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Abstract. Topological analysis of 3D tensor fields starts with the identification
of degeneracies in the tensor field. In this paper, we present a new, intuitive and
numerically stable method for finding degenerate tensors in symmetric second order
3D tensors. This method is formulated based on a description of a tensor having
an isotropic spherical component and a linear or planar component. As such, we
refer to this formulation as the geometric approach. In this paper, we also show
that the stable degenerate features in 3D tensor fields form lines. On the other
hand, degenerate features that form points, surfaces or volumes are not stable and
either disappear or turn into lines when noise is introduced into the system. These
topological feature lines provide a compact representation of the 3D tensor field and
are essential in helping scientists and engineers understand their complex nature.

1 Introduction

Tensor fields, especially second-order tensor fields, are useful in many medical,
mechanical and physical applications such as: fluid dynamics, meteorology,
molecular dynamics, biology, astrophysics, mechanics, material science and
earth science. Effective tensor visualization methods can enhance research in
a wide variety of fields. However, developing an effective algorithm can be
difficult because of the large amount of information contained in 3D tensor
fields: there are nine independent components in each tensor and six for a
symmetric tensor. Users in many research fields are especially interested in
real symmetric tensors. In some applications, the data themselves are in-
herently symmetric. In other cases, symmetric tensor data can be obtained
through various decomposition techniques.

The main motivation and goal of this paper is to develop a simple yet
powerful representation of 3D real symmetric tensor fields. Topology-based
methods prove to yield simplified and effective depictions in many visualiza-
tion fields. These methods consist of two general steps: identifying the critical
features, and generating separatrices. Together, they divide the data space
into small regions, where the hyperstreamlines form similar patterns within
each one. The topological structures are simple for users to understand the
underlying data fields yet sensitive enough to capture important features. In
most cases, trained users can even reconstruct the data fields by looking at
the topological structures. The topological structures are also a launching
point for further analyses of the tensor field. For example, it forms a basis for
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seeding hyperstreamlines [7], and finding separating surfaces that partitions
the data in regions with similar properties.
Early work on using topology-based method to visualize tensor fields by

[1,2] lays an important background for this research project. It defines the
tensor topology based on degenerate features and discusses its nature for
the 2D case in great detail, and provides useful knowledge for the 3D case.
But we find this early work insufficient in studying 3D tensor topology. Not
only is the dimensionality of the features unknown, but how to numerically
extract the topological structures is also obscure. In their previous work,
Hesselink et al. mentioned that the dimension of the degenerate features
can be points, lines, surfaces or subvolumes. This claim itself is essentially
true, but it does not point out the dimension of features in a typical non-
degenerate 3D tensor. By analogy, although the critical features in 3D vector
fields can be lines, surfaces or even subvolumes, we know they are mostly
isolated points in a typical non-degenerate vector field. This knowledge is the
foundation for the study of topological structure in vector visualization. All
the subsequent study on separatrices and other topological features are based
on the extraction of the critical points. On the other hand, no topological
results on 3D real symmetric tensor fields been published to date indicating
that topological tensor features form lines.
Our recent research [9] indicates that the degenerate features in 3D tensor

fields form feature lines that are stable even in the presence of noise. In the
next section, we discuss the dimensionality of features in 3D tensor fields.
Then, we quickly review the traditional method of finding degenerate fea-
tures in 3D tensors fields based on discriminants, followed by the constraint

function approach presented in [9]. Both of these methods are considered im-
plicit functional approaches. This is followed by a presentation of our new
method based on the geometric interpretation of a tensor.

