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Abstract
This paper presents powerful surface based techniques for the analysis of complex flow fields resulting from
CFD simulations. Emphasis is put on the examination of vortical structures. An improved method for stream
surface computation that delivers accurate results in regions of intricate flow is presented, along with a novel
method to determine boundary surfaces of vortex cores. A number of surface techniques are presented that aid
in understanding the flow behavior displayed by these surfaces. Furthermore, a scheme for phenomenological
extraction of vortex core lines using stream surfaces is discussed and its accuracy is compared to one of the most
established standard techniques.

1. Introduction

The role of stream surfaces in the analysis of CFD datasets
has been a minor one from the beginning. Although they are
a natural generalization of streamlines, there has been lack of
an algorithm that is able to deal with very complicated flow
structures. For CFD simulations from applications where
these structures dominate, stream surfaces as a visualiza-
tion tool have been hard to apply and yielded dissatisfac-
tory results. However, the demand for insightful visualiza-
tion of complex flow data cannot be satisfied by streamlines
and similar line-based techniques alone. They suffer from
visual clutter if adequate resolution of features is desired.
The groundbreaking drawing work of Dallmann [Dal83] has
shown that flow structures can be well understood in terms
of flow sheets, owing to the fact that they show the behav-
ior of all streamlines in the sheet at once. Essentially, stream
surfaces can perform the same task and have an enormous
potential in visualizing application datasets. In this paper we
present several enhancements to the stream surface compu-
tation scheme of Hultquist [Hul92] that allow stream sur-
face integration in domains of intricate structures. We pro-
vide some examples that demonstrate their usefulness for
visualization purposes. Moreover, we investigate a number
of useful techniques that extend stream surface visualization
beyond mere display.

Among the research topics in visualization, locating vor-
tices in CFD datasets is one of the major challenges, since
they are responsible for a large number of interesting flow
phenomena. The analysis of datasets can greatly benefit from

efficient detection of vortices and evidence of vortex break-
down (i.e. sudden collapse of vortical motion) if this infor-
mation is accurately visualized. To provide a viable prim-
itive for the visualization of the geometry of vortex cores,
we will describe a physically motivated region definition for
vortex cores based on the Rankine [Rot00] vortex model.
An algorithm is discussed for extracting vortex cores from
flow fields starting out from feature lines and constructing a
bounding surface for display. Relating vortex cores to stream
surfaces, we develop a simple method for the visual verifi-
cation of assumed vortex cores and the phenomenological
determination of vortex core feature lines.

The contributions in this paper are presented as follows:

• We discuss related work in Section 2
• An improved algorithm for streamsurface computation is

given in Section 3
• Section 4 details a region definition for vortex cores and

an algorithm for its extraction, given a vortex core line.
• Visualization enhancements for streamsurfaces and a

method for extracting vortex core lines using streamsur-
faces a presented in Section 5

• Some examples of how this work can be applied are
shown in Section 6, and Section 7 concludes on the fea-
tured work.

2. Related Work

The work in this paper combines flow visualization us-
ing stream surfaces with detection and analysis of vortices.
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While stream surfaces have not attracted much attention in
visualization over the years, vortex detection has been an in-
teresting topic for a long time. We survey both areas of flow
visualization in the following.

Stream Surface Techniques Although stream surfaces rep-
resent a substantial qualitative step compared to a bundle of
stream lines, there exist only few methods for stream surface
calculation. The most common algorithm was introduced by
Hultquist [Hul92] and is based on an advancing front of
discrete streamlines spanning the stream surface. Adaptive
front resolution is used to handle converging and diverging
behavior of the flow. Streamline integration is based on a
second order ODE scheme and a simple insertion and merg-
ing heuristic controls the number of front streamlines. The
scheme is straightforward to implement, fast, but performs
well for simple flows only. In contrast to this local method,
van Wijk [van93] uses a global approach. Through advec-
tion of a scalar field from a two dimensional manifold (e.g.
the domain boundary) through the grid positions by stream-
lines, the computation of a particular stream surface reduces
to isosurface extraction and permits to use fast and reli-
able techniques, at the price of heavy pre-processing. The
starting curves are necessarily limited to isolines of the 2D
scalar field. Adopting the advancing front idea of Hultquist,
Scheuermann et al. [SBH∗01] exploit the existence of an
analytic flow solution for linear interpolation over tetrahe-
dral grids. Although automatic adaption to the grid resolu-
tion is inherent, the method is computationally intensive and
can only be used on tetrahedral grids. Common to all algo-
rithms is a lack of fine-grained control over the generation of
graphical primitives. Aside from explicit stream surface in-
tegration, methods exist that create the visual impression of a
stream surface by using particles, for example [van92]. Be-
cause a stream surface is understood as a two-dimensional
flow separator, an explicit representation which is not pro-
vided by these methods is usually preferred.

