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Abstract

The paper presents a topology-based visualization method for time-dependent two-dimen-
sional vector fields. A time interpolation enables the accurate tracking of critical points
and closed orbits as well as the detection and identification of structural changes. This
completely characterizes the topology of the unsteady flow. Bifurcation theory provides
the theoretical framework. The results are conveyed by surfaces that separate subvolumes
of uniform flow behavior in a three-dimensional space-time domain.

1 Introduction

Topology-based visualization of steady two-dimensional vector fields was initiated
by Helman and Hesselink [3]. Its basic principle however was already familiar to
the fluid dynamics community [1]. Critical points - where the field is zero - and
closed orbits are located and classified. Further, special streamlines are extracted
that sketch the structure of the flow. This method has been widely applied in the
last decade even if the visualization of closed orbits is a recent advance [12]. Now
in the case of unsteady vector fields, the original method must still be extended to
offer insight into the structural evolution of the flow over time. A simple graphical
connection of the topological graphs obtained for successive discrete time steps [4]
is not satisfying. This approach lacks time continuity which prevents the resulting
description from properly identifying and depicting qualitative changes that occur
between discrete time steps. Indeed, time as additional parameter entails the occur-
rence of new topological features called bifurcations. They correspond to continu-
ous transitions between stable structures. Now, the visualization of these features
is of major interest because they show how a vector field evolves to the structures
obtained on discrete time samples by conventional methods. Hence their depiction
requires the analysis of the vector field as a continuous map defined over a space-
time domain. This is the basic idea of the presented method.

The paper is structured as follows. First we briefly review previous work dealing
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with the visualization of time-dependent flows. Then we recall fundamental def-
initions of vector field topology and provide an overview of typical bifurcations
(section 3). Next we describe in section 4 how time interpolation is processed to
obtain the required continuous space-time map. This enables the precise tracking
of critical points over time as explained in section 5. Finally the surfaces spanned
by the curves of the topological graph are constructed (see section 6). Results are
shown in section 7.

2 Related Work

As far as unsteady flows are concerned, a very comprehensive introduction to bi-
furcation theory is proposed in [2]. This work is part of the Visual Math Project
that explains the basic mathematical notions by means of discerning sketches. Two
of the authors [12] presented an algorithm that computes streamlines in the 2D
steady case while detecting if they run into a closed streamline. This can also be
used in time slices of a time-dependent dataset. Hepting et al. [8] study invariant
tori in four-dimensional dynamical systems by using suitable projections into three
dimensions to enable detailed visual analysis of the tori. Wegenkittel et al. [10]
present visualization techniques for known features of dynamical systems. Further-
more, the practical significance of unsteady flows has led to several techniques
for the visualization of time-dependent vector fields. In his paper [5], Dickinson
describes a method for interactive analysis of the topology of time-dependent vec-
tor fields. 2D and 3D are both considered. The main point here is the correlation
of the separatrices between two consecutive time steps. A method for computing
streaklines in 3D unsteady flow fields has been proposed in [6]. The basic principle
is to integrate streaklines thanks to an interpolation over the 3D space and time.
The technique works also with moving grids. Using this scheme, a method for dis-
playing unsteady flow volumes has been presented in [7]. Based upon an adaptive
subdivision strategy, the authors arrive at integrating streaklines starting on a gen-
erating polygon. For feature visualization, a scheme is proposed in [9] to track and
correlate the extracted structures by detecting the following fundamental events:
Continuation, bifurcation, amalgamation, creation and dissipation.

3 Time-Dependent Topology

The topology of a steady vector field is determined by critical points, associated
separatrices and closed orbits. Turning to the unsteady case local and global bifur-
cations must be considered. These notions are reviewed next.
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Fig. 1. Common first order singularity types

3.1 Critical Points and Separatrices

Critical points (also called singularities) are the only locations where streamlines
can intersect. They exist in various types that correspond to specific geometries of
the streamlines in their neighborhood. We focus on the linear case: There are 5 com-
mon types characterized by the eigenvalues of the Jacobian (see Fig. 1). Attracting
nodes and foci are sinks while repelling nodes and foci are sources. A fundamental
invariant is the so-called index of a critical point, defined as the number of field
rotations while traveling around the critical point along a closed curve, counter-
clockwise. Note that all sources and sinks mentioned above have index +1 while
saddle points have index -1. Separatrices are streamlines that start or end at a saddle
point.