2 Dimensionality of Degenerate Features

Similar to the 2D case described in the previous chapter [8], a 3D real sym-
metric tensor can be decomposed into three orthogonal eigenvectors, each
of which has a real eigenvalue associated with it. They are labeled as ma-
jor, medium and minor eigenvectors according to the relative order of their
eigenvalues. A degenerate tensor is obtained when two or more of the eigen-
values are equal. The corresponding position in the tensor field is called a
degenerate point. It follows that degenerate points are the only places where
hyperstreamlines can cross each other. As mentioned in introduction, the pur-
pose of a topological analysis is to divide the data space into regions where
hyperstreamlines show a similar pattern. Therefore the collection of these de-
generate points constitutes the topological features of interest. Although the
experience in flow visualization shows that a visualization restricted to topol-
ogy alone may be incomplete and ignore essential features like vortex core
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lines, this analysis remains an important step toward better understanding
of the complicated nature of 3D tensor data.

Before we can extract these topological features from 3D tensor fields,
we need to know their dimension. Algorithms to locate points, lines, surfaces
and volumes employ very different strategies. During our earlier work [9] we
discovered that for most non-degenerate 3D tensors, the dimensionality of
the critical feature is one, i.e. the collection of degenerate points form feature
lines. This conclusion can be shown using an early theorem by von Neumann
and Wigner which states that the real symmetric degenerate matrices form
a variety of codimension two [5]. Codimension is defined as the difference
between the dimension of a space and the dimension of a subspace contained
in it. 3D real symmetric tensors have six independent components. Therefore
they form a tensor space of dimension six. A double degenerate tensor where
two eigenvalues are equal can be uniquely specified using four parameters. In
other words, double degenerate tensors form a subspace A of dimension four
in 6D tensor space. In a typical non-degenerate setting, tensor fields defined
in a 3D space usually form a subspace B of dimension three in the same 6D
tensor space. The degenerate tensors are then the intersection of these two
subspaces. It can be shown by transversality that these dimensions satisfy
the following formula: codim(A ∩ B) = codim(A) + codim(B), which yields
codim(A∩B) = 2+3 = 5, that is this intersection usually has a dimension one,
i.e. forms lines. From the same line of reasoning, we known that degenerate
tensors are isolated points in most cases if the data is specified in a 2D space.
Since most numerical algorithms are designed to capture points, the basic
block of our feature extraction algorithm is to locate 3D degenerate tensors
on a 2D patch and then to connect them into lines afterwards.

While the main features are lines, it is still possible to obtain features
that are points, surfaces or subvolumes. Features that form points, surfaces or
subvolumes are less common in most 3D tensor fields and are usually induced
by symmetry constraints. Such features are considered unstable and do not
persist under perturbation. For example, a triple degenerate point where
three eigenvalues are equal can be uniquely specified using one parameter
(scaling of an identity matrix). In this case, previous computation yields a
codimension 5 + 3 = 8 > 6, which results in an unstable feature. Hence we
focus our tensor feature extraction on feature lines rather than surfaces or
subvolumes. We still need to extract points as these form the basis for the
feature lines. Because of this design criterion, features that are surfaces (e.g.
in the single point load data) or subvolumes may not be detected as readily
as feature lines. This limitation is not insurmountable, but is rather based
on the effective use of limited resources in finding features that are not as
common nor as stable.
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3 Implicit Function Approach

The first family of methods to analyze degenerate tensors is through implicit
functions. In this family, a tensors is degenerate if and only if its value makes
an implicit function equal zero. Here we introduce two formulations: dis-

criminant and constraint function. Note that since degenerate tensors form
a variety of codimension two, an ideal formulation of the implicit constraint
defining degenerate tensors should have two implicit functions. But neither
of the two formula shown below has this property.

