 2-D cells, we compute approximate shadows on the fly
with a small addition to the 2-D texture lookup algorithm
described above (Section 6.2).

As the umbrellas of the grid cell are traversed in front to
back order, not only do we check whether the lookup point
is inside the current umbrella, but we also test whether the
point is in the shadow cast by the current umbrella. This is
done by moving the point towards the light on the texture
plane, and by testing whether the displaced point is inside
the umbrella, which would indicate that the original point is
in the umbrella’s shadow. In Figure 12 P1 is translated along
the light vector l to P′1 which is inside the umbrella thus P1 is
in shadow. The shadow of multiple umbrellas are aggregated
and the returned color is modulated accordingly. Figure 13
shows the same texture fragment with and without shadows.

7. Results and Discussion

We have applied our technique to generate and use several
textures: Fall Leafs (Figure 1), Berries (Figure 14, row 1),
Pepper (row 2), Green Leafs (row 3), and Flowers (row 4).
The resolution of the base umbrella textures is 256× 256,
which allows zooming in with good detail. Our LoD algo-
rithm provides quality results even at extreme minification
rates. As illustrated in the video, our technique is stable
which preserves quality in sequences of frames. Umbrella
edges are antialiased using conventional multisampling.

7.1. Storage Reduction Performance

In order to quantify the texture memory savings brought by
our just-in-time texture encoding, let′s assume that there are
b base umbrellas, each with v vertices and with a texture of
resolution w× h. The storage cost of a base umbrella is wh
+ 2v four-byte words, where we counted 2 floats per vertex
for the texture coordinates. Let n be the number of modi-
fied umbrellas. The cost of a modified umbrella is 1 + 3v
words, which accounts for the base umbrella index and for
the positions and colors of the vertices. Let us assume that
the arrangement grid has a resolution of W×H and that there
are at most k modified umbrellas per grid cell. Each grid cell
records the modified umbrellas it stores with k integer in-

Figure 14: Additional texture synthesis examples and corre-
sponding base umbrellas.

dices. The overall cost in four-byte words J of the just-in-
time texture encoding is thus

J = bwh+2bv+n(1+3v)+ kWH (2)

In order to compare this cost to that of a conventional
approach storing the synthesized texture explicitly, first we
have to determine the resolution of the synthesized texture.
Since modified umbrellas have different sizes, the resolution
of the texture has to be determined by examining the res-
olution at individual modified umbrellas. A modified um-
brella Ui with an arrangement grid axis aligned bounding
box of xi × yi implies a synthesized texture resolution of
w/xi×h/yi×W×H. The dimensions xi and yi are measured
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Table 1: Storage reduction performance

Texture b v k
n

Min Avg Max(×1,000)
Fall L. 9 63 19 6.1 16:1 25:1 47:1
Berries 3 58 16 14 10:1 23:1 48:1

Green L. 6 51 68 25 5:1 13 :1 53 :1
Peppers 4 35 37 14 21:1 32:1 56:1
Flowers 6 74 12 .39 5:1 10:1 18:1

in grid cell units. In order to not lose information at any of
the modified umbrellas, the synthesized texture should have
a resolution T of

T = max(w/xi)×max(h/yi)×W ×H (3)

where the maxima are computed over all modified umbrel-
las. Using min instead of max in the equation above corre-
sponds to a synthesized texture that loses color resolution at
all modified umbrellas but the one with the largest arrange-
ment grid footprint. A third option is to use the average res-
olution over all modified umbrellas. Table 1 gives the stor-
age reduction factors achieved by our method versus conven-
tional texture synthesis, for each of these 3 options. Just-in-
time texture synthesis achieves non-lossy compression with
substantial factors. Base umbrella texture resolution w× h
is 256×256, arrangement grid resolution W ×H is 64×24
(10× 13 for Flowers), and the values for the other texture
synthesis parameters are given in the table.

