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Abstract

We present a fast method that adaptively approximates large-scale functional scattered data sets with hierarchical
B-splines. The scheme is memory efficient, easy to implement and produces smooth surfaces. It combines adaptive
clustering based on quadtrees with piecewise polynomial least squares approximations. The resulting surface
components are locally approximated by a smooth B-spline surface obtained by knot removal. Residuals are
computed with respect to this surface approximation, determining the clusters that need to be recursively refined,
in order to satisfy a prescribed error bound. We provide numerical results for two terrain data sets, demonstrating
that our algorithm works efficiently and accurate for large data sets with highly non-uniform sampling densities.

1. Introduction

Scattered-data fitting is concerned with the global approx-
imation of function values associated with points that are
arbitrarily distributed over a compact 2D or 3D domain. In
the case of 2D functionals the points p; are associated with a
scalar value fj, see figure 1. The task consists in computing
a surface approximating the function values f; at the cor-
responding points in the plane, satisfying a prescribed er-
ror bound. Our method provides an efficient construction for
adaptive smooth surface approximations. It can easily be ex-
tended to higher-dimensional problems.

Data sets provided by modern measurements and numer-
ical simulations become larger and larger (several millions
points), which strongly inconveniences the use of a global
least squares fit using smooth basis functions. Even trian-
gulated surface approximations are difficult to construct for
large-scale non-uniform data, providing only a piecewise
linear representation.

The resolution of uniform data sets is mostly adapted to
the finest geometric detail that needs to be represented. For
large regions of less complexity, there are too many redun-
dant samples. It is therefore useful to reduce the sampling
density locally to the level of geometric complexity and
to approximate this non-uniform data using adaptive meth-
ods. Classical schemes inherited from the research tradition
in surface fitting and scattered data approximation produc-

(© The Eurographics Association 2003.

A

——------9

-e
e - ----9

-----e
°o-o

[ )
_O

e-——————~ -

-
X

Figure 1: Scattered data points p; with associated function
values f;.

ing smooth surfaces prove unsuited for data sets exceeding
a few hundred points since they become extremely time-
consuming when dealing with larger point sets.

In this paper a new method is proposed that attacks this
deficiency by dividing the fitting task in two steps: The
first one consists in a quadtree-like clustering of the sam-
ple points. It provides subsets that we next locally fit by
means of low order Bézier splines. The resulting piecewise
continuous surface is then locally approximated by a con-
tinuous B-spline surface. This surface is obtained by knot
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removal and constitutes our current approximation of the
functional. Residuals are estimated and used to control fur-
ther subdivision of clusters. In that way the method facili-
tates an adaptive fitting of sparsely distributed data and con-
centrates refinement on small regions exhibiting large errors.
Unlike global least-squares methods, our algorithm localizes
the computation at multiple levels of resolution.

The contents of the paper are organized as follows. Re-
lated work dealing with scattered data fitting of large data
sets is briefly summarized in section 2. The different steps of
our algorithm are explained in section 3. Numerical results
are proposed for two terrain data sets in section 4. Conclu-
sion and future work are discussed in section 5.

2. Related Work

The topic of scattered data fitting and interpolation has ben-
efited from much research. Many overviews can be found
in the literature 817.18.21 Traditional techniques inherited
from the approximation theory may be decomposed into two
categories: Some of them make use of radial basis func-
tions 15.7.9.18_Others are based on global spline interpolation
or approximation 14 10.11.12.13,

The shortcoming of most global approaches is that they
require the solution of large linear systems which are not al-
ways well-conditioned and sparse. Consequently, global fit-
ting methods often become prohibitively time and memory
consuming when dealing with data sets whose size exceeds
a fairly small number of points (say 500). Therefore new
techniques have been designed to reduce the computational
complexity to enable the processing of large-scale scattered
data sets that contain millions of points.

A method based on multilevel B-splines has been pro-
posed 16, In a coarse to fine approach the approximation
error is used to control the refinement of control lattices
over which a C? cubic B-spline function is defined. A lim-
itation of this method is the fact that lattices’ refinement
takes place globally. This is inefficient when accurately re-
producing small local features. To overcome this problem,
this method has been adapted to local refinement of rectan-
gular regions 2. The approximated regions can be quite large
for complex data sets and user interaction may be required
for chosing them.