3.1 Discriminants

Hesselink et al. show that the only degenerate features are those having at
least two equal eigenvalues [2]. Fortunately, we do not need to conduct the
eigen decomposition to find the degenerate points. A tensor has two (or three)
equal eigenvalues if and only if its discriminant equals zero. The discriminant
D3 of a tensor T with eigenvalues λ1, λ2 and λ3 is defined as,

T =
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D3(T ) = (λ1 − λ2)
2(λ2 − λ3)
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This can be reformulated into a form that does not require eigen decomposi-
tion to determine eigenvalues as follows:
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D3(T ) = Q2P 2 − 4RP 3 − 4Q3 + 18PQR− 27R2 (6)

From Equation 2, we can easily find that a discriminant is (a) always
non-negative; (b) equal to zero if and only if at least two of the eigenvalues
are equal. And it is ideal for computation and numerical purposes because
although it is defined on eigenvalues, we do not really need to carry out an
expensive eigen decomposition. Instead, we only need to compute Equation 6
which is a polynomial of order six to get the discriminant.
An interesting geometric mapping of the three real eigenvalues is the Car-

dano circle or the eigenwheel. This is illustrated in Figure 1 where the three
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roots are the x-intercepts of the three axes that are 120 degrees apart. Note
that the roots λ1, λ2 and λ3 are increasing from left to right. The angle of the
axes associated with the largest eigenvalue and the positive X axis is labeled
as α. It is obvious that a double degeneracy occurs when α = 0 resulting
in λ1 = λ2, and α = 180 resulting in λ2 = λ3. We refer to the first type
of double degeneracy as Type B, and the second type of double degeneracy
as Type A. A triple degenerate point occurs when all three eigenvalues are
equal and zero, and the radius of the circle also reduces to zero. A very rare
event indeed.

α
λ 1 λ 2 λ 3

(a)

λ 1 λ 2 λ 3

(b)

λ 1 λ 2 λ 3

(c)

Fig. 1. Cardano’s circle. (a) Relative positions of eigenvalues along the x-axis,
(b) type B double degenerate point where the minor and medium eigenvalues are
equal, and (c) type A double degenerate point where the medium and the major
eigenvalues are equal.

3.2 Constraint Functions

In [9], an alternative formulation of degenerate points leading to a more stable
numerical solution was presented. We briefly highlight the results here.
Although Equation 6 provides an elegant representation for evaluating

the discriminant without having to perform eigen decomposition, it is dif-
ficult to solve. In Equation 6, the discriminant of a real symmetric tensor
is a polynomial of order six. Since it is always non-negative, the degenerate
tensor also happens to be its minimum. Rather than using a minimization
approach to find the degenerate tensors, the numerical analysis community
recommends a root-finding strategy such as conjugate gradient for better nu-
merical stability. A good method widely used to find the root of an equation
is to detect the change of signs and then to recursively bisect the domain
of interest. But because the degenerate feature is itself a minimum, there is
no change of sign at all. Relying on the gradients is also dangerous, because
the gradients are notoriously unstable unless they are very close to the fea-
ture. Due to this high-orderedness and singularity, directly finding the root
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of a cubic discriminant stably is very difficult. Instead, we look for another
representation of the discriminant.
In our previous investigation, we found that while Hilbert [3] pointed out

that not all non-negative polynomials can be broken down into the sum of
squares of polynomials, the cubic discriminant can be written as the sum
of the squares of seven polynomials. We also learned that not only can the
discriminant of a second-order tensor of any dimension be expressed as the
sum of squares [4], but our solution to the 3D case of seven equations is opti-
mal [6]. Therefore, the definition of degenerate tensors can also be expressed
as the tensors where the seven constraint functions are all zero at the same
time. We use these seven cubic equations to extract the feature lines from 3D
tensor fields. The seven discriminant constraints are:
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2 (7)

A tensor is degenerate if and only if all of its seven constraint functions
are zero. This is the condition that we employ to extract the critical features
in 3D tensor fields. Its first advantage is that the constraint functions are
only cubic polynomials, instead of a polynomial of order of six which tend to
oscillate more. This property leads to a more stable and accurate numerical
algorithm. In addition, the requirement that all seven constraint functions
be zero at the same time depends on the tensor value only and not on the
gradient calculated from adjacent tensors. Hence, the algorithm yields a more
accurate result than the algorithms that rely on finding critical points where
the gradients of the discriminants are zeros. Its second advantage is that the
constraint functions can be both positive or negative, as opposed to always
being non-negative. This property allows us to perform a fast and inexpensive
check for the existence of features. And finally, the reformulation also does
not require eigen decomposition.
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(a) Two degenerate points (b) Three degenerate points

