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Abstract. We introduce the underlying theory behind degenerate points in 2D
tensor fields to study the local flow characteristics in the vicinity of linear and non-
linear singularities. The structural stability of these features and their correspond-
ing separatrices are also analyzed. From here, we highlight the main techniques for
visualizing and simplifying the topology of both static and time-varying 2D tensor
fields.

1 Fundamental notions of two-dimensional tensor field

topology

1.1 Basic definitions

Eigenvector fields. We consider symmetric, second-order two-dimensional,
real tensor fields that we term tensor fields hereafter. The tensor values of
such fields correspond to symmetric, linear transformations that map vectors
to vectors in the plane. When considered in a Cartesian coordinate system,
tensor fields can be represented by matrix-valued functions mapping points
to 2×2 symmetric matrices. Tensor fields are fully characterized by their real
eigenvalues and orthogonal eigenvectors. Hence the basic idea behind tensor
field topology is to analyze the qualitative properties of a tensor field through
the structure of its associated fields of eigenvectors. To formalize the notion
of tensor topology, one needs a systematic way to associate a tensor field with
the classified pair of corresponding eigenvector fields. This is done by sorting
the eigenvectors according to the real eigenvalues.

Definition 1. Let λ1 ≥ λ2 be the two real eigenvalues of the tensor field T,
i.e. λ1 and λ2 are both scalar fields as functions of the coordinate vector x.
The corresponding eigenvector fields e1 and e2 are called major and minor

eigenvector field, respectively. Positions at which λ1 = λ2 are associated with
isotropic tensor values and constitute singularities.

Line fields and covering spaces Similar to streamlines integrated over
vector fields tensor field lines [5] are defined as follows.
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Definition 2. A tensor field line computed in a smooth continuous eigen-
vector field, is a curve that is everywhere tangent to the direction of the field.
By analogy with vector fields, we associate the set of all tensor field lines in
a particular eigenvector field with a mathematical flow.

Because of the very nature of eigenvectors, the tangency is expressed at each
position in the domain in terms of lines. For this reason, an eigenvector field is
essentially a line field. This implies that classical theorems ensuring existence
and uniqueness of streamlines cannot be directly applied here.

However there exists a fundamental relationship between vector and eigen-
vector fields that can be formally characterized in terms of covering space. A
rigorous introduction to this notion of algebraic topology is beyond the scope
of this presentation and we restrict ourselves to an illustration of the basic
idea. More details can be found e.g. in [6]. Consider the configuration illus-
trated in Fig. 1(a). An eigenvector field is defined over the bottom layer. This
layer is covered by two similar layers over which two normalized vector fields
are defined that point in opposite directions. A projection operator associates
every pair of opposite vectors with a single eigenvector (line) direction in the
bottom layer. Using this construct, an eigenvector field can be interpreted as
the projection of two opposite vector fields. Moreover the path lifting prop-

erty ensures that streamlines integrated over the vector fields defined in the
covering space project onto tensor field lines in the eigenvector field. This
eventually provides the theoretical framework for tensor field line integra-
tion. We mentioned previously that eigenvector fields become degenerate at
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(a) 2-fold covering (b) Branched covering

Fig. 1. Covering spaces

positions where the tensor field is isotropic, that is has two equal eigenvalues.
This degeneracy corresponds to a so-called branch of the covering space. In
the case of a 2-fold covering of a two-dimensional space, this configuration
is equivalent to the complex map z 7→ z2 defined over the unit ball around
zero, as shown in Fig. 1(b). In other words, a degenerate point is associated
with a single critical point at the branch point in the covering space through
the projection operator.
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Tensor index. The relationship between vector and tensor fields can also be
used to extend the notion of Poincaré index to the tensor setting. Analogous
to the vector case, one defines the index of a closed curve as the number
of rotations of the eigenvector fields along this curve. Since these fields are
orthogonal the tensor index has the same value for both of them. By conti-
nuity of the eigenvector fields, the index of any closed curve will take values
multiple of 1

2
. As a matter of fact, the eigenvector direction reached after

full rotation along the curve must be the same as the one we started from.
Because of the orientation indeterminacy of eigenvectors, this direction might
in fact correspond to a rotation by π of the starting eigenvector. An example
is shown in Fig. 2. The tensor index is independent of the coordinate frame.
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Fig. 2. Tensor index of a trisector

Moreover it remains invariant under local continuous transformations of the
eigenvector field since it takes discrete values. Additionally a curve enclos-
ing a region exhibiting uniform flow has index 0 and the index of a curve
enclosing a set of curves is the sum of their individual indices.

