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1 Introduction

The depiction of a time-dependent flow in a way that effectively supports
the structural analysis of its salient patterns is still a challenging problem
for flow visualization research. While a variety of powerful approaches have
been investigated for over a decade now, none of them so far has been able
to yield representations that effectively combine good visual quality and a
physical interpretation that is both intuitive and reliable. Yet, with the huge
amount of flow data generated by numerical computations of growing size
and complexity, scientists and engineers are faced with a daunting analysis
task in which the ability to identify, extract, and display the most meaningful
information contained in the data is becoming absolutely indispensable.

Arguably the major hurdle that hampers the effort of visualization re-
searchers in the post-processing of transient flows is the difficulty to identify
proper defining criteria for the coherency of the structures that these flows
exhibit. Eulerian approaches focus on the patterns exhibited by streamlines
at each instant of time and lend themselves to a topological classification of
the flow features. While this leads to visualization algorithms that are com-
putationally efficient and benefit from a strong theoretical framework, the
connection of the corresponding structures to the physics of the flow remains
unclear. The Lagrangian perspective on the other hand offers a more intuitive
account of the material advection induced by the flow but, except in very
specific cases, there is an ambiguity attached to the definition of meaning-
ful structures in that setting. For this reason, some visualization techniques,
most prominently texture-based approaches, have proposed a variety of ad
hoc combinations of Eulerian and Lagrangian perspectives in order to over-
come the challenge posed by the ambiguity of patterns that is both coherent
in space and time.

In this paper we leverage a concept called Finite-Time Lyapunov Exponent
(FTLE) that has its roots in dynamical systems theory and has been recently
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introduced in the fluid dynamics community to resolve this ambiguity. To
that end we propose to combine the visual effectiveness of texture-based rep-
resentations with the physically intuitive meaning of the coherent Lagrangian
structures characterized by FTLE. Our method leverages the performance of
the Graphics Processing Unit (GPU) to accelerate pre-computation of FTLE
and to create expressive animations of the flow that the user can interactively
adjust to fit the needs of his visual analysis. We present the application of
this approach to the visualization of three different transient flows obtained
through Direct Navier-Stokes simulations. While the use of a GPU implemen-
tation results in a significant speed-up of the FTLE computation, interactive
speeds are still out of reach. For this reason, and due to limitation of space,
we wish to concentrate on visualization aspects in the following and do not
discuss the technical details of a GPU implementation.

The paper is structured as follows. We first provide a brief introduction
to the notion of FTLE. We then discuss some related work in the fluid dy-
namics and the visualization literature. Section 4 describes and justifies the
visualization methods we use while section 5 shows the results obtained for
three Computational Fluid Dynamics (CFD) data sets. Finally, we conclude
our presentation with a discussion of the benefits and current limitations of
our method and we point out interesting avenues for future work.

2 The Finite-Time Lyapunov Exponent

The finite-time Lyapunov exponent (FTLE) is a geometric tool that can be
used to define and extract coherent structures in transient flows studied in a
Lagrangian framework. It has been the object of a growing interest in fluid
dynamics research over the last few years and has been successfully applied
to a variety of fluid dynamics problems. The Lyapunov exponent is in fact a
basic theoretical notion used in the analysis of dynamical systems where it
permits to characterize the rate of separation of infinitesimally close trajec-
tories. Its application to aperiodic time-dependent flows, however, has been
only recently proposed by Haller [6]. We introduce in the following the basic
concepts that are necessary to understand the steps involved in the FTLE
computation as we apply them in section 5. As such our presentation is vol-
untarily informal and we refer the interested reader to the publications listed
in section 3 for a more in-depth treatment of this rich subject.

