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Figure 1: Transparent separation surfaces originating at stagnation points related to vortex breakdown on the delta wing (red and yellow). The
blue stream surface originates at the tip of the wing and wraps the vortex core up to the breakdown point.

ABSTRACT

In this paper, we present an approach for monitoring the posi-
tions of vector field singularities in time-dependent datasets. The
concept of singularity index is discussed and extended from the
well-understood planar case to the more intricate three-dimensional
setting. Assuming a tetrahedral grid with linear interpolation in
space and time, vector field singularities obey rules imposed by
fundamental invariants (Poincaré index), which we use as a basis
for an efficient tracking algorithm. We apply the presented algo-
rithm to CFD datasets to illustrate its purpose in the examination of
structures that exhibit topological variations with time and describe
some of the insight gained with this method. We give examples
that show a correlation in the evolution of physical quantities that
constitute to vortex breakdown.
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1 INTRODUCTION

In the design of modern aircraft, computer simulations are an im-
portant tool in the development of new prototypes. While the basic

principles of aerodynamics have not changed much over the years,
they are applicable to large scale problems only and do not describe
the increasingly important details. The quality of numerical mod-
els has risen to a point where simulations can fill this gap. As the
demand for faster aircraft and improved security is high, they have
proven an extremely valuable tool in comparison to physical ex-
periments. Aside from the validation of prototypes, simulations
can help to increase our understanding of the dynamics of some
of the more complex flow patterns that keep appearing in aviation-
related problems. They facilitate complicated flow experiments and
provide accurate measurements not only at points of interest (that
might not even be known a priori) but over the whole domain con-
sidered, and it is possible to evaluate quantities that cannot be mea-
sured physically. However, the advantage of complete data for a
given problem is also a hindrance in its analysis. Since detailed
models require fine resolutions, the amount of generated data is
enormous. This is especially true for time-dependent problems. Re-
sulting datasets are usually multi-gigabyte sized. Thus the problem
of interpretation of a dataset often encompasses finding points of
interest first.

Concerning the design of delta-wing type aircraft, for both civil and
military use, the vortex breakdown phenomenon has stood in the
way of a wide application of these designs. The greater part of the
lift a delta wing experiences is created by a system of vortices above
the wing. This results in generally very good maneuverability and
the possibility of high airspeeds. However, it can be observed that
in certain situations (low speed and high angle of attack) these vor-
tices tend to break down in the sense that the flow pattern becomes
unstable and the vortical structure almost disappears, resulting in a
loss of lift that can have fatal consequences regarding controllability
of the aircraft. Furthermore, the pressure differences inherent in the
breakdown can severely damage the structure of the aircraft. There-
fore, there is a need to understand the origins of this phenomenon
such that it can be avoided in future designs. While understanding
is still incomplete, it is known that vortex breakdown is character-



ized by the appearance of stagnation points on the axis of the pri-
mary vortices[8]. Here, numerical simulations can show their full
power by providing insight that will help the development of the-
ories as to why and when vortex breakdown will occur. Although
the phenomenon can be reproduced in stationary simulations, the
full dynamics are only available from time-dependent calculations.
Figure 1 depicts a sequence of vortex breakdowns from such a sim-
ulation.

To obtain insight from resulting datasets we have developed an al-
gorithm to detect and track the stagnation points (which are essen-
tially zeros of the velocity field) over time and discover the relations
between them (i.e. the structural evolution of the vector field) and
characteristics of related quantities such as acceleration and helic-
ity. The algorithm was developed to work on three-dimensional
unstructured tetrahedral grids, since this is the form the datasets
usually take. A visualization of the results (four dimensional in na-
ture and thus hard to present) is then given by reducing the problem
to two dimensions. To keep the algorithm simple and efficient, we
have drawn on the theory of dynamical systems, namely the theory
of the Poincaré index. The main statement here is that vector field
singularities in piecewise linear fields obey a set of rules that sim-
plify their tracking through time. The work shown here is related to
the usual notion of flow topology; however, we are not concerned
with extracting all topological elements but rather a suitable small
subset of its temporal evolution.

The paper is structured as follows: Section 2 gives an overview over
previous and related work. In Section 3, we detail some theoretical
results related to the Poincaré index, with a special emphasis on
three-dimensional problems. Subsequently, the tracking algorithm
is developed in Section 4, before we write about some issues related
to preprocessing of the datasets and post-processing of the results
in Section 5. The results we obtained from applying our algorithm
to actual datasets are given in Section 6 before we conclude on the
work shown here in Section 7.