In 14.5 a regular triangulation is used and triangular Bézier
patches are defined on a subset of all triangles. The global
surface is then constructed by ensuring ct continuity of the
Bézier patches in the remaining triangles. A major draw-
back of this approach is the lack of hierarchal structure in the
surface construction which impose global re-computation if
higher accuracy is required in a small region. This technique
has been improved recently 2 by the use of a binary tri-
angle tree which allows level-of-detail representation. How-
ever, the overall algorithm is quite complex and dependent
on an adaptive triangulation of the domain that needs to be

maintained to avoid cracks. The resulting surface serves as
input for efficient rendering, proving that smooth surface ap-
proximations of low polynomial degree are not necessarily
less efficient than pure triangle-based methods.

3. Method Description

Our algorithm for adaptive approximation of scattered data
is composed of the following steps:

e Adaptive clustering based on quadtree refinement.

e Least squares-fitting of polynomial patches to the data
points located in the individual clusters.

e Combining the piecewise polynomials to a B-spline sur-
face with multiple knots at the cluster boundaries. Knot
removal is used to combine the fitted patches into a
smooth representation.

e Recursive refinement of clusters with local errors above a
specified tolerance.

We assume that the scattered data may be non-uniformly
distributed over the domain. The sampling density is as-
sumed to be greater in regions of high geometric complexity
and smaller in less detailed regions. Our algorithm produces
multiple levels of approximation using dyadic knot refine-
ment. In smooth surface regions the refinement terminates
when a prescribed error bound is satisfied. The remaining
regions are recursively refined and the local approximations
smoothly join with the coarser surface components.

Given a set of scattered data,
{(pi, f) | pi €R?, fieR,i=1,....n},

where p; are data points with associated function values
fi, see figure 1, we construct a sequence of approximat-
ing functions Fj (j =1,2,---), minimizing the residuals
|IFj(pi) — fil|. Increasing the index j will augment the reso-
lution of Fj. Our algorithm can be easily adapted to approx-
imate higher-dimensional data where p; € R™and f; ¢ R".

Every level of resolution is defined by the set
Lj = {Cj, Fj},

where Cj = Cﬁ-‘ (k =1,---,nj) defines a partitioning of
the domain, where the individual clusters C'j‘ correspond to
quadtree nodes at level j, see figure 2.

We start the cluster refinement with a uniform space par-
titioning Cp such that every cluster contains enough data
points for a polynomial approximation. We use the least-
squares method to determine a bilinear or biquadratic poly-
nomial surface approximation for the function values f; with
pi € C'S for every cluster. The individual patches are com-
bined to a smooth B-spline surface by reducing the multi-
plicity of inner knots to one, resulting in a CO surface in the
bilinear case and a C* surface in the biquadratic case. This
surface is denoted as base approximation F.
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Figure 2: Adaptive clustering based on quadtree refine-
ment.

When extremely coarse approximations are required, we
start with only one base cluster. We note that coarser repre-
sentations can be computed more efficiently by coarsening a
finer base approximation, since fitting the entire data set is
computationally expensive and not necessary for coarse lev-
els of detail. (For this purpose, techniques operating on reg-
ular grids, like wavelets or conventional least-squares tech-
niques may be used.)

Then, we uniformly refine the clustering Cq of the base
resolution by splitting every cluster into four rectangular re-
gions of equal size, providing C; (j=1). For every data point
pi, the associated function value f; is replaced by the signed
distance to the base approximation (orthogonal to the do-
main),

Afij = fifFj_l(pi). (1

These signed distances are the local residuals of the approxi-
mation that need to be reduced in the following fitting steps.

For every cluster, we determine the maximal residual from
the L°°-norm,

e(Cf) = max;.p (A [} @

The residuals e(C'J-‘) are compared to a prescribed error
bound €. Again, a polynomial is fit to the data points in every
cluster where s(CE‘) < &. This kind of refinement will leave
some subtrees of the quadtree empty. The clusters satisfying
the error bound are denoted as “idle” and are not stored in

the quadtree.