We start by introducing some notations. We consider a time-dependent
two-dimensional vector field v defined over a finite Euclidean domain U ⊂ IR2

and a (typically finite) temporal domain I ⊂ IR. The position x of a particle
starting at position x0 at time t0 after advection along the resulting flow is
therefore a function x(t, t0,x0) satisfying x(t0, t0,x0) = x0, and
∂x
∂t

∣∣
t
= v(t,x). The basic idea behind the notion of FTLE is to define asymp-
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totically stable and unstable coherent structures in terms of loci of maximized
dispersion of closely seeded particles. Specifically, consider a fixed initial time
t0 and a fixed time interval τ , defining t = t0 + τ . A linearization of the lo-
cal variations of the map x(t, t0, .) around the seed position x0 is obtained
by considering its spatial gradient Jx(t, t0,x0) := ∇x0x(t, t0,x0) at x0. We
can now use this gradient to determine the dispersion after time τ of particle
seeded around x0 at time t0 as a function of the direction dt0 along which
we move away from x0 at t0: dt = Jx(t, t0,x0) dt0 . Maximizing the norm
|dt| over all possible unit vector directions dt0 corresponds to computing the
norm of Jx(t, t0,x0) according to the matrix norm ||A|| := max|x|=1 |Ax|.
This norm is known to be the square root of the maximal eigenvalue λmax
of the positive definite matrix AT A. Therefore maximizing the dispersion of
particles around x0 at t0 over the space of possible directions around x0 is

equivalent to computing
√

λmax(Jx(t, t0,x0)T
Jx(t, t0,x0)). This quantity is

directly related to the largest finite-time Lyapunov exponent Λ(t, t0,x0) =
log(λmax(Jx(t, t0,x0)T Jx(t, t0,x0))

1
2 (t−t0)).

Practically, this quantity can be evaluated for both forward and backward
advection. Large FTLE values for forward advection correspond to repelling
material lines while large FTLE values for backward advection correspond to
attracting material lines. Assuming that the set of seed points correspond to
the vertices of a grid (e.g. the computational grid), the map x(t, t0, .) can be
evaluated by numerical integration of pathlines along the flow and its spatial
gradient can then be computed with respect to the underlying seeding grid.
As noted in [6] the proper identification of attracting and repelling material
lines requires to extract ridges from the FTLE field. Ridges of a scalar field
α correspond to loci where ∇α is orthogonal to the minor eigenvector of
the Hessian matrix ∇2α, under the assumption that the corresponding minor
eigenvalue is negative [1]. Observe that the solution proposed in [12] based on
the integration of particles along the gradient field of FTLE constitutes in fact
an approximation of an actual ridge line computation that is prone to errors.
Moreover it has performed poorly in our test cases, due in part to the noise
inherently present in our estimates of the FTLE gradient. For these reasons
we chose to present in our results the values of FTLE without extracting the
corresponding ridges. We show in section 5 that a proper color map is able to
emphasize those ridges without explicit extraction of their geometry.

3 Previous Work

As we mentioned previously, Haller has pioneered the use of FTLE as a means
to characterize coherent Lagrangian structures in transient flows [6]. In his
seminal paper he presented this approach as a geometric one, in contrast
to another analytic criterion that he proposed simultaneously based on the
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notion of preservation of a certain stability type of the velocity gradient along
the path of a particle. This work followed previous papers by the same author
investigating similar criteria derived from the eigenvectors of the Jacobian
of the flow velocity along pathlines to determine the location of Lagrangian
coherent structures in the two-dimensional setting [3, 4].

This initial research has generated in the fluid dynamics community a
significant interest in FTLE and its applications to the structural analysis of
transient flows, both from a theoretical and from a practical viewpoint. Haller
proposed a study of the robustness of the coherent structures characterized by
FTLE under approximation errors in the velocity field [7]. In the same paper,
he suggests to identify attracting and repelling material lines with ridge lines
of the FTLE field. Shadden et al. provided a formal discussion of the theory
of FTLE and Lagrangian coherent structure [13]. One major contribution of
their paper was to offer an estimate of the flow across the ridge lines of FTLE
and to show that it is small and typically negligible. An extension of FTLE
to arbitrary dimensions is discussed in [10]. These tools have been applied
to the study of turbulent flows [5, 2, 12]. They were used in the analysis of
vortex ring flows [14]. These notions were also applied to a control problem [8].

On the visualization side of things, multiple approaches have been ex-
plored to permit the extraction and the effective depiction of the structures
exhibited by time-dependent flows. Topological methods have been applied
to transient flows in the Eulerian perspective [18, 16, 17]. Theisel et al. also
proposed a method to characterize the structure of pathlines by subdividing
the domain into sink, source, and saddle-like regions based on the divergence
of the restriction of the flow to a plane orthogonal to the pathline orientation
in space-time [17].