Fig. 2. White dots are degenerate points indicating places where all seven con-
straint functions are zero. Each colored curve corresponds to a constraint function
being equal to zero. Places where multiple curves intersect are where multiple con-
straint functions are satisfied simultaneously. The background is pseudo-colored by
the discriminant functions. The data is a 2D slice of a randomly generated 3D
tensor field.

To find these degenerate points, we employ an iterative root finding
method that satisfies all seven constraints simultaneously. Assume the tensor
field at location X is T (X). For the feature points X∗, we have

−−→
CF (X∗) =

CFi(X
∗) = 0, for i = 1, ..., 7, where

−−→
CF (X) is an assembly of the seven con-

straint functions into one vector function. Using the Newton-Raphson method
and an initial guess of Xn, we have the following conceptual algorithm,
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(8)

Note that we calculate the ∂
−−→
CF
∂X

from the chain rule using ∂
−−→
CF
∂T

and ∂T
∂X

rather than from the interpolated values of
−−→
CF on the grid using finite differ-

ence methods for higher precision. ∂
−−→
CF
∂T

is calculated from the formula of the

tensor constraints, and ∂T
∂X

is from the interpolated tensor values. We used
both the bilinear and bicubic natural spline interpolations.

However, Equation 8 does not work because on a cell face, X is only 2D

while
−−→
CF is 7D. Thus, ∂

−−→
CF
∂X

is a 7×2 matrix. There are a number of ways to
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deal with such a system. In our case, we find that the least square estimator
involving the transpose of the matrix works quite well.
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This new hybrid algorithm minimizes the square error terms among the
seven constraints. Using the center of each cell as the initial guess for an
intersection point, we find that this method converges to the actual intersec-
tion point within five iterations in most non-degenerate cases with precisions
up to 10−9, and it almost never misses a feature point if it exists. Additional
points are obtained by subdividing the cell face. This Newton-Raphson based
method on constraint functions is superior in speed, accuracy and precision
compared to other methods developed directly based on the cubic discrimi-
nants. For example, we also implemented a comparison algorithm based on
cubic discriminant that searched for its minimum using conjugate gradient
methods. Not only is it about 50 times slower, using any precision less than
10−6 will yield a false negative rate of over 50%.

4 Geometric Approach

Since we want to extract the degenerate tensors in a root-finding framework,
it is desirable to have a system of equations with an equal number of equations
as there are unknowns. However, neither the discriminant nor the constraint
functions satisfy this condition. An equation based on discriminant is under-
specified since there is only one equation but with two unknowns. An equation
based on constraint functions is over-specified because there are seven equa-
tions with two unknowns. The formulation on constraint functions is better
than its discriminant counterpart numerically because an over-specified sys-
tem is easier to solve using the modified Newton-Raphson algorithm and
achieves high convergence rates and precision. In this section, we present an-
other extraction algorithm based on the geometric properties of 3D tensors
that meets the desired criterion of a well defined system.

Theorem 1. A tensor T is degenerate if and only if it can be written as the

sum of a spherical tensor and a linear tensor (see Figure 3).

The sufficiency of this theorem is easy to prove. To show its necessity, we
simply subtract the duplicate eigenvalues from the diagonal components of
the tensor. It is easy to show that the remaining tensor has two duplicate
zero eigenvalues. In other words, the rank of the remaining tensor is at most
rank one, i.e., linear. Depending on the sign of the other eigenvalue, a linear
real symmetric tensor can always be written as the product of a vector, its
transpose and an extra sign. This gives us a simple way to write a degenerate
tensor,
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Fig. 3. Relationship between s and V and the degenerate tensor glyph.