1.2 Degenerate Points

According to what precedes, the map associating a tensor value with the
corresponding pair of eigenvectors is singular at locations where the tensor
value is isotropic.

Definition 3. A degenerate point of a two-dimensional tensor field is a lo-
cation where the field is isotropic. At this position, every non-zero vector is
an eigenvector.

Because of the indeterminacy of the eigenvectors at degenerate points, tensor
lines can intersect there. In the following we successively consider the linear
and nonlinear cases.

Degenerate points in planar linear fields. A tensor field is called linear
if its scalar components are linear functions of the space variable x = (x, y)T .
In this case, the linear system providing the position of a degenerate point
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has a unique solution in general. For the sake of simplicity we assume that
the degenerate point is located at the origin of the coordinate system and
rewrite the tensor field as follows.

T(x, y) =

(

α(x, y) β(x, y)
β(x, y) −α(x, y)

)

+ γ(x, y)I2, (1)

where γ is the mean value of the real eigenvalues, α(x, y) = α1x + α2y and
β(x, y) = β1x + β2y are linear functions of (x, y), and I2 is the identity
matrix. By definition the right term is isotropic and has no influence on
the eigenvectors of T. The remaining matrix is called deviator part of the
symmetric tensor, denoted D. Observe that it is zero by construction at a
degenerate point.
To characterize the flow pattern around a linear degenerate point, we extract
directions of radial convergence, i.e. tensor lines reaching the degenerate point
along straight lines. For convenience we reformulate the eigensystem in polar
coordinates, using the fact that it is independent of the distance to the origin
in the linear case. We obtain

Dθ eθ × eθ =

((

αθ βθ
βθ −αθ

)(

cos θ
sin θ

))

×

(

cos θ
sin θ

)

= 0, (2)

where αθ = α(cos θ, sin θ) = α1 cos θ + α2 sin θ and βθ = β(cos θ, sin θ) =
β1 cos θ + β2 sin θ, by linearity. Straightforward calculus yields

tan 2θ =
β1 cos θ + β2 sin θ

α1 cos θ + α2 sin θ
. (3)

Setting u = tan θ finally leads to following cubic polynomial equation:

β2u
3 + (β1 + 2α2)u

2 + (2α1 − β2)u− β1 = 0. (4)

Eq. (4) has either 1 or 3 real roots that correspond to angles along which
the tensor lines radially reach the origin. These angles are defined modulo π
and one obtains 6 possible angle solutions for radial eigenvectors. For a given
minor or major eigenvector field, one finally gets up to 3 radial eigenvectors.
Consequently the linear case exhibits two major types of degenerate points as
shown in Fig. 3. In the case of a trisector the 3 directions computed previously
bound so-called hyperbolic sectors, as defined in the next section. In the case
of a wedge point, 3 radial directions correspond to the pattern shown in the
middle of Fig. 3, while a single radial direction leads to the type depicted on
the right. The analysis of the general, nonlinear case will clarify the special
role of radial directions as separatrices of the linear topology. Considering the
tensor index, it can be seen that trisectors have index − 1

2
while both types

of wedge points have index 1

2
. Again, refer to Fig. 2.
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Fig. 3. Linear degenerate points

Nonlinear degenerate points. The configurations seen previously are in
fact the simplest types of degenerate points. Using the notations of Eq. (1)
it can be shown that a degenerate point is linear if and only if following
condition holds:

δ :=
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6= 0. (5)

Observe that determinant δ can also be used to distinguish wedge points
from trisectors [3]. To study the geometric properties of tensor lines in the
vicinity of a nonlinear degenerate point we return to previous considerations
about branched covering spaces, see section 1. It follows from the local struc-
ture of the covering space that the vector field defined over it is wrapped
by the projection operator around the degenerate point. Refer to Fig. 1(b).
For example, Fig. 4 shows the vector field corresponding to a trisector point.
Standard results from the qualitative theory of dynamical systems [1] tell us

Π

Fig. 4. Wrapping of monkey saddle onto trisector point

that the local flow structure in the vicinity of nonlinear vector field singular-
ities always consists of a set of curvilinear sectors that exhibit one of three
possible patterns:

• parabolic: streamlines reach the singularity in one direction but leave the
neighborhood in the other.