3.2 Closed Streamlines

A closed streamline, which is sometimes known as closed orbit, is a streamline that
is connected to itself so that a loop is built. Consequently, this is a streamline c,, so
that there is a ty € R with ¢,(t + ntg) = ¢,(t) Vn € N. From a topological point
of view, closed streamlines behave in the same way as sources or sinks. To detect
these closed streamlines we use the algorithm proposed by two of the authors [12].
Interpolating linearly on the given grid we get a continuous vector field. To find
closed streamlines we use the underlying grid to find a region that is never left by
the streamline. If there is no critical point inside this region, we have found a closed
streamline according to the Poincaré-Bendixson-theorem.

3.3 Bifurcations

One distinguishes two types of structural transitions: local and global bifurcations.
In the following, we focus on typical 2D local bifurcations and present a typical
aspect of global bifurcations.



3.3.1 Local Bifurcations

There are two main types of local bifurcations affecting the nature of a singular
point in 2D vector fields. The first one is the so-called Hopf bifurcation. The sec-
ond one is the pairwise annihilation or creation of a saddle and a source or sink,
called fold bifurcation. Other local bifurcations (like those where an attracting and
a repelling closed orbit appear simultaneously for instance) may also occur. Yet,
for our purpose, we only pay attention to those that concern singularities.
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Fig. 2. Hopf bifurcation

3.3.1.1 Hopf Bifurcation One starts with an attracting focus. If the attracting
effect of this sink weakens, the number of streamline rotations around this criti-
cal point increases (the convergence “slows down”). At the bifurcation point, one
obtains a center point, which is an unstable structure. Then a new stable structure
appears which consists of an attracting closed orbit moving away from the critical
point. The critical point itself has transformed into a repelling focus (i.e. a source).
So, a sink has changed into a source with the emission of a cycle. An illustration
of this evolution is given in Fig. 2. The reverse process is possible too. Similar
transitions are obtained by replacing sources by sinks and vice versa.

3.3.1.2 Fold Bifurcations At the beginning, there are a saddle point and a sin-
gularity of index +1, say a sink, linked by a separatrix. If the attraction/repulsion re-
lation between both singularities along the separatrix weakens, both critical points
become closer and closer until they merge. At this point, an unstable critical point
appears. As time goes on, this unstable structure vanishes: The new stable struc-
ture contains no singularity: This is a pairwise annihilation or fold catastrophe (see
Fig. 3). Again the reverse evolution can occur as well. Similar transitions are ob-
tained by inverting the direction of the flow (the sink becomes a source).

3.3.2  Global Bifurcations

As opposed to the cases mentioned above, global bifurcations do not take place in a
small neighborhood of a singularity but entail significant changes in the flow struc-
ture and involve large domains. We shall not go into details but mention a typical
configuration exhibited by such transitions: The unstable saddle-saddle connection.
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Fig. 3. Pairwise annihilation

One distinguishes heteroclinic separatrices that link two saddle points and homo-
clinic separatrices that connect a saddle point to itself.
The former is the central constituent of basin bifurcations. Consider Fig. 4. One
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Fig. 4. Basin bifurcation

starts with two saddle points that are not connected. This is a stable structure. Pro-
gressively, two separatrices become closer and closer until they meet: Both saddle
points are connected through a heteroclinic separatrix. Right after this moment, the
separatrix splits into two distinct separatrices which constitutes a swap, compared
to the initial configuration.