T = sI ± V · V T (10)

where s is a scalar, I is a 3 × 3 identity matrix and V is a 3 × 1 vector.
An advantage of this formula is that it can distinguish between type A and
type B double degenerate points: T is type A with equal major and medium
eigenvalues if the minus sign holds; and T is type B with equal minor and
medium eigenvalues if the plus sign holds. In applications where the users are
only interested in the major hyperstreamline topology, users only need to keep
the minus sign, since the major hyperstreamlines are only degenerate at type
A features. The three eigenvalues are: λ1 = λ2 = s, and λ3 = s± ‖V ‖2. One
of the eigenvectors is e3 = V/‖V ‖ and the other two eigenvectors are any two
orthogonal vectors that are also perpendicular to e3. Besides its simplicity,
this equation also clearly states that all 3D degenerate tensors form a four-
parameter family. A typical and non-degenerate 3D real symmetric tensor on
a 2D patch parameterized by (x, y) is,

T (x, y) = sI ± V · V T (11)

Since there are six independent components in real symmetric tensors,
this system of equations has six equations and six unknowns. Therefore we
expect that it has stable and isolated solutions. If we assume that the tensor
patch is obtained through bilinear interpolation, each equation is quadratic.
It is another intuitive and geometric explanation that 3D degenerate tensors
are stable on 2D tensor patch and form lines in 3D tensor field. To solve it,
we can employ any standard numerical methods to solve an equally-specified
system of equations such as Newton-Raphson algorithm and its variants.
For the initial guess in the Newton-Raphson method, we use the center

of the patch, (x0, y0), in place of the position parameters (x, y). Suppose the
tensor at (x0, y0) is T0 and suppose that its eigenvalues are (λ1 ≤ λ2 ≤ λ3)
and its normalized eigenvectors are (e1, e2, e3), respectively. Without loss of
generality, we also assume that we are extracting type A degenerate features.
The algorithm for extracting type B degenerate features is similar in form.
To obtain the initial estimates of the other four parameters (s, V ), we use
the following heuristic,
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s0 =
λ2 + λ3

2
(12)

V0 =
√

s0 − λ1 · e1 (13)

Using s0 and V0 for the initial guess, we iteratively update the six pa-
rameters using the Newton-Raphson method until the solution converges.
Since each equation is a simple quadratic equation, taking derivatives is triv-
ial. When the algorithm converges, not only do we have the location of the
degenerate feature, but we also get the eigenvalues and eigenvectors of the
tensor values at that point from s and V . Besides its simplicity, the disad-
vantage of this algorithm is also obvious – we need to invert a 6 × 6 matrix
during each iteration of the Newton-Raphson algorithm. A less obvious dis-
advantage is that in our experiments, this algorithm shows worse numerical
stability than the algorithms built on the constraint functions in situations
when the features are very close to triple degeneracy.
A useful form of 3D tensor is the deviator. It is simply a 3D tensor whose

trace is zero, which implies that the sum of the eigenvalues is also zero.
We can obtain the deviator part of any 3D tensor T by subtracting one
third of its trace from its three diagonal components. Since this is a linear
operation, the zero-trace property is preserved on a discrete grid using tri-
linear interpolation.
One variation of the basic geometric algorithm is to consider only the devi-

ator field of the original tensors. For the case of extracting type A degenerate
features, it is easy to get,

s =
V 2

x + V 2
y + V 2

z

3
(14)

Substituting this term back into Equation 11 and throwing away any re-
dundant diagonal equation, we get a system with five equations and five
unknowns. In our experiments, we found that this variation is almost equiva-
lent to the original algorithm in terms of numerical stability and convergence
speed.