2 RELATED WORK

The appearance of vortex breakdown (some authors call it vortex
burst) has concerned many authors in the fluid mechanics commu-
nity due to its relevance for a number of applications (see e.g. [8]).
In the field of visualization, Kenwright and Haimes[6] were among
few to write about the detection and visualization of vortex break-
down. They already emphasize its importance in aeronautics. Their
interpretation of vortex breakdown is a significant change in the
direction of the vortex core. From today’s point of view, this expla-
nation is slightly misleading, since the role of flow singularities and
their effect on vortex core detection methods was not understood.

Concerning the temporal variation of features, there are approaches
that detect features in several timesteps and perform a matching
procedure to extract their evolution (e.g. Silver and Wang[10] and
Samtaney et al.[9]). Making explicit use of the temporal interpo-
lation, Weigle and Banks[13] extract features in the form of four-
dimensional isosurfaces. A similar course is followed by Bauer
and Peikert[1]. They incorporate a scale-space approach into their
method for the tracking of vortex cores. As to the interrelations
among multiple features over time, Silver et. al[2] have developed
the feature tree that is related to the structural graph we establish in
Section 5.

The importance of singularities and separatrices in flow fields
was recognized quite early by Helman and Hesselink[4] and re-
sulted in two-dimensional topology visualization. Complete three-
dimensional topology has not been attempted yet, however there are

authors that examine suitable subsets, such as Theisel et. al[11].
In their paper, they compute saddle connectors as a basis for a
topological skeleton. Relaxing the meaning of separation surfaces,
Mahrous et al.[7] recently published a method for topological seg-
mentation of steady vector fields surfaces that separate flow regions
with different properties.

Tricoche et al.[12] describe how the time-tracking of singularities
and the corresponding topological variations can be investigated for
2D vector fields. This paper essentially extends their method to
three spatial dimensions, however, we concentrate on the critical
points and do not treat topology.

3 THE POINCARÉ INDEX IN 3D

Remark: In the following, when we speak of singularity, we will
mean isolated zeros of a vector field.

In two dimensions, the index concept is well understood and has
been explained by several authors (see e.g. [12]). We immediately
start in a three-dimensional setting: let v(x) a three-dimensional
smooth vector field. We employ the notion of closed surfaces, i.e.
surfaces that are topologically equivalent to a sphere. The basic
idea of the index is the answer to the question of how many times
a vector field “rotates” in the neighborhood of a point. Rotations in
3D are not easily measured and compared (we would need to em-
ploy quaternions), therefore, we take a slightly different and more
geometric approach. We introduce the winding number #x(S) of a
closed surface S with respect to a point x:

#x(S) :=
1

4π

∫

S

y− x

|y− x|3
dS(y).

The winding number can be proven to be integer and can be inter-
preted as the number of times S wraps around x. For example, the
x-centered unit sphere has the canonical winding number 1. Now,
to define the index of a closed surface S, we apply a simple notion:
first, we introduce the Gauss map

γ : R3\{0}→ S2
,x 7→

x
||x||

,

that maps any non-zero vector to its direction. The index k of a
closed surface S is then defined as the number of times the vector
field directions on S cover the origin as we move around all of S.
In other words, it is the winding number of the Gauss map of v
restricted to S with respect to the origin. Mathematically speaking,
we have

4πk = #0(γ(v|S)) =
∫

S
γ(v(x))dS(γ(v(x))). (1)

Note that the winding number can be read as an oriented (“di-
rected”) area integral of γ(v|S) (cf. [5]). Hence, the sign of k de-
pends on the orientation of S relative to R3. We are able to define
indz(v) of a singularity z via

indz(v) := lim
ε→0

#0(γ(v|Bε (z))). (2)

Furthermore, we find a very useful result: let S a closed surface that
encloses the vector field singularities zi. Then

∑
i

indzi(v) = #0(γ(v|S)).