• hyperbolic: streamlines leave the neighborhood in both directions.

• elliptic: streamlines reach the singularity in both directions.
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From the preceding discussions, we conclude that the same sector decom-
position characterizes nonlinear degenerate points. These sectors are shown
in Fig. 5. This relationship leads to following definition of separatrices and
topological graph of a tensor field.

Fig. 5. Parabolic, hyperbolic, and elliptic sector types

Definition 4. The boundary curve of a hyperbolic sector in the vicinity of
a degenerate point is called separatrix. The set of all degenerate points and
associated separatrices is called topology of the tensor field.

Back in the linear case, the definition above implies that the radial direc-
tions computed previously correspond to the separatrices of linear degener-
ate points. Observe that in the case of a wedge point with two separatrices,
two radial directions are actual separatrices whereas the third one is simply
included in the parabolic sector and has no topological significance.

Eigenvalues near degenerate points. Although extracting 2D singular-
ities is simple (see section 2), finding 3D degenerate tensors is non trivial,
as explained in Chapter 14 by Zheng et al. A 3D degenerate tensor is simi-
larly defined as one with at least two equal eigenvalues. Since 3D degenerate
tensors are defined solely on eigenvalues, one might be tempted to calculate
the eigenvalues at each point and try to find those that are equal. Although
the issue is raised in 3D, we explain the difficulty in a 2D context. Previous
approach is not viable because the eigenvalues are sorted on each grid point.
Unless the singularity coincides with the data point, the majors are always
larger than the minors at the data points. There is no way to find the points
where the major equals the minor just from the interpolated eigenvalues. Of
course one may blame the sorting step. For example, in Figure 6(A), we plot
the eigenvalues on a line passing through a degenerate tensor. The solid line
represents the major eigenvalues and the dotted line the minor. If we know
the major and minor at discrete points, we cannot recover the degenerate
points; but if we switch the order of the major and the minor after the de-
generate tensor as in Figure 6(B), and have the two groups of eigenvalues
on discrete points, we can recover the singularities through interpolation on
each group. The question becomes: can we consistently group the eigenvalues
into two groups on a 2D domain, where each of them is differentiable? If this
could be done, we could use bilinear or bicubic interpolation on each group
to get the eigenvalue fields easily, and then recover the singularities.
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Fig. 6. Eigenvalues around a degenerate tensor

However, from Figure 6(C), we see that this is impossible. The figure plots the
eigenvalues around a degenerate tensor on a 2D domain. Separating the eigen-
values into two differentiable groups, corresponds to separating the structure
into two differentiable surfaces. But from Figure 6(C), we see that the eigen-
values around a degenerate point form two conical structures. It is easy to see
that there is no way to separate this structure into two differentiable surfaces.
This conclusion in 2D is easily extended to 3D.

1.3 Structural stability and bifurcations

In cases where the tensor field depends on an additional parameter (e.g. time),
the stability of the topological features described previously becomes an es-
sential notion. In fact, the structures considered previously only correspond
to instantaneous states of an evolving topology. Both the position and na-
ture of degenerate points may change as the parameter is modified. They can
be created or annihilated, which affects the connectivity of the topological
graph. In particular, an important question is the persistence of degenerate
points under small perturbations of the underlying parameter. This prop-
erty is called local stability. Structural transformations are called bifurcations
by analogy with the terminology used for vector fields. In the following, we
restrict our considerations to simple cases of local and global bifurcations.

Structural stability. The observations proposed next follow the line of
reasoning used in the qualitative study of vector fields [7]. In the following
we provide criteria that determine the stability of degenerate points and
separatrices.