Additionally, texture-based representations have been considered to vi-
sualize time-dependent flows while offering an effective depiction of salient
structures, see [9] and references therein. Because of the intrinsic difficulty of
defining structures that are both coherent in space and time, each of these
methods resorts to some form of ad hoc way to combine the Eulerian and
Lagrangian perspectives, leading to animations for which a physical interpre-
tation is typically ambiguous.

In the present work we therefore propose to combine a texture-based rep-
resentation method called GPUFLIC that we introduced recently [11] with a
visual encoding of FTLE in order to emphasize meaningful patterns in a com-
mon flow visualization modality and to clarify their relationship with coherent
Lagrangian structures.
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4 Visualization of Coherent Structures

In this section, we show how a direct visualization of the FTLE field for a
given flow can be achieved. While the direct numerical computation of the
FTLE for a dense sampling of a given flow region with adequate resolution
is usually prohibitively expensive, we were able to reduce computation times
significantly be employing the computational power available through the use
of commodity graphics hardware (GPU). We will not give our method here,
due to space considerations, but will present it in forthcoming work. Instead,
we will focus on visualization of the results of this computation.

4.1 Direct FTLE Visualization

The earliest work on direct FTLE visualization was again done by Haller [6],
who used a dense color mapping to visualize basic FTLE structures that cov-
ers all primary colors. With this approach, Lagrangian coherent structures
appear as local maximizing lines of the FTLE field. However, his visualization
is unfortunate in the sense that maximizing lines are not intuitively identifi-
able with a single color. If weaker coherent structures exist, the may have a
different color than the stronger structures elsewhere in the field. Therefore,
this technique does not lend itself well to an intuitive understanding. One
possible remedy for this is a ridge extraction followed by the visualization of
these locally maximizing lines. However, these approaches are usually highly
sensitive to numerical issues, and can result in false positives. Moreover, co-
herent structures are presented in a skeletonized fashion, clearly describing
their existence but not the relative strength.

A second topic of importance is the temporal orientation of the FTLE com-
putation. Looking at the FTLE in forward time, it is essentially a measure
of the maximal stretching of pathlines, and is therefore a good candidate to
visualize coherent structures of a diverging nature. To achieve similar results
for converging structures, it is necessary to also look at the FTLE in back-
ward time, i.e. compute the measure of pathline convergence. In the following,
we will abbreviate these two different scalar measures FTLE+ and FTLE−

to indicate forward resp. backward temporal orientation. Again, naive color
mapping has difficulties of representing these two quantities for incompress-
ible flows, since they often show regions of saddle-type behavior where both
FTLE+ and FTLE− have a significant value together, simply because they
do not follow an exclusive-or relationship.

We therefore propose a two-dimensional color mapping scheme. First, we
normalize the FTLE fields over the space-time domain of the given dataset
to the unit interval, using the same normalization on both fields in order to
preserve the relative strength of coherent structures. Then, we apply the two-
dimensional colormap presented in Fig. 4, resulting in a visualization that rep-
resents converging structures in blue and diverging structures in red, encoding
the relative strength through saturation. Figure 1 provides an example. We
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will discuss how this enables an analysis of typical flow patterns from FTLE
visualizations in more detail in Section 5.

Although geometric context can be provided through explicit depiction
of domain boundaries and objects embedded in the flow, a more flow-centric
context is often needed to interpret FTLE visualizations in terms of flow
mechanics. In the next section, we will briefly discuss a simple yet intuitive
approach which, in combination with direct FTLE visualization, can provide
insightful visualizations.

4.2 GPUFLIC

GPUFLIC [11] is the texture-based flow visualization method that we use in
conjunction with FTLE to depict the evolution of salient structures in the
transient flows introduced in the next section. This method constitutes an
efficient implementation on the GPU of an algorithm proposed by Shen and
Kao called UFLIC [15]. The basic idea of this scheme consists in advecting
a dense set of particles that deposit the color attribute that they carry as
they traverse the space time domain. At each instant in time, each pixel of
the texture covering the domain averages the contributions made by all the
particles that crossed it during the last time step, which creates a frame of
the animation. Additionally, to maintain a good contrast as the animation
progresses, a high-pass filtering step is applied to each frame and combined
with an input noise to produce the color attributes assigned to a whole new
set of particles – one per pixel – that are injected into the flow at each time
step. Refer to [11] for a more detailed description of the algorithm.