Based on these polynomial patches a detail function AF;
is constructed, minimizing the local residuals, such that
Fi = Fj_1+AF;. ?3)

To obtain AFj (and thus Fj), the individual polynomial
patches are merged by knot removal, as described later.
The support of AFj extends into all clusters in the 8-
neighborhood of fitted clusters, in order to guarantee con-
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tinuity. Hence, a few “idle” clusters need to be added to the
octree, besides the clusters with approximating polynomials.

For further refinement we consider all clusters C}‘ located
in the support of AF;. The residuals of points located in these
clusters are re-evaluated, according to equation (1) with in-
cremented level index j. The refinement is recursively re-
peated, until no clusters need to be refined or until a global

error bound is satisfied by some L ;.

In the following we describe the fitting and knot-removal
procedures used in our algorithm.

3.1. Least-squares Fitting

Considering the points p; (i=1,---,m) located in a certain
cluster, we need to determine an approximating polynomial,
n
Psit) = > cigj(st),
j=1
where the basis functions ¢; are products of individual Bern-

stein polynomials in s and t, for example.

In most cases the number of points is greater than the
number of basis functions, i.e. m > n, and a linear system
for an interpolating surface would be over-determined:

Ac = f, aj=gj(pi)- 4)
The residual of this interpolation problem,
i 2
IP(pi) — fill ®)
2

is minimized by the solution of
ATAc = ATf (6)

(least-squares fitting 3). In most cases, the matrix ATA is
non-singular, providing the coefficients c; for the best fitting
polynomial.

Since A is not sparse and depends on the points pj, the
cost for this fitting process is dominated by the time com-
plexity O(m n?) for computing AT A. Since the polynomial
degree is fixed (we use bilinear and biquadratic patches), we
have an O(m) fitting operation.

Problems occur when the system (4) is under-determined,
i.e. m < n, or when the matrix ATA is singular. The latter
is the case, for example, when the data points were down-
sampled from a regular grid and are mostly collinear, such
that there are not enough constraints for determining the co-
efficients associated with the s- or t-direction.

Other cases exist, where the least-squares residual is
small, but the slopes or curvatures of the fitted patch are ex-
tremely high, resulting in a poor representation. This hap-
pens mostly in clusters containing only few points some of
which are close in the domain with great differences in their
associated function values. In the “empty” regions of such a
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Figure 3: Knot removal for piecewise linear representation.
The left side corresponds to a zero function on an “idle”
cluster, while the right side is treated like a domain bound-
ary.

Figure 4: Knot removal for piecewise quadratic representa-
tion. The zero function on the left side is approximated such
that the boundary is C-continuous.

cluster the surface can take arbitrarily large values. We de-
tect these cases by comparing the variance of function values
fi with the variance of the Bézier points defining the fitted
polynomial. We allow (by a factor of four) greater variance
of Bézier points, since these control points are generally not
located on the surface.

In all cases, where the least squares fit is not feasible or ac-
ceptable, we reduce the polynomial degree by one and solve
the least squares system (6), again. We note that at least a
constant approximation is feasible, since every cluster with
non-zero residual contains at least one point. The fitted poly-
nomial is degree elevated, providing the same number of
Bézier points for each patch. We use a bilinear/biquadratic
Bézier representation.

3.2. Knot Removal

Assuming that all clusters have an approximating polyno-
mial, this piecewise smooth surface can be represented as
a single B-spline patch with multiple inner knots (double
and triple knots in the bilinear and biquadratic case, respec-
tively). In this case, the Bernstein polynomials are B-splines
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Figure 5: Support and control points of AF;. The lower left
corner defines a domain boundary, requiring extra control
points. The white clusters are “idle” and contain only zero
control points.

and thus the Bézier points of the individual patches corre-
spond to de Boor points defining the B-spline surface.

Knot removal 619 can be used to reduce the multiplic-
ity of inner knots to one, such that the new surface is a
cO or ¢t continuous approximation to the initial piecewise
smooth surface. Exploiting the regular structure of the con-
trol mesh, knot removal can efficiently be implemented by
a least-squares fit computed for each row and column of de
Boor points. In our algorithm, however, we want to avoid
such a global fitting problem and use local masks for knot
removal. This has the advantage that it also works in those
cases where data is missing, due to the adaptive refinement.