Degenerate Points. Similar to critical points in vector fields, degenerate
points obtained in the linear, non-singular case (i.e. trisectors and wedges)
are the only stable ones. As a matter of fact, it can be easily shown that
arbitrary small perturbations can transform nonlinear degenerate points into
a set of linear degenerate points. The stability of trisectors and wedges is
explained by the invariance of the tensor index. The stability of each type
of wedge points is due to the fact that they correspond to different sets of
solutions of the cubic polynomial in Eq. (4), which are both stables.
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Separatrices. Proceeding our analogy with the vector case, we may see that
separatrices corresponding to the boundary curves of hyperbolic sectors at
both ends are unstable. Examples are shown in Fig. 7. The intuitive justifica-

Fig. 7. Unstable separatrices

tion of this assertion is geometric in nature: adding an arbitrary small angular
perturbation to the line field around any point along such a separatrix suffices
to break the connection.

Local bifurcations. Previous considerations now allow us to describe typ-
ical bifurcations associated with the instability of degenerate points. Note
that we do not consider homogeneous merging, as described by Delmarcelle
in [3] since it creates unstable structures.

Pairwise Creation and Annihilation. A wedge and a trisector have opposite
indices. Therefore a closed curve enclosing a trisector and a wedge has index 0
which suggests that the combination of both degenerate points is structurally
equivalent to a uniform flow. The local transition from a uniform flow to a
wedge and a trisector is a pairwise creation. The reverse bifurcation is called
pairwise annihilation. An example is shown in Fig. 8.

Fig. 8. Pairwise annihilation

Wedge Bifurcation. This type of bifurcation was suggested by the remarks
on the structural stability of wedge points. Each type of wedge corresponds
to a specific number of real roots of the cubic polynomial in Eq. (4), either
1 or 3. The transition from one type to another implies the appearance or
disappearance of a parabolic sector.
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Global bifurcations. In contrast to local bifurcations, global bifurcations
induce changes in the connectivity of the topological graph and typically
involve large regions in the domain of definition. The bifurcations mentioned
here are related to previous considerations about unstable separatrices. They
occur when two separatrices emanating from two degenerate points become
closer, merge and then split. At the instant of merging, an unstable connection
exists. As it breaks, it forces the swap of both separatrices. This modifies the
behavior of most curves in the concerned region. An example is proposed in
Fig. 9, involving 2 trisectors.

Fig. 9. Global bifurcation with trisector-trisector connection

2 Basic Topology Visualization

The topological approach was first introduced for the visualization of planar
vector fields. Helman and Hesselink pioneered this field in 1989 [8]. They
proposed a scheme for the extraction, characterization and depiction of lin-
ear critical points. This early work inspired Delmarcelle who extended the
original scheme to symmetric, second-order planar tensor fields [4] as part of
his work on general techniques for tensor field visualization [3]. The method
can be applied to either the minor or major eigenvector field. Basically, de-
generate points are searched in the data set on a cell-wise basis, where the
interpolation scheme is typically linear or bilinear. The corresponding equa-
tions to solve are then either linear or quadratic. To distinguish between
wedge points and trisectors, Delmarcelle used the determinant δ. Refer to
Eq. (5). He showed that a negative value of δ characterizes a trisector, while
a positive one corresponds to a wedge point. The cubic polynomial Eq. (4)
yields the angle coordinates of the separatrices. Since angular solutions are
defined modulo π, for each of them a test must be carried out to determine
which one of both possible orientations actually corresponds to a radial di-
rection in a particular eigenvector field. In the case of a wedge point, special
care must be taken if the polynomial has three real roots. Indeed, one of the
solutions must be discarded since it lies within the parabolic sector. This is
done by retaining the two angles spanning the largest interval smaller than
π, since Delmarcelle showed that parabolic sectors are always smaller than π