Vortex Detection Vortices have played a prominent role in
many flow visualization articles and there are several meth-
ods designed to locate them. The central problem of every
vortex detection and analysis approach is the lack of an exact
definition of a vortex. Usually, swirling motion around some
central region is used as working definition [Lug96, Rob91],
resulting in either a line-based definition or a region-based
approach and a corresponding bounding surface.

As far as line definitions are concerned, Banks and
Singer [BS95] look for points with low pressure and high
absolute vorticity. From there, they walk some distance in
the direction of the vorticity vector (predictor) and compute
the vorticity at the new position. In the normal plane of the
new position, they look for a pressure minimum and take
this as a new point of the vortex core (correction). Sujudi and
Haimes [SH95] decompose the grid into tetrahedral cells and
compute the Jacobian of the linear interpolant in each cell.

In case of two complex conjugate eigenvalues, they use the
real eigenvector to compute the reduced velocity and find
its zero lines. Peikert and Roth [PR00] show that most vor-
tex core detection methods can be reformulated using the
concept of parallel vector fields and propose a second order
method that detects the locations of zero torsion on a per cell
basis, which are then connected to a line feature.

A typical region-based method is the λ2-criterion by
Jeong and Hussein [JH95]. They calculate the Jacobian and
decompose it into symmetric part S and antisymmetric ten-
sor Ω. Vortices are then defined as connected regions where
the symmetric tensor S2 +Ω2 has two negative eigenvalues.

Taking a more geometric approach, Sadarjoen [SP99] es-
sentially describes a algorithm to detect winding stream-
lines and displays the results using deformed icons. Jiang
et al. [JMT02b] apply Sperner’s lemma to identify vortices
as fixed points of simplical complexes and extend this tech-
nique to detect vortical regions. The curvature density cen-
ter scheme of Pagendarm et al. [PHR99] computes the swirl
plane normal in each grid cell and marks the cells contain-
ing the deduced center of rotation. It combines both geomet-
ric and pattern matching aspects and can probably be con-
sidered closest to our approach (sec. 4) among all the ideas
mentioned here.

Vortex verification Since all vortex detection methods are
subject to delivering false positives, verification is required.
Jiang et al. [JMT02a] propose an automatic geometric verifi-
cation approach that measures the distribution of streamline
tangents on a plane orthogonal to the vortex core.

Vortex visualization Although detection algorithms are de-
rived from line and region based vortex definitions, visual-
ization of the latter is unsatisfactory at times. There are a
number of widely used techniques such as streamline seed-
ing near the vortex core to display swirling behavior or cut-
ting planes that slice the vortex and show dataset compo-
nents that ease the recognition. None of these techniques
can be attributed to a single author. Moreover, there are ap-
proaches, mostly prevalent in fluid mechanics, that visualize
physical context. We will not detail them here.

3. An Improved Scheme for Stream Surface
Computation

We present an explicit algorithm for integration of stream
surfaces that is based upon Hultquist’s original idea of ad-
vancing a front of connected streamlines through the flow
field and adaptively inserting and deleting streamlines where
the flow diverges resp. converges [Hul92]. The original al-
gorithm already produces visually pleasing results in some
simple cases, but is unable to satisfyingly handle flow of in-
homogeneous magnitude. We eliminate this shortcoming by
employing streamline integration based on arc length rather
than parameter length, which proves to be a more intuitive
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second order ODE arc length parametrization

Figure 1: improved triangulation resulting from higher or-
der integration combined with arc length parametrization

and accurate approach for the creation of a graphical rep-
resentation. Other criteria for refinement are employed to
control the density of front streamlines throughout the track-
ing, taking into account front curvature and the occurrence
of singularities in the field. These issues gain importance as
stream surfaces are applied for example to the study of vor-
tical structures and flow recirculation.