As a consequence of the last equation, we are able to calculate the
index of a singularity by enclosing it with a surface small enough
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Figure 2: Vector field directions on a closed surface S. Upper row:
the directions do not cover S2, hence the winding number of γ(v|S)
is zero. Lower row: S2 is covered once, |#0(γ(v|S))| = 1.

not to contain any other singularities. Furthermore, the shape of
the surface does not matter as long as orientation is fixed relative
to R3 for all such surfaces. As in the two-dimensional case (where
one usually considers positively oriented paths), we will assume
positive orientation for all closed surfaces henceforth. As a special
case of this last equation, we find that if the index of S vanishes, S
does not enclose any singularity in its interior.

Although this definition is appealing in the mathematical sense, its
application for computing indices in e.g. piecewise linear vector
fields as often presented by applications is tedious. We therefore
proceed by looking for an easier means to determine a singularity’s
index in these cases.

3.1 Linear vector fields

Consider a linear vector field of the form

v(x) = Jx+ c.

If J has full rank, v has exactly one isolated singularity at z =
−J−1c. Then, the index of v at z is given by the sign of J, i.e.

indz(v) = sign(detJ). (3)

It is quite easy to see how this simple formula works: since J is
one-to-one, we easily find that | indz(v)| = 1 (all directions on the
unit ball are reached exactly once). Hence, the sign of the index
only depends on the relative orientations of S and γ(v|S) for any S
that wraps z. If J is orientation-preserving (i.e. det(J) > 0), the
index is +1, otherwise it is −1. Hence (3) holds.

There is a simple connection between the usual classification of
linear singularity types (e.g. saddle, node, etc.) and the index. The
index is essentially the sign of the product of the eigenvalues of the
Jacobian matrix at the singularity. Since in three-space, the Jaco-
bian has three eigenvalues, this allows for a wider range of possibil-
ities than in two dimensions. For example, in 2D a saddle point has
always index −1, whereas in 3D in can have both +1 or −1. This
shows that the geometry of the defining space has a strong influence
on the geometry of vector fields and the nature of apparent vector
field singularities.

While it seems that (3) is easily applied to piecewise linear vec-
tor fields, evaluation of the determinant is numerically unstable. If
|detJ| is very small, rounding errors can easily cause a change of
sign and therefore lead to a wrong result. We next present a more
geometric approach that does not suffer these instabilities.

3.2 Linear interpolation over tetrahedra

Datasets from applications are usually based on unstructured grids
with cell-based linear or trilinear interpolation. We briefly show
how index computation can be achieved on a piecewise linear tetra-
hedral grid. Let v(x) a linear vector field. Let T a tetrahedron with
vertices pi, i = 0 . . .3. T is positively oriented in the sense that the
points are numbered in such a way that all face normals point out-
side. Let vi the vector values of v at the points pi. Since v is linear,
it coincides with the barycentric linear interpolant of the vi on T :

v(x) =
3

∑
i=0

βi(x) vi,
3

∑
i=0

βi(x) = 1.

Hence, v restricted to T is again a tetrahedron, T̃ . By application of
the Gauss map to T̃ , we find that the vi are mapped to points v̂i on
S2 and that the image of faces of T̃ are spherical triangles Sl . The
area covered by Sl is less than 2π in modulus (this is a consequence
of the minimal variation property of linear interpolation).

It remains to compute the winding number w.r.t. the origin of the
resulting closed surface S consisting of the spherical triangles Sl .
We can write in analogy to (1) (recall that the v̂i have modulus 1)

#0(S) =
1

4π

∫

S
xdS(x) =

3

∑
i=0

areasigned(Si)

For Si, we find the length of its sides to be

a = 6 (v̂i, v̂ j) = arccos(v̂i · v̂ j)

b = 6 (v̂i, v̂k) = arccos(v̂i · v̂k)

c = 6 (v̂ j, v̂k) = arccos(v̂ j · v̂k)

With s = 1
2 (a+b+ c), we obtain the formula

areasigned(Sl) = 4∗ arctan

√

tan
s
2

tan
s−a

2
tan

s−b
2

tan
s− c

2
.

(4)
In conclusion, the index of T is computed by evaluation of the an-
gles between the vi. This computation may seem complicated be-
cause a lot of trigonometric functions are involved. However, the
result can be expected to be close to an integer, therefore we can
employ rounding to guarantee an accurate result.

−−−→γ

Figure 3: The Gauss map γ maps a tetrahedron face to a spherical
triangle.