5 Topological Feature Lines

Now that we have obtained the degenerate points using one of the methods
described in the two previous sections, the next step is to form the topological
feature lines. The general idea is to connect the degenerate points on cell faces
with those at neighboring cell faces. However, as we can clearly see in Figure
2, some cells may have more than one degenerate point, and hence more than
one feature line going though them. We therefore use a multi-pass approach
to connect these degenerate points. The procedure proceeds by examining
only those candidate cells that contain degenerate points (i.e. intersection
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points of feature lines with the face) on at least one of their six faces. In
the first pass, all candidate cells containing exactly two intersection points
are processed by: (a) simply connecting those two points, (b) recording the
orientation of the line segment as tangents at the end points, and (c) marking
the cell as processed. In the subsequent passes, their unprocessed neighboring
candidate cells are processed by connecting a line segment between each
pair of intersection points in such a way as to minimize the angle deviation
between the tangent recorded at the end point and the line towards other
intersection points within the cell. Each neighboring candidate cell is marked
as processed, and the procedure continues until there are no more candidate
cells.
In our current implementation, we use this iterative method to generate

the tangent lines on topological feature points and ultimately resolve the line
connections between multiple points. In the future, we plan to calculate the
tangent of the degenerate tensor line at a specific feature point analytically
instead of this post-processing method.

6 Results

We experimented with four data sets to test out our degenerate tensor ex-
traction algorithm using the geometric approach. In the experiments, we use
a pre-filtering algorithm that is similar to the one used in [9]. The first is
a 2D rectangular patch with symmetric 3D tensors at the four corners that
have been set randomly (see Figure 2). The tensor values within the patch
are obtained through linear interpolation. This synthetic data corresponds
to tensors on a face of a 3D cell. The second is a 3D cell with symmetric
3D tensors on its eight corners which are also set randomly (see Figure 4).
It is sampled into a higher resolution for smoother features lines. The third
is the stress tensor data in a semi-infinite volume with two point loads (see
Figure 5). The fourth is the deformation tensors in the computed flow past
a cylinder with hemispherical cap (see Figure 6). From Figures 4 to 5, the
colors of the volumes are mapped to the tensor discriminant (Equation 6)
with blue mapped with lower transparency to zero and warmer colors with
higher transparency mapped to higher values. Degenerate tensors can be
found in the blue regions. Additional digital images can be accessed online
at: www.cse.ucsc.edu/research/avis/tensortopo.html.
Figure 4 shows degenerate tensors in a 3D cell form feature lines (rendered

as tubes). Note that the feature lines are not hyperstreamlines, rather they
are where the major and medium, or the medium and minor, or all three
hyperstreamlines intersect each other. Only the faint green is visible in the
vicinity of the tubes because the tubes are in the blue regions. The color of
the tubes are such that type A points with very different minor value are
mapped to warmer colors, and type B points with very different major value
are mapped to cooler colors. The milder colors are where the other eigenvalue
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is not as different as the degenerate pair. We see that complex feature lines
can form even from a simple linearly interpolated random tensor field.

(a) First set (b) Second set

Fig. 4. Randomly generated 3D tensors. Warmer line colors are closer to type A de-
generate points where major and medium hyperstreamlines intersect, while cooler
line colors are closer to type B degenerate points where medium and minor hyper-
streamlines intersect. The rest of the volume is pseudo-colored by the discriminant
using cool colors for low discriminant values (closer to feature lines) and warm
transparent colors for distant values.

Figure 5 shows the double point load stress tensors. The yellow arrows
indicate the two point loads, and the two magenta spheres are the triple
degenerate points. We can see the line of double degeneracy connecting these
two stress-free points as alluded to in [2]. Other very interesting feature lines
are also extracted. The first is a vertical loop that lies directly under the
double degenerate feature line connecting the two triple degenerate points.
This feature is not present in the single point load data. This loop feature
is also stable in the sense that it persists even as the relative magnitudes of
the two point loads are varied. The second is how the blue feature line below
each of the point load bifurcate and then reconnect. These two structures
and the vertical loop are connected together by a type A feature line running
between the two point loads. Looking from the top view in (b), we see another
interesting feature which is the circular feature line that connects the two
point loads and the two triple degenerate points. It is worth noting that
the stress tensor is dominated by only one single load in the vicinity of the
load point, so it is locally similar to the single point load stress tensor where
the degenerate tensor form a surface symmetrically spreading away from the
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load point. Since our algorithm is designed for extracting features lines, it
produces artifacts when the features form a surface or subvolume.