4.3 In-context FTLE Visualization

To provide the necessary context for FTLE visualization, we propose a simple
combination of the FTLE and GPUFLIC flow visualizations. By multiplica-
tively weighting the color channels in the images generated by both methods
for the same domain (with the same integration parameters), we obtain more
expressive visualizations (see e.g. Fig. 1). This is essentially facilitated by the
dense nature of GPUFLIC in contrast to the sparse representation typically
obtained with FTLE in the presence of clearly defined structures. Where GPU-
FLIC expresses the basic Lagrangian information such as flow direction and
magnitude, FTLE complements this nicely with infomation about coherence
and convergence.

A slightly different visualization effect is achieved by encoding FTLE in-
formation into a single scalar field, based on the balance of convergence and
divergence of pathlines. Since, in the total absence of either, the flow is uni-
form, these properties can be augmented with an interpretation in terms of
forcing the flow into certain patterns: at a point of high divergence, the flow
is forced away from this point. The opposite is true for points of high conver-
gence. A good analogy is the gradient field of a scalar height field. Therefore,
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by encoding the balance between FTLE+ and FTLE− in a scalar field, we
draw on a natural physical understanding of height fields and their gradients.
Again, the resulting visualization is enhanced with the FTLE and GPUFLIC
results as texture. Fig. 6 demonstrates this.

Having discussed several possible techniques to apply the FTLE for direct
visualization of two-dimensional flow fields, we move on to specific datasets
and the visualization results obtained there using these methods.

5 Results

All specific visualization examples described in this section center on results
obtained from CFD datasets. They are adaptive-resolution, time-adaptive un-
steady direct numerical simulations of the incompressible Navier-Stokes equa-
tions. Three basic types of flow were chosen because each of them lends itself
well to illustrate different aspects of FTLE-based visualization. We only treat
the first dataset in detail and, due to space limitations, only present basic
results for the other two.

5.1 Kármán Vortex Street

The Kármán Vortex Street is one of the most widely known patterns in fluid
mechanics. It consists of a vortex street behind a cylinder and is a special
case of unsteady flow separation from bluff bodies embedded in the flow. It is
quite well understood and therefore an ideal test case for many applications.

Figure 1 illustrates the basic modes of direct unsteady flow visualization
presented in this work. The top image shows only the direct FTLE color map.
It identifies the separation structures behind the cylinder (red) that separate
the region of vortex genesis directly behind the cylinder from the surround-
ing flow. The curved attachment structures (blue) visualize the convergence
of material at the vortices. As the flow moves away from the cylinder, these
structures are essentially advected and grow weaker. We observe that for a
ridge-line type visualization (without encoding of feature strength), the weak-
ening of structures would not be observable. The combination of FTLE and
GPUFLIC (bottom image of Fig. 1) allows for a visual identification of indi-
vidual vortical structures. Since they are necessarily counterrotating, FTLE
depcits the boundaries as line-type divergent regions. GPUFLIC alone does
not achieve an identification of structures except close to the cylinder (middle
image) and is only comprehensible if enhanced by FTLE visualization (Fig. 6).

We further employ this well-understood example to study some of the
properties of the Finite-Time Lyapunov Exponent. Figure 5 shows the effect
of different integration lengths on the FTLE computation. As a general rule,
coherent structures become more pronounced with increasing integration time,
as pointed out in [12]. On the other hand, long integration (in comparison to
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Fig. 1. Comparison: Direct FTLE visualization (top), UFLIC (middle), a combi-
nation of both (bottom).

the reference time, in other words the natural time scale of the problem) may
yield coherent structures that are not actually meaningful for short-term flow
evolution, see [7]. We conclude from this that the reference time, which can
be interpreted as a measure for the rate of change of the flow field, seems like
a good choice for the integration length.