Homoclinic separatrices occur in so-called Periodic Blue Sky Bifurcations. Here
there are two different types of critical points involved: a saddle and an attracting
focus. Figure 5 shows the situation. As the attracting effect of the focus gets weaker
we see a homoclinic connection after some time where the saddle is connected to
itself. This results in a bifurcation: when this configuration breaks up again we
find a limit cycle which simply appears out of the blue. The reason for the occur-
rence of the closed streamline is that the attracting focus is totally unaffected by the
whole event. Since there is an outflow to the critical point inside and to the saddle
there must be a critical point or a closed streamline in this region according to the
Poincaré-Bendixson theorem. Because there are only two critical points a closed
streamline emerged.
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Fig. 5. Periodic Blue Sky in 2D bifurcation

4 Data Representation

The visualization of time dependent vector data has to deal with a higher dimen-
sional mathematical space where time is an additional dimension. This space must
be handled as a continuous one to permit the detection and depiction of fundamen-
tal features like bifurcations. In our 2D case, time is considered as third coordinate
axis and the whole data embedded in a 3D grid.

4.1 Grid Construction

Practically, we process a 2D vector field lying on a triangulation with constant
vertices over time. We place the several instantaneous states of the field parallel to
another (each of them is called fime plane in the following) with respect to their
position along the time line. A 3D grid evolves by connecting these planar grids
together with prism cells that link corresponding triangles as shown in Fig. 6. The
choice of this cell type is explained in the following.

Fig. 6. Prism cell



4.2 Interpolation Scheme

The input data are 2D vectors. Our task consists in interpolating a 2D vector field
over a 3D grid. We suppose a piecewise linear interpolation over each planar trian-
gulation associated with a time step. We introduce a piecewise linear time interpo-
lation. It is defined in each prism as follows. For a given prism cell lying between
t= tz and t = ti+1, let

fi(z,y) = &+ bz + Gy, j € {ii+1}

be the affine linear interpolants corresponding to the triangle faces lying in the
planes {t = ¢;} and {t = t;1} respectively. The vector value at a position (x, y, t)
is given by

fla,y,t) = a(t) + b(t)x + clt)y
where @(t) is linearly interpolated between d; and a;y, idem for b(t) and &(t).
Remark that this formula ensures, for each fixed value ¢ € [t;, t; 1], that ﬁ is affine
linear in x and y.

5 Feature Tracking

Now we track critical points and closed orbits over time, using the interpolation
scheme presented above. In particular, we seek the local bifurcations that may mod-
ify the topological structure: fold and Hopf bifurcations. To reduce the memory
needs of our method, we do not process the whole grid at once but only consider
two consecutive time planes and handle the prism cells connecting them, forming
a “time slice”. We first determine for each cell the possible entry and exit positions
of singular points and then reconnect these pieces of information to track every
singularity from one time plane to the next. Then we track possible closed orbits
along the sink or source paths from the Hopf bifurcations we found.

5.1 Cell-Wise Singularity Tracking

The interpolant has been chosen to contain at most one critical point for a fixed
value of ¢ in a cell. This is due to the affine linear nature of its restriction to any
time plane. Straightforward calculus leads to the following singularity coordinates
(x denotes the cross product of 2D vectors).



If ¢ moves from ¢; to ¢, the singularity position describes a 3D curve. Yet, we
are only interested in the curve sections that intersect the interior domain of the
considered prism cell. A simple way to determine them is to compute the position
of the singularities lying on the faces of the prism. We sort the (3D) positions found
in ascending time order. We associate them pairwise and identify for each pair an
entry and an exit position.

We next identify the singularity types to complete the topological information. The
generic types of stable singularities are source, sink or saddle. The transition from
one type to another is a bifurcation. From section 3 we consider two bifurcation
types: fold and Hopf bifurcation. Since a prism cell contains at most one criti-
cal point for a given ¢, no fold bifurcation can occur inside it: A fold bifurcation
must occur on the cell boundary. Consequently, we only seek Hopf bifurcations
occurring between two consecutive entry and exit points. More precisely, since the
determination of a singularity type is based upon the eigenvalues of the Jacobian
we compute them at each entry and exit point and check if they are the same. If
not, a Hopf bifurcation is on the way. Because a Hopf bifurcation corresponds to
a transition from a repelling to an attracting nature, the instantaneous nature of the
intermediate singularity is a center and the trace of the Jacobian is zero at this point,
which we use as criterion to determine the exact time location of the bifurcation. It
follows
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The corresponding position (z(t), y(t), t) is the location of a Hopf bifurcation.