in the linear case [3]. The edges of the topological graph are finally obtained
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by numerical integration of the separatrices, as tensor lines of the considered
line field. Classical schemes for the integration of differential equations like
Runge-Kutta [9] can be adapted to ensure consistency of two consecutive
directions along the curve. In that way, the problem induced by the direc-
tion indeterminacy of eigenvectors can be avoided. Observe however that a
small step size is required in the vicinity of degenerate points because of fast
changing flow directions. This can be done by assigning the Frobenius norm
of the deviator as an artificial norm to the tensor field since it provides a
measure for the anisotropy. Delmarcelle also suggested a way to embed the
missing information conveyed by the eigenvalues by means of a color-coding
scheme applied over a LIC-like texture [2] representing the eigenvector flow
as shown in Fig. 11. A possible extension of the original topology extraction
technique consists in detecting half-singularities located on the boundary of
the considered domain. The purpose of topology analysis is namely to char-
acterize the flow behavior in terms of limit sets of the tensor lines, which
leads to a partition of the domain in regions where all contained tensor lines
connect the same limit set(s). We saw previously that degenerate points are
such limit sets. Yet, dealing with bounded domains implies that the bound-
ary itself must be part of this classification. This line of reasoning has been
already considered by Scheuermann et al. for vector fields [10]. The same
idea applies to the tensor setting: points where the flow is tangential to the
boundary correspond to additional limit sets of the topology. They are asso-
ciated with new separatrices if the tensor line touching the boundary is bent
inward. Simple computation leads to following equation for determining the
exact position of a touching point: αβ sin 2θ−β2 cos 2θ = 0, where α, β and θ
are functions of the edge parameterization, and (cos θ, sin θ)T is the normal-
ized direction of the considered boundary edge. The notations correspond to
Eq. (1). Usually the restriction of the tensor field along the boundary is linear
over each edge. In that case, α and β are linear, too. Solving this quadratic
equation while checking if the positions obtained actually lie on the edge (i.e.
0 ≤ t ≤ 1) yields positions of tangential contact.

3 Topology Simplification

Topology-based visualization of symmetric tensor fields usually provides syn-
thetic graph depictions of large and complex data sets while conveying the es-
sential structural information of the considered phenomenon. Unfortunately,
in certain cases the intricacy of the flow results in a cluttered representa-
tion that exhibits a large number of degenerate points and separatrices. This
problem typically arises in the analysis of turbulent data sets where numerous
structures of various scales are present. In that case it becomes tedious to dis-
tinguish between important properties of the data and insignificant details.
Observe that this problem is worsened in practice by typical low-order inter-
polation schemes (like linear or bilinear interpolation) that cause artifacts.
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Moreover, noise is frequently present in numerical simulations which intro-
duces additional confusing features. An example is given in Fig. 13. To solve
this problem simplification methods are required that discard insignificant
features according to criteria specific to the considered application. The cor-
responding transformation of the topology must ensure consistency with the
original to permit reliable analysis of the final results. Two different methods
have been designed to tackle this problem, based on two different assumptions
about the cause of the topological complexity.

3.1 Topology Scaling

The first approach is of geometric nature. Assuming that the topological com-
plexity is inherent to the data (e.g. we have a turbulent flow) the task consists
in clarifying the depiction by highlighting large scale structures while neglect-
ing small scale details. Practically the method is based on the observation
that close degenerate points, when seen from the large, cannot be distin-
guished from another and seem to be merged into a more complex, locally
equivalent singularity. From the theoretical point of view, the merging of an
arbitrary number of linear degenerate points creates a nonlinear singularity,
as discussed in section 1.2. These facts are the basic ingredients of the scheme
proposed by Tricoche et al. [12] to scale the topology.
The first step of the method provides a segmentation of the domain into
regions in which all degenerate points are sufficiently close to another, ac-
cording to a prescribed proximity threshold. A bottom-up clustering scheme
is therefore applied on the positions of the original singularities. The sec-
ond step replaces in each region the contained singularities by a single one,
mimicking their merging. To this end, the grid structure is locally deformed
and a degenerate tensor value is assigned to a grid vertex. The interpolation
scheme in the new cells ensures that this degenerate point is the only one
present in the region. Further, by preserving the original field values on the
region boundary, global consistency is maintained. The final step consists
in extracting the structure of these nonlinear singularities. This is done by
looking for radial flow directions on a cell-wise basis and characterizing the
types of the various sectors surrounding the degenerate point (refer to Fig. 5).
The separatrices are extracted as bounding curves of hyperbolic sectors and
integrated over the whole domain to obtain the simplified topological graph.
Results are shown in Fig. 13.