Flow Inhomogeneity The fundamental task of stream sur-
face integration is to produce a well conditioned triangula-
tion and a good approximation of the real surface. Hultquist
achieves this by using a second order ODE solver for stream-
line integration and selective streamline advancement. This
produces triangles whose shape depends on the magnitude
of the vector field, even if the resulting surface has no distor-
tions at all requiring higher resolution. We note that graph-
ical precision of a streamline and the numerical step size of
the underlying integration scheme are distinct and consider
arc length parametrization of streamlines as more suited to
graphical representation (resolution is best selected in output
domain instead of computational space). Based on an adap-
tive fifth-order Runge-Kutta integration scheme, we are able
to decouple numerically exact streamline integration from
the generation of an adequate triangulation of the stream sur-
face (see Figure 1). Thus, surface resolution can be freely
parametrized by the user as desired.

Front Curvature A second problem is the rather coarse lin-
ear approximation of the surface front, showing up e.g. under
strong curvature of the surface perpendicular to the flow. By
inserting and deleting streamlines based on an angular cri-
terion applied to the advancing front we keep control over
the front resolution. More precisely, strong curvature is indi-
cated by high angular deviation of adjacent front segments,
as shown in Figure 2. The basic rule in Hultquist’s front
propagation scheme proposed the insertion of new stream-
lines if the width of the quadrilateral at the end of a ribbon
between two neighboring streamlines surpasses the height
by a factor of two. We add a new rule to enhance this, based
on the angle α = 6 ( ~qi−1qi, ~qiqi+1) for points q j, j ∈ {1..n}
being the projections of the front nodes p j, j ∈ {1..n} into
the plane perpendicular to the flow at pi:

1. Insert a node if the angle exceeds the maximum threshold
and the maximum front resolution is not yet reached.

2. Delete a node if the angle falls below the minimum

Figure 2: angular criterion

threshold and resolution is still better than the minimum
front resolution.

The bounds on the front resolution are supplied by the user.

Algorithm Parameters As mentioned, various resolution
parameters can be set to balance the trade-off between num-
ber of generated triangles and increased resolution of small
features. The size of the triangulation may not seem impor-
tant at first glance, however, we found the algorithm to easily
deal with extremely twisted flow structures like they appear
in CFD simulations (an example is the vortex breakdown
given in Figure 8). If resolution is too high, the triangulations
resulting from those flow fields are too large for interactive
display. Hence, a coarser resolution can be imposed.

Parameters influencing the surface quality are front inter-
segment angle and lower and upper bounds for front node
distance (minimum/maximum front resolution). For the lat-
ter, values are best chosen on a ratio of 1 to 10 or greater. If
the ratio is smaller, the algorithm can oscillate between in-
sertion and deletion of streamlines. A large ratio ensures that
converging and diverging streamlines are detected correctly.

The starting curve is given in discretized form as an open
or closed line strip and determines the starting discretization
of the surface, at best subject to the same resolution con-
straints that are prescribed for the stream surface. A maxi-
mum arc length Tmax can be set. It is much more intuitive to
control stream surface “length” than the maximum parame-
ter of numerical integration applied usually, since it matches
the length scale of the dataset.

Surface Parametrization Advancing the front through the
vector field has the side effect of producing a parametriza-
tion of the surface based on the starting line segment
(parametrized as s ∈ [0,1]) and the streamline arc length in
flow direction (t ∈ [0,Tmax]). We will discuss possible appli-
cations of this parametrization in section 5.

4. Vortex Core Boundaries

We turn now to an alternative type of surfaces that can be
considered the hull of vortices. Therefore we use these sur-
faces to represent both the shape and the spatial extent of
vortices.
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Figure 3: Tangential velocity (left) and Rankine vortex
model (right)