5.2 Global Singularity Tracking

At this stage, every cell knows the successive entry and exit positions of the critical
point paths through its interior domain, as well as the possible presence of a Hopf
bifurcation on the way. Yet, this information is scattered and must be reconnected
to offer a global view of the topology evolution over time. A fundamental aspect
of this task is to find and identify the bifurcations that may take place on the faces.
They are detected during the reconnection of singularity paths lying in neighbor
cells as we show next.

The reconnection is done in a single time slice at once. Basically we want to track
any critical point located in the first time plane until it either reaches the next,
vanishes or transforms through a bifurcation. To explain the method we consider
the example shown in Fig. 7. We start with a sink in ¢;. The information collected
in the corresponding cell provides us with an exit position. This position is an entry
position for the neighboring prism. Now, the type of the singularity in this second
cell is not necessarily the same as in the first one by discontinuity of the Jacobian
in piecewise linear fields. Here, the sink has become a source. Consequently, the
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Fig. 7. Possible cases when leaving a prism cell through a rectangular face

current position is the location of a Hopf bifurcation. If we proceed in the same
way we will eventually reach a position on a face corresponding to a source in the
one cell and to a saddle in the other. Furthermore this position is an exit position
for both cells. This characterizes a pairwise annihilation since the saddle and the
source have merged and no critical point is present afterward. If we proceed with
the saddle point we have to track the singularity backwards (see arrows along the
paths). In our example, this leads to a position on a face that corresponds to a
saddle in the one cell and to a sink in the other. Here, the position is an entry on
both sides: We have found a pairwise creation. Further tracking in the same manner
leads eventually to an exit position lying either on the next time plane ¢;,; or on
the current one ¢;. If this is done for every critical point starting in ¢;, we track
singularities backward from ¢, ;.

In fact this simple example presents all possible cases in the context of our method
(obviously the fold and Hopf bifurcations encountered here can occur in any form,
e.g. pairwise annihilation of saddle and sink or Hopf bifurcation from source to
sink and Hopf bifurcations may be found in the interior of a prism, according to
what precedes). As a matter of fact, the piecewise linearity of the vector field at
any fixed time ¢ prohibits other configurations. In particular, critical points of same
type cannot be present in neighboring cells (this is a simple index property [11])
and therefore do not merge. Moreover, local consistency forbids the transformation
of a saddle in a sink (or source) and vice versa since the index of the corresponding
region must remain constant. Further details can be found in [13].



5.3 Closed Streamlines

After we tracked the singularity paths, we analyze the vector field in discrete time-
steps. Since there must be a critical point inside each closed streamline we use the
critical point path containing a Hopf bifurcation as a starting point for our stream-
line algorithm which detects the closed streamline if it exists. Therefore we follow
the critical point path in discrete steps in positive and negative directions starting at
the bifurcation. After we detect a closed streamline we have to check if it really sur-
rounds the critical point. This is necessary because the streamline may have run in
another closed streamline in a totally different region of the flow. Obviously, closed
streamlines surrounding the critical point occur only in one of the two temporal
directions. This process continues until the closed streamlines reach either another
bifurcation which breaks them up or the boundary of the grid.
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Fig. 8. Closed streamlines evolving over time.

Figure 8 shows on the left the result of this step, where we have found the closed
streamlines at various time steps. The closed streamlines are approximated by sev-
eral line segments. The Hopf bifurcation, where we started to detect the closed
streamlines, is marked with a yellow point. In this example the life cycle of the
closed streamline is started by a Hopf bifurcation and terminated by a Periodic
Blue Sky in 2D bifurcation. To visualize the evolution of closed streamlines, we
construct tubes from the various closed streamlines similar to the pictures by Abra-
ham and Shaw [2]. The result is shown in figure 8 on the right. The concatenation
of the singularity paths and the tubes built by the closed streamlines result in an
abstraction of the path of the singularity.