3.2 Continuous Topology Simplification

As opposed to the previous method, the second technique proposed by Tric-
oche et al. [13] is specifically designed to remove insignificant degenerate
points from the topological graph. In other words, the topological complex-
ity is treated as an artifact and must therefore be removed while keeping
important properties unchanged. We saw previously how bifurcations locally
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modify the topology while preserving consistency with the surrounding eigen-
vector flow. More specifically, a pairwise annihilation consists of the simulta-
neous cancellation of a trisector and a wedge point. Therefore, imposing such
bifurcations on the original data permits to prune undesired features.
Practically, the method assumes that the tensor field is defined over a piece-
wise linear triangulation. First, the topological graph is computed and de-
generate points are assigned to pairs of trisectors and wedges. Next, each
pair of singularities is associated with a scalar value that evaluates its im-
portance in the overall topology. Any user-prescribed criterion can be used
for this purpose. A natural idea is to penalize very close degenerate points
since they cause visual clutter. However, application specific knowledge can
be applied to weigh individual degenerate points and, by extension, the pairs
they belong to. The pairs are then sorted according to their importance and
processed sequentially. For each of them, a connected cell-wise region is de-
termined that contains the pair and no other degenerate point. In terms of
tensor index, the boundary of the region has index 0 and the enclosed eigen-
vector flow is uniform. Finally the tensor values at the internal vertices are
slightly modified in a way that guarantees that both degenerate points dis-
appear. This deformation is controlled by angular constraints on the new
eigenvector values and is based on specific properties of piecewise linear ten-
sor fields. As a result, a pairwise annihilation has been enforced while the
surrounding structure is unchanged. The corresponding results for the same
data set are shown in Fig. 14. Looking at an enlargement, we can see that
preserved features are not affected by the removals taking place in the same
area, see Fig. 15.

4 Topology Tracking

Theoretical results show that bifurcations are the key to understanding and
properly visualizing parameter-dependent tensor fields: they transform the
topology and explain how stable structures arise. Typical examples in prac-
tice are time-dependent datasets. This basic observation motivates the design
of techniques that permit us to accurately visualize the continuous evolution
of topology.
An early method was proposed by Delmarcelle and Hesselink [4]. They ex-
tended their original scheme for tensor topology visualization to the time-
dependent case. The method is restricted to a graphical connection between
the successive positions of degenerate points and associated separatrices, lead-
ing to a connection if consistency was preserved. However no connection is
made if a structural transition has occurred and bifurcations are not visual-
ized. Instead, the comparison between successive time steps is used to infer
the nature of the corresponding transitions: either creation or annihilation.
Tricoche et al. proposed a different approach in [11]. The central idea of their
technique is to handle the three-dimensional space made of the Euclidean
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space on one hand and the parameter space on the other hand as a contin-
uum. The time-dependent tensor data is assumed to lie on a fixed triangu-
lation. A “space-time” grid is constructed by linking corresponding triangles
through prisms over the parameter space as shown in Fig. 10(a). The choice
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Fig. 10. Data structure for topology tracking

of a suitable interpolation scheme permits an accurate and efficient tracking
of degenerate points through the grid along with the detection of local bifur-
cations. More precisely, linear space interpolation ensures that each triangle
contains at most a single degenerate point at any position in time. There-
fore pairwise creations and annihilations are constrained to take place on the
side faces of the prisms which simplifies their detection. The principle is illus-
trated in Fig. 10(b). Individual degenerate points are tracked over prisms and
potential wedge bifurcations are detected in their interior. The correspond-
ing segments are then reconnected and pairwise creations/annihilations are
found. The paths followed by degenerate points yield curves over the 3D
grid. Separatrices integrated from them span separating surfaces that are ob-
tained by embedding corresponding curves in a single surface. These surfaces
are used further to detect modifications in the global topological connectivity:
consistency breaks correspond to global bifurcations. See Fig. 16.
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Fig. 11. Steady 2D tensor field (from [4])

Fig. 12. Discrete Tracking (from [4])
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Fig. 13. Original and scaled topology

Fig. 14. Progressive topology simplification by enforced bifurcations

Fig. 15. Local topology simplification



16 Tricoche, Zheng, Pang

Fig. 16. Visualization of the complete topology evolution