In the bilinear case, we have four Bézier points (coeffi-
cients) interpolating the patch at the cluster corners. At each
corner, we take the average of the function values corre-
sponding to the adjacent patches. This process is illustrated
for the one-dimensional case in figure 3. If one of the adja-
cent clusters is “idle”, we use the zero function as approxi-
mating polynomial before knot removal. After the removal,
the residuals of these clusters have changed and need to be
re-evaluated. All clusters in the support of AF; are consid-
ered for the next level of refinement.

In the biquadratic case, we have 3 x 3 Bézier points for
every cluster. For every row/column of control points, our
knot removal procedure simply removes the points located
on cluster boundaries, see figure 4. (In Bézier representa-
tion, these points would be set to the average of their two
neighbors in the row/column.) Now, we have only one de
Boor point for every cluster, except on the boundary of the
support of AF;j. At the boundaries inside the data set’s do-
main, two rows/columns of de Boor points (that need not be
stored) are zero, see figure 5. The additional de Boor points
on the data set boundary define the boundary curve of the
approximation.

(© The Eurographics Association 2003.
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We note that the support of AF; does not necessarily de-
fine a rectangular region. When evaluating the function, we
just use de Boor points inside a smaller rectangular region,
defining a B-spline patch inside the larger surface.

3.3. Efficient Evaluation

For computing the individual detail functions Fj, we have
approximated the residuals with respect to Fj_;. We avoid
to evaluate the entire series of detail functions,

j
Fi=Fo+ ) AR.
=1

In order to evaluate the final approximation efficiently, it is
desirable to have a single B-Spline representation for every
region, using the finest level of detail available. This prob-
lem is simply solved by knot insertion on the coarser levels.
Due to knot insertion, the number of de Boor points is locally
increased without changing the represented surface. The co-
efficients of Fj1 are simply added to the representation of
AF;j, providing a unique representation of Fj on the support
of AF;. Outside this support, the coefficients of the coarser
representations, e.g. Fj_1,Fj_»,--- are used for evaluation.

The overall computation time of our algorithm for approx-
imating n scattered data points is O(n log n), since the num-
ber of levels is O(log n) and the construction of each level
L; requires O(n) operations. For uniformly distributed data,
we can start with a base level of fine-resolution, reducing the
number of levels to a constant. The memory requirement of
our method is O(n), since the maximal number of control
points required to represent the finest level (if it was dense)
is greater than the sum of control points used on all coarser
levels (this number is decreases by four for each level).

4. Numerical Results

We use two terrain data sets to test our method. In both cases
the original data is defined over a rectilinear grid. To obtain
scattered data sets we apply a down-sampling scheme that
randomly removes data points associated with low curva-
ture values (based on discrete curvature estimates). The idea
behind this choice is to remove redundant data in smooth
regions preserving sharp cusps and edges corresponding to
geologic features like mountains, ridges, and canyons. This
way, we obtain scattered data with highly non-uniform den-
sity providing the input for a challenging approximation
problem. Tests are carried out on a PC with AMD Athlon
1100 Mhz processor and 1.5GB RAM.

4.1. Crater Lake Data Set

We first use the Crater Lake data set from USGS. The
original data contains about 160,000 points. After down-
sampling we obtain a scattered data set with 18,818 points,
that is 11.8% of the original, see figure 6. The starting reso-
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Figure 6: a) Crater Lake data set, composed of 18,818
points (11.8 percent of its original size). b) Adaptive bilinear
approximation. c) Adaptive biquadratic approximation.

lution of our cluster grid Cq is 32 x 24. All clusters contain a
fairly similar number of points before processing. This first
example is intended to illustrate the different aspects of our
algorithm.

The first fitting applied to the base clusters for the bilinear
and biquadratic cases is depicted in figure 7 (left). The dis-
continuities of both piecewise polynomial surfaces are then
eliminated by knot removal, as shown in figure 7 (right).

The continuous surface obtained in that way corresponds
to the first iteration of the algorithm. Successive approxima-
tion steps for the biquadratic case are illustrated in figure 8.
The residuals obtained in successive levels are shown in
color plate 1. Gray regions correspond to clusters that satisfy
the prescribed error bound and are not further subdivided.