(a) Oblique view (b) Top view

Fig. 5. Double point load data. Yellow arrows indicate point load, while the 2
magenta spheres show the location of the triple degenerate points. Color scheme is
the same as Figure 4.

Figure 6 shows degenerate lines in the deformation tensors of the com-
puted flow past a cylinder with a hemispherical cap. Only a portion of the
data close to the cap is shown because most of the interesting features are
found there. First, we see a curved line on the cap shown by the black ar-
row. It matches some of the patterns of the velocity topology from the same
data set. There are more features at the upper half of the data because the
flow there is more turbulent. Figure 6(a) is from an oblique view. Most of
the features are close to the geometry of the object except a complicated
branch structure which extends away from the geometry. It contains a small
cyan horn shape pointed by the pink arrow, two green ring shapes, and a
bifurcating structure. Figure 6(b) is from a top view. We also see a strong
type B (blue) bulb shape structure that extends to the end of the cylinder.
Near the cap, it intertwines with a strong type A (red) heart shape struc-
ture. This phenomenon is interesting in that although these two structures
are very close, they do not cross each other. It also means the tensors are
quite turbulent in this area, because large variations are happening in very
close proximity.

The time statistics for the different data sets are summarized in Table 6.
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(a) Oblique View (b) Top View

Fig. 6. Degenerate lines in deformation tensors of flow past a cylinder with a hemi-
spherical cap. Feature lines are colored as in Figure 4.

Data Set Time

2D Random Patch (1× 1) 0.05 (millisec)

3D Random Cell (32× 32× 32) 0.9 (sec)

Double Point Load (64× 64× 64) 4.2 (sec)

Hemisphere (72× 110× 84) 23 (sec)

Table 1. Time to extract degenerate tensors in different datasets

7 Open Problems

There are many open problems that need to be investigated. We highlight a
few of them here.
First, since all the algorithms are built on extracting lines, they have problems
dealing with features that form surfaces and volumes. Finding the separatrices
of these features would also need to be addressed.
Second, in our numerical algorithms, we define the degenerate tensors as
points with two equal eigenvalues without considering the eigenvectors. But
we are originally interested in these points because they are where hyper-
streamlines can cross each other, and hyperstreamlines are defined on eigen-
vectors. Therefore, a proper definition or an extraction algorithm based on
both eigenvalues and eigenvectors could provide more insight into this prob-
lem.
At each point along the degenerate lines, we can project the 3D tensors
onto a 2D plane perpendicular to the eigenvector with distinct eigenvalue [7].
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The projected 2D tensors also show a degenerate pattern. One can extract
the separatrix of the 3D tensor field by calculating the separatrices of the
projected 2D tensors at each point and connecting them together. With the
3D degenerate tensors and their separatrix surfaces, we will have a complete
topological structure of 3D tensor fields.
Simplification and tracking of the topological structure proved to be useful
for 2D tensor fields [8]. In 3D, they are more difficult since the degenerate
features become lines instead of points.
Finally these techniques should be extended to other application domains
such as diffusion tensor MRI data described in other chapters of this book.
While the main attribute of interest is usually the path of the fibers, highly
linear fibers are where we would likely find feature lines. Hence, it is possible
that topological visualization of DT-MRI data would also be beneficial. For
this approach to be of real practical interest, the issue of topological artifacts
induced by noisy data must be addressed as well.
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