3.3 Time-dependent vector fields

Let v(x, t) a smooth time-dependent vector field, and let S(t) a
closed surface that changes position and shape smoothly with time.
Then, if

v(x, t) 6= 0 ∀t, x ∈ S(t), (5)

the index of S(t) is constant in t.

Condition (5) essentially ensures that no singularity is passing
through S(t) as time increases. Hence, the zi enclosed by S(t) will
remain enclosed, and no other singularity can join them. The argu-
ment then proceeds along the same lines as earlier. The right hand
side of (2) varies continuously with time, and at the same time, it is
integer; hence it must remain constant.

The significance of this statement is large: it basically states that the
index of a closed surface S(t) is conserved over time, which allows
us to impose certain restrictions on the temporal evolution of singu-
larities enclosed in S(t). The most important one for our purposes
is that singularities must appear or disappear in groups such that
the sum of their indices vanish. For example, if a pair of singular-
ities is created, they must have indices of +k and −k respectively.
Such a change of the structure of a vector field with a parameter
(in our case the parameter is time) is called a structural bifurcation.
A more extensive treatment of the theory of bifurcations of vector
fields can be found in the book by Guckenheimer and Holmes [3].

4 TRACKING OF SINGULARITIES

In the following we will be concerned with developing an algorithm
to the purpose of determining the paths of isolated singularities of a
time-dependent piecewise-linear vector field, given on a tetrahedral
grid.

Let pi ∈ R3 a set of points and v j
i the vector values associated with

the pi at discrete times t j ∈ R. Let Tk a set of tetrahedra defined
on the points pi. Then every tetrahedron Tk gives rise to a vector
field v(x, t) that is linear in both space and time: if x ∈ Tk and t ∈
[t j, t j j +1], then set

v(x, t) =
3

∑
l=0

βl(x)

(

t − t j

t j+1 − t j
v j+1

l +
t j+1 − t

t j+1 − t j
v j

l

)

,

where βl are the barycentric coordinates w.r.t. Tk and l refers to the
vertices of Tk. We will next examine the paths of singularities in a
single tetrahedron Tk.

4.1 Bifurcations

Considering structural changes, we have determined that a tetrahe-
dron can include at most one isolated singularity, because the field
is linear. This has one major implication: structural bifurcations
cannot occur in linear vector fields. For the case of piecewise lin-
ear fields this implies that bifurcations must be located in places
where two linear pieces are adjacent. For tetrahedral grids with
per-tetrahedron linear interpolation, we find that bifurcations must
happen in places where the field is not linear, i.e. on the boundaries
between different tetrahedra. There are three possibilities: vertices,
edges and faces of the grid. We will consider faces first.

Assume we have two tetrahedra T1 and T2 that share a common
face on which we find a bifurcation at some time t. Since the field
is linear in both tetrahedra, only two singularities can be involved

and one must be located in T1 and the other in T2. Moreover, due
to conservation of the index, the overall index must remain zero,
hence the indices of the singularities must be +1 and −1. Hence,
bifurcations on faces are of a relatively simple nature.

It would now be in order to discuss bifurcations on edges or ver-
tices. However, these cases are quite intricate. Since more than two
tetrahedra are involved, the list of possible bifurcation types is long,
and non-linear singularities can occur (cf. [3]). We are mainly con-
cerned with application datasets that usually show some amount of
numerical noise, making the occurrence of a bifurcation on an edge
or on a vertex of the grid extremely unlikely at best. Therefore, we
limit ourselves to the case of face bifurcations since it is of greatest
relevance.

4.2 Paths in a Tetrahedron

We first consider a single tetrahedron T and determine what possi-
bilities exist for the path of a singularity z. To simplify the notation,
we assume that the vector field in T is given in the form

v(x) =
3

∑
i=0

βl(x)((1− t)ui + tvi)) , x ∈ T, t ∈ [0,1]

and that v is non-degenerate, i.e. it contains exactly one isolated
zero at all times. For fixed t we can solve for the position of the
singularity of this field in barycentric coordinates. For example,
with wi(t) = (1− t)ui + tvi we write (omitting the parameters)

v = w0 +β1(w1 −w0)+β2(w2 −w0)+β3(w3 −w0)

and apply Cramer’s rule to find

β1(t) =
det(−w0, w2 −w0, w3 −w0)

det(w1−w0, w2−w0, w3−w0)
=:

b1(t)
q(t)

.