4.1. Basic Idea

Let us first define tangential velocity vt , also known as swirl
or circumferential velocity. The basic idea is illustrated by
the left picture in Fig. 3. Consider the plane Π orthogonal to
the vortex axis, the rotation center taken as coordinate origin
Ω. The projection of the velocity ~v onto the line perpendic-
ular to the position vector is called tangential velocity and
is denoted ~vt in the following. In the same plane we define
the vortex core radius as the distance from the rotation cen-
ter of the point where the tangential velocity is maximal for
a given radial direction [Lug96]. This definition is best un-
derstood when considering the so-called Rankine vortex, see
Fig. 3. Observe that rotational symmetry is assumed and tan-
gential velocity is a function of the distance r of a point to
the rotation center. Close to the vortex rotation center the
vector field behaves like a solid body rotation and tangential
velocity grows linearly with respect to r. Beyond a certain
distance r = R, the tangential velocity decays, inverse pro-
portional to r. This model is very simple. Yet it has the real-
istic property to have zero tangential velocity for both r = 0
and r = ∞ and is widely used in practice [Lug96]. It fol-
lows from the definition that vt reaches a maximum for r = R
which is defined as the vortex core radius. For our purposes
we consider a more general vortex type and do not assume
rotation symmetry. Furthermore we only require that a max-
imum value of the tangential velocity exists in each radial
direction. The vortex core boundary is thus defined as the
set of points whose distance to the rotation center is equal
to the local value of the vortex core radius. Keeping this in
mind we now describe our extraction method.

4.2. Algorithm

As mentioned previously the vortex core radius is estimated
with respect to a given rotation center and normal plane. Our
extraction method takes a polygonal vortex core line as input
that we interpret as the loci of rotation centers. This line is
assumed given; we describe a streamsurface-based method
to this purpose in section 5.1.

Moving along the resampled line we compute around each
vertex a polygonal approximation of the actual vortex core
boundary. To do so, we need a normal vector that uniquely
determines the orthogonal plane Π. We implemented two
possible approaches: the normal vector is either provided by

the local flow direction or by the tangent line to the feature
line. The first one is based on the hypothesis that a vortex
core line is a streamline. The second rather interprets the vor-
tex core line as a mean locus of rotation, see section 5. Given
the corresponding plane, the vortex core radius must be com-
puted for each discrete angle value θk = 2kπ

N ,k ∈ 0, ..N −1
around the center. Likewise we restrict tangential velocity
computation to sample points along the radial axis. We now
process in two steps, as explained next.

Reference Values The first step computes the vortex core
radius at few angles φl = 2lπ

M , l ∈ 0, ..M−1,M << N. The
corresponding positions are depicted with square points in
Fig. 4. They will serve as reference values in the second step.
Practically, they are obtained by searching the first maxi-
mum of the scalar product of the velocity ~v(r) and the co-
ordinate vector eθ, see Fig. 4. This maximum is computed
on-the-fly. Starting from the rotation center we evaluate the
sample values and return the first value that is larger than
every previous one and the next p values, i.e. the first local
maximum over a symmetric p-neighborhood. Sampling is
done uniformly. However if we either leave the grid or enter
a region where tangential velocity swaps sign, we adaptively
reduce the step size in order to accurately sample the field
close to the corresponding boundary.

Radius Computation Once we have collected the reference
values we need to compute the vortex core radius at the re-
maining angles. Suppose that we want to evaluate the radius
at an angle θk ∈ (φl ,φl+1), where φl and φl+1 correspond to
reference values rl and rl+1. We restrict the search along the
radial axis to a radius interval [(1−α)R(θk),(1 + α)R(θk)]
where

R(θk) =
(φl+1 −θk)rl +(θk −φl)rl+1

φl+1 −φl
,

and α is a parameter that bounds possible variations of the
vortex core radius from a reference value to the next. The
curve corresponding to R(θ) is shown in Fig. 4 along with
the search domain surrounding it. Starting at the lower bound
of the interval we look for a maximum in the way described
previously. However, since we chose to bound the region
considered we can face situations where the actual maxima

Figure 4: Boundary curve computation
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lie outside the prescribed interval. This case corresponds to a
current maximum lying close to the domain boundary, either
interior or exterior. This implies that these current maxima
have not been compared with the values of their p-neighbors
on one side. We handle this problem by extending the con-
sidered interval in the direction of the current maximum, ei-
ther toward the rotation center or the exterior of the vortex.

Surface Generation The points computed previously form
a closed polyline that approximates the vortex core bound-
ary. One curve is generated per vertex of the vortex core
polyline. Neighboring curves are then joined with triangles
by connecting points that correspond to equal angles on the
curve.