6 Structure Tracking

In the 2D steady case, separatrices are curves that emanate from saddle points. As
the saddle points move through the 2D/time grid, so do their corresponding sepa-
ratrices, describing separating surfaces. These surfaces are essential to understand
the structural evolution of unsteady vector fields. As a matter of fact, they deter-
mine the instantaneous global structure of the associated flow since they provide
the edges of the topological graph. Therefore the analysis of their behavior is re-
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quired to identify structural changes that affect the qualitative nature of complete
regions. From what precedes we know that such changes may correspond to global
bifurcations. They may also be caused by cycle bifurcations that were not detected
so far since we concentrated on the paths of critical points.

To compute and depict these surfaces, we can make use of the whole information
gained about the singular points in the tracking step. Practically, given a saddle
path, we save at its first position in time and for each of its four separatrices the
following information: Starting vector, associated direction (converging/diverging)
and reference of the singular path reached or last position obtained by numerical
integration and corresponding case: boundary (grid boundary reached) or cycle
(a closed streamline was detected by our algorithm). At the next position along the
saddle path, we associate every separatrix with one at the previous position by
taking its best approximation in terms of starting vector and direction. After that,
we check if both corresponding separatrices reach the same singular path, the same
cycle or close positions on the grid boundary. In this case, we add the new separatrix
to the surface spanned by the previous ones (we add a new “ribbon” to this surface).
Otherwise, we check if the path reached previously has ended at a bifurcation point.
In this case, we terminate the previous surface at the bifurcation by integrating a
separatrix from its exact time position and start a new one at the current separatrix.
If no local bifurcation has occurred but connectivity has changed, we face either a
global or a cycle bifurcation that could not be detected during singularity tracking:
We simply end the surface at the previous separatrix and start a new surface at the
current separatrix. Doing this for each discrete position along the saddle path, and
that for each saddle path, we are able eventually to depict all separating surfaces in
the domain.

7 Results

To test our method, we have created an analytic vector field containing four criti-
cal points, whose positions are functions of time, describing closed curves in the
plane. We have sampled this vector field on a rectilinear point set for several val-
ues of the time parameter. The rotation of the critical points entails many structural
changes for the topology, which is very interesting for our purpose since bifurca-
tions are present and may be observed with our method. We show first the results of
the singularity tracking step: The path of each critical point through time has been
tracked as well as all the local bifurcations taking place (indicated by small balls):
See Fig. 9. If one focuses on a particular bifurcation, one can observe how the sep-
aratrices evolve through the bifurcation point. In the case of a Hopf bifurcation for
instance, we consider the picture without separatrix surfaces drawn (see Fig. 10).
The creation of a closed orbit marked as a red tube can be easily seen. Fig. 11 shows
a Periodic Blue Sky in 2D bifurcation which is terminated by a saddle singularity.
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Fig. 9. Singularities’ path through time and associated bifurcations

Fig. 10. Hopf bifurcation

At last, as an illustration of the topological pictures our method can produce, Fig. 12
proposes an overview of the whole topology evolution in the same perspective as
in Fig. 9. The breaks that can be observed on the surfaces correspond to structural
transitions associated with bifurcations. The two colors used for the surface depic-
tion refer to the stable and unstable directions of the saddle points, respectively.
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Fig. 11. Periodic Blue Sky

8 Conclusion

We have presented a topology-based method for the visualization of time-dependent
planar vector fields. All constitutive features of the topological graph, i.e. critical
points, closed orbits and separatrices, are continuously tracked over time. The time
interpolation of the discrete planar data enables the precise detection of local bifur-
cations that result in dramatic structural changes. Thus, singularity paths and cycle
tubes are displayed as well as the bifurcations that affect them. These objects are
then connected in a three-dimensional grid by surfaces spanned by the separatrices
over time. This provides the complete structure of the visualized topology. This
technique offers a general framework for the visualization of parameter-dependent
planar vector fields.
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