The same can be done for all βi. Brief computation shows that
the resulting bi(t) and q(t) are polynomials of degree 3 in t. We
required that v be non-degenerate, this reflects in q(t) 6= 0 for all
t ∈ [0,1]. Naturally, if βi(t) < 0 for some i, the singularity of v
is outside the tetrahedron for this specific t. In other words, we
have found an explicit representation for the location of z. Taking a
closer look at bi, we find that the zeros of these polynomials allow
us to determine when z crosses one of T ’s faces. If for t̂ ∈ [0,1]
we find βi(t̂) = 0 and β j(t̂) >= 0 for j 6= i, then the singularity is
located on the face of T opposite the vertex pi (its barycentric coor-
dinate is zero). Furthermore, by evaluating the sign of the derivative

β ′
i (t̂) =

(

bi

q

)′

(t̂) =
b′i(t̂)

q(t̂)

we can tell if the singularity enters or leaves the tetrahedron at t̂
and through which face. We will say that T has an entrance/exit
on face F at t̂. This information is important to determine in which
neighboring tetrahedron (if one exists for F) the singularity path
continues.

For fixed t ∈ [0,1] there can be at most one singularity inside T
(since the field in T is linear), hence we can conclude that if there
is a singularity in T at some t ∈ (0,1), it must either have entered
T at an earlier time 0 < t̂ < t or remained in T since t = 0 (in this
case we will say that z enters at t = 0). In complete analogy, it must
either exit T at t < t̃ < 1 or remain in T until t = 1 (read z exits
at t = 1). In other words, a singularity path always connects an
entrance to an exit, and exits and entrances always come in pairs.
Since there cannot be more than one singularity in T at a given time,
an entrance is always connected to the closest exit (w.r.t. t).
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Figure 4: Structural evolution of singularities. Three spatial dimen-
sions are represented on the vertical axis.

When z passes from T to a neighbor T ′ through the face F at t̂,
in both T and T ′ there is a singularity on F at t̂. There are two
possibilities: either we find an exit/entry combination in T and T ′,
in which case the path continues in T ′, or we find an exit/exit or
entrance/entrance combination. In the last case, the vector field has
a structural bifurcation on F at t̂ (i.e. creation or annihilation of a
pair of singularities), and the paths of both singularities involved
start or end on F .

4.3 Tracking algorithm

Having simplified matters so far, we now give a simple scheme for
tracking a singularity path between two timesteps t = 0 and t = 1
that works by simply connecting entrance/exit path segments over
tetrahedron boundaries.

Assume that a singularity z is present in T at t ∈ (0,1). Then, to
compute the path forward in time

1. compute the bi and q for T , and determine entrances and exits

2. if there is no exit later than t, z exits T at t = 1; the path is
complete

3. if there are exits in T , then z leaves T at the earliest exit later
than t; determine the neighbor tetrahedron T ′ corresponding
to the exit face F and compute b′i, q′ for T ′

4. if T ′ has an exit on F corresponding to the exit on T (→ bi-
furcation), the path of z ends on F

5. otherwise, T ′ has an entrance on F corresponding to the exit
on T ; z is now in T ′. Set T = T ′ and restart at 1.

Following the path of z backwards in time can be achieved in a com-
pletely analogous manner. Both directions are completely equiva-
lent. We use this procedure as a building block for computing the
paths of all singularities present in two given timesteps between
t = 0 and t = 1:

1. find the sets of tetrahedra S0 and S1 that contain a singularity
at t = 0 and t = 1 respectively. Let B = {} the set of bifurca-
tions encountered in between t = 0 and t = 1.

2. for every T ∈ S0: follow the path of z forward in time

(a) if it ends in T ′ at t = 1, eliminate T ′ from S1.

(b) if it ends at a bifurcation, add it to B.

3. for every T ∈ S1 (singularities not reached by paths from t =
0): follow the path of z backward in time

(a) it must end at a bifurcation; add it to B

4. for all bifurcations in B: check if B has two paths connecting
to it; if it does not, there must be another singularity involved.
Follow its path forward or backward in time depending on
whether the bifurcation is a creation of singularities or an an-
nihilation.

(a) the path must end at a bifurcation; add it to B; goto 4.