Curve Smoothing The resulting triangular surface is in
general not smooth, mainly due to interpolation artifacts dur-
ing radial resampling and to slight errors in the definition
of both rotation center and orthogonal plane. To generate a
more pleasing visualization we smooth the resulting surface
in a post-processing step. To this aim we use the classical
umbrella operator [KCVS98] that is very fast and gives sat-
isfying results. Observe that we avoid the natural shrinkage
effect by scaling vertices after smoothing to restore the orig-
inal area enclosed by the curve [DMSB99].

5. Surface Techniques

5.1. Vortex Verification and Core Line Extraction

In the following we introduce a stream surface-based scheme
for the visual exploration of vortex structures and the ex-
traction of vortex core lines. This scheme can be applied in
situations where automatic schemes (see section 2) deliver
unsatisfying or no results and there is a first guess as to the
existence and location of a vortex. Moreover, it can be of use
in interactive analysis of CFD datasets, due to the relatively
low computational cost of stream surface integration as op-
posed to the high cost of automatic schemes that examine
the complete dataset.

The basic idea here is to surround the assumed vortex
core with a stream surface and visually observe its rota-
tional behavior to verify the existence of a vortex core.
This is achieved by integrating a stream surface from a
closed starting curve winding around the vortex axis. The s-
parametrization is then color mapped on the resulting stream
surface, and rotation of the individual streamlines can be eas-
ily confirmed. Given a point p on the assumed vortex core
line (or close to it), a good choice for the starting curve (dis-
cretized as a polygon P0) is obtained by taking a circle with
small radius (in relation to the dataset dimensions), centered
at p and oriented orthogonal to the flow direction v(p) at p
(cf. Figure 5).

Once the existence of a vortex is validated, the stream sur-
face can be utilized to compute an approximation to the vor-
tex core line. We note that the lines of constant t-parameter

on the surface indicate the integration front location at in-
creasing integration parameter. Since the starting curve was
closed and a vortex core was observed, we conclude that the
isolines of t on the surface form a closed polygon Pt . To ob-
tain the center of rotation from Pt , a weighted average of the
vertices (similar to center of gravity) is taken. The polygon
vertices qi

t , i = 1, . . . ,Nt are first sorted in ascending order of
the corresponding s-parameters, where Nt need not be fixed
due to adaptive triangulation. The average is then computed
as

Ct :=
1

2 Nt Lt

Nt

∑
i=0

qi
t ·

(

||qi
t −qi−1

t ||+ ||qi
t −qi+1

t ||
)

,

where Lt is the length of the contour of Pt , and the up-
per indices are understood modulo Nt . By weighting each
vertex with the distance to its direct neighbors and normal-
izing by Lt , we compensate for varying distance of the poly-
gon vertices due to insertion and deletion of streamlines by
the algorithm. Computing Ct for a fixed number of parame-
ters tn ∈ [0,Tmax] and connecting the points with increasing
t yields the gravity line of the stream surface, which we take
as an approximation of the stream surface’s center of rota-
tion. In turn, the gravity line closely approximates the vortex
core line. Some of the examples from section 6 show how
these feature definitions give good results and can be used as
input for the vortex core extraction scheme from section 4.
The advantage of using a stream surface over a fixed num-
ber of streamlines for gravity line calculation is the adaptive
resolution of stream surface computation that ensures good
approximation even if the vortex core is heavily deformed.

5.2. Plane singularities

To put the idea described in the last section to use, it is
necessary to obtain a good starting point p as the center of
the closed curve from which stream surface integration is
started.

If the flow field of a vortex is projected onto a plane
roughly perpendicular to the vortex axis, the planar flow van-
ishes at the point where the vortex core line intersects the
plane. A simple algorithm doing field resampling, projection
and a zero search can thus be used to determine approximate

Figure 5: Left: streamline starting curve P0 at assumed vor-
tex core line position p, perpendicular to the flow v(p) at p.
Right: stream surface colored to perceive rotation around
vortex core line
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starting points from very rough guesses. To avoid false pos-
itives, the zeros are classified according to their eigenvalues
and only those that represent attracting/repelling spirals are
taken into account (heuristically, the latter correspond to a
cross-section of swirling motion). Refer to Figure 7 (lower
right) for an example.