A related topic is the application of FTLE visualization to stationary flow
fields. If the integration length is (theoretically) increased to infinity in such
fields, the local maximum lines of the resulting coherent structures should
conincide with the topological graph of the flow field. Figure 2 illustrates the
resulting features (top image) in comparison to the unsteady results (bottom
image). Behind the cylinder, the structures are very topological in nature,
i.e. the are attracting and repelling material lines intersecting at saddle-like
points. However, the vortical characterization is lost as the flow is advected
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Fig. 2. Comparison: Direct FTLE visualization, steady case (top), unsteady case
(bottom).

(topology is not Galilean invariant), and the flow pattern is unclear. Over-
all, these results suggest that FTLE-type analysis is a possible adaptation of
topological methods to unsteady flows.

5.2 Heated Cylinder Flow

This example was computed using the classical Boussinesq approximation to
simulate the flow generated by a heated cylinder. This approaximation adds a
source term proportional to the temperature (modeled as a diffusive material
property) to the vertical component of the velocity field. The cylinder serves
as a temperature source and thereby generates a plume of upward flowing
material. As the plume moves upward, its outer layers exchange heat with
the surrounding flow, resulting in inhomogeneous friction and hence turbu-
lent flow. Figure 7 shows four timesteps of the resulting visualization using
the proposed methods. The interpretation here is more difficult than for the
previous dataset since there is more structure on smaller scales, and hence
more detail. Quite evident, however, is the clear separation of plume-related
flow from the overall surrounding flow.

5.3 Rayleigh-Taylor instability

The term “Rayleigh-Taylor instability” essentially refers to the interactions
of two fluids of different density. In this example, we have chosen an initial
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Fig. 3. Direct FTLE visualization for the Rayleigh-Taylor instability, context is
provided by the boundary between the two fluids.

configuration in which a denser fluid rests on top of a lighter fluid. As the
simulation progresses, the upper fluid is draw downwards by gravity, resulting
in the typical (inverse) mushroom structure. This flow differs from the already
presented examples in several respects.

First, the time resolution is limited by the appearance of small-scale struc-
tures at the material interface whose temporal evolution must be correctly re-
solved. The resulting GPUFLIC visualization is unsatisfying due to the strong
variation of scales that makes it difficult to choose an integration time that
will equally accentuate all relevant structures. Therefore, to provide context
to the FTLE visualization, we have added the material interface to the result-
ing images (Figure 3, black lines). This provides enough orientation to make
results comprehensible.

The second difference to the previous examples is the relative weakness
and large extent of coherent structures. While one would expect the material
interface to show up clearly in the FTLE images, this is not the case. Enlarging
the integration time to provide for more coherent structures is ruled out by the
range of the simulation, since clearly it is not possible to integrate pathlines
past the end of the simulation. We conclude that this flow contains only few
long-term coherent structures and is mainly driven by small-scale motion. In
comparison to the previous examples, FTLE values are an order of magnitude
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smaller, which is obscured in visualization by the normalization we apply (see
4).

6 Discussion

In this paper, we have empirically studied the Finite Time Lyapunov Exponent
and its applications in the visualization of time-dependent planar flows. We
have shown how the visualization can be greatly enhanced by an explicit choice
of color mapping and a combination with the GPUFLIC technique. Further-
more, we have taken first steps to examine various aspects of the FTLE such
as dependence on integration time and application to steady flows. These as-
pects were illustrated on three typical examples of unsteady, two-dimensional
flows.

Future work seems promising and manifold: While we were able to produce
good visualization results for the test cases, we would like to study applica-
tion examples, where the FTLE can possibly help in solving some of the more
difficult problems in flow analysis, like the extraction of separation and at-
tachment lines on curve surfaces. As a general theme, a generalization of the
presented concepts and algorithms to higher dimensions seems necessary to
study unsteady volume flows.
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Fig. 4. Colormap.

Fig. 5. Comparison: Direct FTLE visualization, different integration times. 0.25
(top), 0.5 (middle), 0.75 (bottom).
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Fig. 6. Height field visualization of FTLE with UFLIC texture and FTLE color
coding.

Fig. 7. Comparison: Direct FTLE visualization (middle), UFLIC (top), a combi-
nation of both (bottom).