The algorithm essentially avoids multiple tracing of the same path
by making use of the equivalence between forward and backward
tracing (i.e. if a path extends from t = 0 to t = 1, we only need
to trace it forward). The extra effort in step 4 is required because
non-intuitive situations can occur (see Figure 5). The end result
is a set of paths that completely describe the continuous structural
variation of the vector field between the two timesteps. Going to
several timesteps from here is easy as it only involves connecting
the paths from different timesteps according to which singularity
they start/end at.

Remark: some cases are not covered by the given algorithm. For
example: if the two bifurcations that create and annihilate a pair of
singularities lie between two timesteps, neither of the singularities
will show up in one of the timesteps, and hence their paths will
not be discovered by the algorithm (see Figure 5). However, since
they do not interact with other singularities, they do not play an
important role in understanding the structural changes in between
the timesteps. Moreover, it is often desirable to ignore small-scale
local behavior (see also Section 5).

5 APPLICATION TO DATASETS

5.1 Pre- and post-processing

To obtain a complete picture of the structural evolution of a given
dataset, the interaction of the various singularities form a structural
graph with bifurcations as vertices and paths as edges (see Fig. 6
for an example). We will shortly describe how this graph can be
used in post-processing of results.

The method shown in Section 4 is limited to tetrahedra and
the given dataset must be tetrahedrized before application. Al-
though the tracking algorithm could be enhanced to deal with non-
tetrahedral grid cells, a generalization would result in a number of
special cases that complicate the relatively simple structure of the
algorithm. In the form presented above, implementation is straight-
forward and fast. However, a small price has to be paid: tetra-
hedrization of arbitrary grids can result in the creation of singular-
ities that are not in the original dataset. It is possible that a cell of
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Figure 5: Left: Tracking only paths originating on timesteps does not
completely explain the structural evolution (the blue path would not
be discovered). Making sure that every bifurcation has two paths
connecting to it solves this problem. Right: Paths that are not
discovered since they have no entrance or exit on a timestep.



index 0 is split up in such a way that the resulting tetrahedra have
non-vanishing index. These “artificial” singularities do not pose a
problem, since they are always created in pairs and usually only last
for a very brief amount of time.

Numerical datasets are often subject to noise, especially if the com-
putations involve some kind of differentiation. It is common prac-
tice to apply smoothing operators to datasets in order to undo some
of the damage done by previous computations. Commonly, numer-
ical noise reflects in short-lived pairs of artificial singularities that
exist in isolation and are not part of the dataset’s structural evolu-
tion over time. It can also occur that a path is “interrupted” by a pair
of artificial bifurcations that enclose a path segment of very short
duration (Fig. 5 (left) gives an example).

What seems a drawback at first can be turned into an advantage:
instead of smoothing the dataset we filter the resulting set of singu-
larity paths by removing paths that last less than e.g. one timestep.
Filtering can be applied on the structural graph directly and can
be implemented in an efficient way by first removing edges that
represent paths with short duration and successively removing all
isolated vertices. In our experiments, we found this method to be
very effective in treating noisy datasets. It turns out that conven-
tional smoothing does not significantly reduce the number of artifi-
cial singularities. It however affects the structure of the dataset in
such a way that the structural evolution is obscured or changed (this
is especially true for minimum/maximum tracking as described in
the next paragraph).

5.2 Tracking of minima and maxima

The presented algorithm is concerned with tracking singularities in
vector fields. By applying the above approach to gradient fields
of scalar quantities, we are able to track the evolution of minima
and maxima throughout time through following the paths of the as-
sociated singularities in the gradient fields. The algorithm can be
directly applied to this modified problem. The resulting structural
graph can then be filtered to only include paths of suitable singu-
larities, i.e. attracting and repelling nodes. Note that while minima
and maxima do not necessarily appear in pairs, they are still created
and destroyed at bifurcations in the structural evolution. Although
e.g. saddle points in the gradient field might have some physical
meaning as well, we did not consider them in our examples (see
Section 6).

5.3 Visualization

The structural evolution of a vector field is basically a graph whose
vertices have a total of four coordinates (3D space + 1D time).
Representing the paths of singularities in three-space directly turns
out to be non-intuitive, and adding temporal information to the
presented locations via color-coding or animation does not help.
Therefore, we approach the problem by first reducing the dimen-
sion from four to two by a change of coordinates.