Putting it all together, numerical results based on our non-
optimized implementation are enumerated in table 1. The
L2-error computed in each step gives insight into the av-
erage approximation quality. Error bound € is set to 0.5%
of the overall amplitude. We observe that the piecewise bi-
quadratic approximation provides more flexibility and thus
leads to a better fit (with respect to the L2 norm) for this data
set.
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Figure 7: a) Piecewise bilinear fit of the base level (32 x 24 clusters). b) CC-continuous approximation after knot removal. c)
Piecewise biquadratic fit of the base level. d) C*-continuous approximation after knot removal.

Figure 8: Approximations at different levels of subdivision (biquadratic case). a-d) Levels 0-3.

(© The Eurographics Association 2003.
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| bilinear fit biquadratic fit |
step | time/step | total time | error L? no. clusters | time/step | total time | error L? no. clusters
1 47 47 2.344 | 768 (100%) 147 147 4.654 | 768 (100%)
2 70 117 1.408 | 2,645 ( 86%) 138 285 2.520 | 2,757 (90%)
3 92 209 0.899 | 5,595 ( 46%) 125 410 1.184 | 5,983 (49%)
4 179 388 0.621 | 6,178 ( 13%) 223 633 0.544 | 5,966 ( 12%)
5 576 964 0.452 | 5,119 (2.6%) 754 1,387 0.326 | 3,987 (2.0%)
6 2,312 3,276 0.373 | 2,508 (0.3%) 2,886 4,273 0.266 | 1,125 (0.1%)

Table 1: Numerical results for the Crater Lake data set. The tolerance € is 0.5% of the overall amplitude. Times are given in
ms. Approximation errors are measured in percent of the data set’s amplitude. The number of refined clusters is also provided
as percentage of clusters in a uniform grid.

bilinear fit biquadratic fit |
step | time/step | total time | error L? no. clusters | time/step | total time | error L? no. clusters
1 1,576 1,576 6.098 3,072 (100%) 4,172 4,172 | 13,254 3,072 (100%)
2 1,563 3,139 3,692 | 10,987 ( 89%) 4,329 8,501 7.867 | 11,793 ( 96%)
3 1,868 5,007 2.071 | 33,234 ( 68%) 4,714 13,215 4.327 | 37,618 (77%)
4 2,702 7,709 1.203 | 85,435 (43%) 4,590 17,805 1.938 | 91,894 (47%)
5 4,152 11,861 0.792 | 163,942 ( 21%) 5,339 23,144 0.793 | 175,031 ( 22%)

Table 2: Numerical results for Seattle data set. The tolerance € for cluster refinement is 1% of the amplitude. Times are given
in ms. Approximation errors are measured in percent of the data set’s amplitude.

Figure 9: Seattle data set, composed of 586,970 points.

4.2. Seattle Data Set

The second data set is much larger than the previous one.
It corresponds to the landscape profile around Seattle, WS,
provided by USGS. The original data contains about 180
millions points. After down-sampling we obtain a scattered
data set with 586,970 points, that is 0.33% of the original,
see figure 9. The starting configuration has 64 x 48 clusters.
With a piecewise bilinear fit one obtains the reconstructed
surface shown in figure 10. For the biquadratic case the re-
sult can be seen in color plate 2. As in the previous exam-
ple numerical results are summed up in table 2. The error
bound ¢ is set to 1% of the maximal amplitude. In contrast
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Figure 10: Adaptive bilinear approximation of Seattle data
set.

to the results obtained with the Crater Lake data set, we ob-
serve slightly better results in the bilinear case than in the
biquadratic one. However both results become very close
when accuracy increases. An explanation is that uneven ter-
rain like the mountains located in the upper-left part of the
data set is better approximated using piecewise bilinear sur-
faces rather than smooth biquadratic representations.

5. Conclusions

We presented a very efficient and robust adaptive approxi-
mation tool for highly non-uniform scattered data. We have
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demonstrated that our algorithm provides smooth surface
approximations of high quality for large terrain data sets
with locally steep gradients defining complex geometry. Our
smooth refinable surface representation can be used as a ba-
sis for real-time terrain visualization.
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