So far the storage cost analysis was conducted under the
assumption that texel data is stored uncompressed. This pre-
cludes any loss of quality due to compression and avoids
decoding costs. Texel data compression can be used with
just-in-time texture synthesis by compressing the base um-
brella textures. Compression benefits just-in-time texturing
less than it benefits conventional texture synthesis, because
the just-in-time encoding is already a compressed represen-
tation. Even so, for example for Fall Leafs, when both the
base umbrella textures and the conventional synthesized tex-
ture are stored in jpeg format with a quality factor of 50%,
just-in-time texture synthesis still achieves a storage reduc-
tion factor of 3:1.

7.2. Rendering Performance

Just-in-time texture synthesis achieves storage savings by
shifting the texture expansion from pre-processing to run-
time. This is a classic tradeoff between storage and compu-
tation cost. Instead of a single mipmapped lookup, the frag-
ment program has to compute the intersection between the
sampling location and the modified umbrellas at the current
grid cell. As such, the rendering cost depends on two main
factors: the number of modified umbrellas per grid cell k and
the complexity of the umbrellas v. Figure 15 shows the varia-
tion of the rendering performance with k and v for Fall Leafs.

The output image resolution is 512×512, W ×H = 32×32,
and w× h = 256× 256. Rendering was done with 4x mul-
tisampling and with the approximate shadow algorithm de-
scribed. The shadow algorithm brings only a small frame
rate penalty of under 2 Hz. Performance was measured on
an Intel Core i5-760 2.80GHz PC with an NVIDIA GeForce
GTX 470, 1,280 MB graphics card.

Figure 15: Rendering performance variation with k (top, v
= 77), and v (bottom, k = 13) for Fall Leafs.

7.3. Limitations

Even though the umbrella is a versatile geometry and color
representation, not all texture elements can be modeled ef-
ficiently with umbrellas (e.g. grass blades). Another limi-
tation is that the LoD hierarchy is built using the convex
hull, which increases the size of markedly concave struc-
tures. Also in the case of umbrellas with great color varia-
tion, the color information culling from one level of the LoD
hierarchy to the next could be too aggressive–there is a sin-
gle color sample inside the convex hull. Finally, rendering
performance of just-in-time texture synthesis decreases as
the overlap factor increases, and is lower than for conven-
tional texture mapping.

8. Conclusions and Future Work

We have presented a novel texture synthesis approach that
models texture elements from nature with umbrellas, a ver-
satile representation with parameterizable color and shape.
A small number of base umbrellas are sufficient to mimic
the diversity present in nature. The texel data is computed
just-in-time, which brings substantial storage savings.

Just-in-time texture synthesis is a hybrid method in be-
tween polygonal rendering and texture mapping. Like in
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the case of texture mapping, most of the surface detail
stems from color maps, and the level of detail is adapted in
quadtree fashion as a pre-process. Like in the case of polyg-
onal rendering, the color information is scaffolded using tri-
angle meshes. However, all umbrellas are coplanar in the
texture domain, they are sorted implicitly and not through
z-buffering, and color is looked up inside an umbrella by
finding the relevant triangle directly, as opposed to by raster-
izing or ray tracing the triangles of the umbrella.

Our paper focuses on the texture synthesis sub-problems
of diversification, LoD adaptation, storage, and run-time
lookup, which are directly affected by our just-in-time strat-
egy. Our method can be readily integrated with prior so-
lutions for other texture synthesis sub-problems such as
distortion-free tiling on 2-D and 3-D domains, and automatic
extraction of texture elements and of arrangement patterns.

Another future work direction is to increase the model-
ing power of the umbrella even further. One possibility is to
remove the 2-D limitation. A concave or convex 3-D um-
brella could model dried-out leafs, flowers, or berries with
increased fidelity without a substantial additional cost. An-
other possibility is to increase the color modeling capabil-
ity of the umbrella by introducing additional vertices on the
radii connecting the center to the peripheral vertices. This
would allow for greater color diversification and LoD adap-
tation flexibility. The LoD shape fidelity could be improved
by not requiring that the merged umbrella be convex, but
rather by shrink wrapping it to the actual perimeter of the
structures it replaces.

Just-in-time texture synthesis takes advantage of the pro-
grammability sophistication of modern graphics hardware
by essentially introducing a higher-level texturing primi-
tive. Our method brings benefits whose importance will only
grow as increases in computation performance continue to
outpace increases in storage and bandwidth.
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