In one of our examples (cf. 6), the dataset is highly rotation sym-
metric and singularities appear and move on the symmetry axis
only. Their complete evolution is then easily represented in a 2d
diagram. However, the other example is much more intricate, and
there is no canonical axis to represent the movement of the singu-
larities. If the positions of all singularities at all times are taken
into account, then we are able to determine the principal spatial
direction and the common center of their movement by evaluating
the zeroth and first order terms of the corresponding principal com-
ponent analysis. This provides a suitable spatial coordinate along

which to describe the location of singularities. For more compli-
cated datasets, higher order terms of the PCA and interpolation can
be drawn upon to generate a curved coordinate. The resulting two-
dimensional diagrams quickly enable the viewer to discover key
points in the structural evolution that can then be analyzed in detail
with other methods.

6 RESULTS

We have applied our algorithm to two different time-dependent
datasets of CFD simulations performed by the German Aerospace
Center (DLR)/Göttingen using their TAU code. All datasets take
the form of a velocity field provided on the vertices of an unstruc-
tured grid consisting of tetrahedra, pyramids and prisms. Although
the simulations are based on problems that show some degree of
symmetry, the computation was performed on the full domain.
While the can dataset retains the symmetry of the original prob-
lem, the delta wing dataset shows increasingly different behavior
on both sides of the wing as time passes.

It is already known that vortex breakdown is associated with the oc-
currence of (pairwise) stagnation points, therefore we have applied
the tracking algorithm to the velocity fields first. Furthermore, there
are speculations that both acceleration and helicity play an impor-
tant role in this context. We have computed these fields for those
datasets and applied tracking to them as well, in the case of helic-
ity (which is a scalar quantity) minimum tracking was performed
(as described in Section 5). Since these computations involved tak-
ing derivatives of the original velocity fields, we observed strong
numerical noise in both helicity and acceleration yielding many ar-
tificial singularities. Using the structural graph filtering method de-
scribed in Section 5 we were still able to obtain meaningful results.

The tracking algorithm itself is of linear complexity in both the
number of singularities and the number of timesteps. The most
time-intensive part is the pre-computation of all singularities in a
timestep, for which each cell has to be considered individually. If
this information is already given, the running times for our exam-
ples are on the order of seconds. Since the algorithm only needs
two successive timesteps to do its work, it is possible to integrate
it directly into the CFD simulation. The structural graph for all
timesteps can then be completed in post-processing. This would
also allow for online supervision of simulations that are still in
progress. We will now detail the results for both datasets.

6.1 Can dataset

The simulation describes a can filled with a highly viscous fluid
that is accelerated by rotation of the lower lid. The rotational speed
varies over time, leading to breakdown of the central vortex that
covers the symmetry axis of the can. Due to the high viscosity of
the fluid and the high degree of symmetry the velocity field is of
very good numerical quality. This dataset is very close to being
a standard model of vortex breakdown. It consists of about 5000
timesteps on a grid with approx. 4.4 million tetrahedra after de-
composition.

The results are of almost analytical quality (see Figure 6). The sim-
ulation actually shows two occurrences of vortex breakdown (and
two corresponding pairs of stagnation points) and it is interesting to
observe how primary and secondary vortex breakdown successively
merge and re-split. Acceleration zeros and helicity minima show a
strong correlation with the onset of the breakdown process and the
bifurcation that creates the two stagnation points. Before our anal-
ysis of the dataset, this correlation was not known. It is also obvi-



ous that the structural graph serves as a kind of “directory” for the
different timesteps by indicating interesting phenomena. Through
this, relevant timesteps can be identified quickly and reliably.

6.2 Delta Wing dataset

In order to study vortex breakdown in aviation, an unsteady simu-
lation of a delta wing configuration was performed. The angle of
attack is increased over time, and the primary vortices eventually
exhibit breakdown. The simulation totals 1000 time steps that de-
scribe the formation and breakdown of the primary vortices over
time. The grid consists of about 18 million tetrahedra after decom-
position. The dataset is somewhat noisy in a numerical sense since
the resolution is still too low in some of the more interesting parts
of the dataset (this is especially true for the vortex breakdown re-
gions). Figure 7 provides an overview showing stream surfaces that
wrap around the primary vortices above the wing (red and blue).
Asymmetric breakdown is clearly visible.

We have used our method on two regions in the dataset that corre-
spond to breakdown on both sides of the wing. After the coordi-
nate transformation (see also Section 5), the structural graph of the
right region (cf. Figure 8) clearly shows the evolution of the stag-
nation points as they move towards the wing. Again, acceleration
zeros and a helicity minimum seem to play a role in formation of
breakdown, although the correlation is not as obvious as in the can
dataset. This is, in part, to be blamed upon the lack in resolution
and the resulting numerical instability of differentiation. Filtering
of the structural graph for the helicity gradient field (whose com-
putation involves a second spatial derivative) reduced the number
of meaningful paths from roughly 1.000 to 4, effectively eliminat-
ing all artificial singularities. The left region is even more chaotic,
and it is clearly visible how the stagnation points begin to oscil-
late and disappear around timestep 730, to be followed by what
appears to be a sequence of short-lasting vortex breakdowns in dif-
ferent places. In this case, the structure graph helps in grouping
the velocity field singularities that would otherwise just be isolated
singularities in the field without any context. Figure 7 gives a direct
comparison between the evolution of stagnation points on the left
and right sides and the corresponding flow structures (displayed by
stream surfaces). While the behavior is almost similar in the begin-
ning, the left side quickly deteriorates. Again, the structure graph
can provide for a direct qualitative comparison that is very hard to
achieve by other means (e.g. streamlines or surfaces).

7 CONCLUSION

The objective of the work presented in this paper was to determine
the structural evolution of certain types of complex time-dependent
CFD datasets. First, we have presented a number of theoretical re-
sults about the Poincaré index in three spatial dimensions. It is an
extremely powerful yet intuitively geometric concept of describing
singularities of 3D vector fields and the laws they must obey under
time-varying circumstances. Considering the restrictions imposed
by tetrahedral grids with piecewise linear interpolation in space and
time, we were able to give a robust and straightforward algorithm
to the intended purpose. By providing a temporal overview of the
dataset using the structural graph that is built from singularity paths,
it is possible to quickly determine points of interest in large datasets
with many timesteps. Furthermore, the method has already proven
useful in the analysis of two datasets where the flow exhibits vor-
tex breakdown. Since understanding of this phenomenon is still
incomplete from a fluid mechanical point of view, we believe that

the uncovered interrelations of various quantities can be an impor-
tant step towards a complete explanation. Here, visualization can
show its strength by giving new impulses in fluid mechanics.

There is however some space for improvement on the presented
material. The tracking algorithm could be extended to deal with
trilinear interpolation to make possible the treatment of CFD grids
directly without the need for prior tetrahedrization. So far, singu-
larities have not played a significant role in the analysis of CFD
datasets; this has changed with the advent of simulations that are
able to resolve very complex flow patterns. If a more complete
picture of a given flow can be obtained via the structural graph,
the detection of certain types of flow behavior could be automated
based on the graph. With efforts underway to automatically op-
timize the geometries of e.g. aircraft to exclude undesired effects,
the structural graph could provide a robust criterion to indicate their
presence. Vortex breakdown serves as a prime example.
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Figure 6: Left: Structural graph of the can dataset. The green paths represent the stagnation points in the velocity field. Primary and
secondary breakdown each create a pair of stagnation points. Around timestep 1888, the two phenomena join, only to re-split at timestep 2458
and successively decay. The blue and orange paths belong to helicity minima and acceleration zeros. Note the strong interrelation between the
three quantities. Right: Two snapshots from the can dataset. Separation stream surfaces are started at the singularity positions. Timestep
1700 shows both breakdowns, whereas the second breakdown has already vanished in timestep 4000 and the first breakdown shows the typical
“mushroom” structure.
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Figure 7: Left: Overview of the delta wing dataset with its two primary vortices above the wings. Stream surfaces wrap around the vortices
and are eventually distorted by vortex breakdown. Note the asymmetrical breakdown structure. Right: Structural graphs for right and left
breakdown. Again a connection between various quantities involved in vortex breakdown can be observed for the right breakdown. In the left
breakdown, several oscillating breakdown structures are visible in the later timesteps.
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Figure 8: Comparison of right and left breakdown structures. Left: The combined structural graphs make an intuitive comparison possible.
Right: transparent stream surfaces show the distortion of the flow and the intricate flow patterns that make analysis difficult. The left breakdown
does not show the usual breakdown structure and consists of several smaller and independent breakdowns.