5.3. Stream surface Color Mapping

To further draw on the potential of the generated surfaces,
we discuss several methods that enhance the visualization
of these surfaces. Corresponding visualization results are
shown in section 6.5.

Dataset Resampling Each of the generated surface types is
computed in the form of a triangle mesh. Given an appro-
priate data structure for dataset representation, it is straight-
forward to extract components of the original dataset at the
vertex positions of the generated surfaces. It is standard pro-
cedure to slice the dataset by means of a cutting plane and
apply a color mapping scheme for certain components of the
dataset resampled on that plane. The very same approach can
be taken with stream surfaces.

Curvature Given in the form of a triangular mesh, the pure
geometry of a stream surface is readily submitted to curva-
ture analysis using discrete curvature operators supplied e.g.
by Desbrun [DMSB99]. Strong bending of the stream sur-
face serves as an indicator of inhomogeneous flow behavior,
and curvature information aids in comprehending the three-
dimensional flow pattern.

Stretching Making use of the parametrization produced by
the stream surface algorithm (cf. section 3), we can intro-
duce a quantity called streamline stretching that measures
the convergence and divergence of streamlines in the sur-
face. Noting that individual streamlines are parametrized by
constant s ∈ [0,1], we find an approximation for the stretch-
ing of streamlines S on a per-triangle basis: if si, i = 1,2,3
are the s-parameters at the vertices of the triangle T , then

S :=
1

area(T )
max{ |s0 − s1|, |s0 − s2|, |s1 − s2| } .

In other words, S is an approximation of the length of the
integration front in parameter space passing through the tri-
angle T . Again, S can be visualized subject to color map-
ping.

6. Results and Examples

6.1. Datasets

We tested the presented algorithms on several datasets of
aerodynamic CFD simulations performed by the German
Aerospace Center (DLR)/Göttingen using their TAU code.
All datasets are given as a number of variables (velocity,

pressure, density) provided on the vertices of unstructured
grids consisting of tetrahedra, pyramids and prisms. Cell-
wise linear or trilinear interpolation is assumed in between
the vertices.

Stream surface integration as well as vortex core bound-
ary extraction requires a large number of value lookups (cell
searching) in the velocity field, thus an efficient data struc-
ture is mandatory. We base our point-location algorithms
on a kd-tree approach recently described by Langbein et
al. [LST03]. The datasets are now described in more detail:

ICE train This dataset is the result of a simulation of a high
speed train traveling at a velocity of about 250 km/h with
wind blowing from the side at an angle of 30 degrees.
The wind causes vortices to form on the lee side of the
train, creating a drop in pressure that has adverse effects
on the train’s track holding. The original grid consists of
2.6 million elements.

Delta Wing In order to study vortex breakdown, an un-
steady simulation of a delta wing configuration was per-
formed. The simulation was computed without the as-
sumption of symmetry, and totals 1000 time steps that
show the formation and breakdown of the primary vor-
tices over time. Since the given methods are applicable to
steady flow only, we consider only a single time step that
includes vortex breakdown to show the sophistication of
the flow structures involved and the aid stream surfaces
can provide in understanding them. Grid size: 11.1 mil-
lion elements.

F6 airplane The simulation contains a steady state flow
around a standard plane configuration. Symmetry is made
use of for computational efficiency. The grid has 8.4 mil-
lion cells.

All computations were carried out on a standard PC with
3GB of RAM. The computation times are on the order of
few minutes at most.

6.2. Stream Surfaces

Figure 8 gives an impression of the flexibility of the im-
proved stream surface algorithm (section 3). We present an
overview of the delta wing dataset with vortex formation
at the wing apex and stream surfaces with closed starting
curves around the primary vortices (upper left). The starting
locations for the latter were obtained using the plane singu-
larity approach (detailed in section 5.2). The lower left im-
age details the breakdown of the primary vortex, sliced by
a cutting plane to reveal the inner mechanics. The reversion
of flow direction is apparent as the flow folds into the bub-
ble. It is visible that the flow circulates in the bubble many
times before leaving it in contorted form. Our algorithm per-
forms this computation well, although a bound on the adap-
tive resolution has to be imposed as otherwise the resulting
triangulation is too large for interactive rendering. The reso-
lution is still more than sufficient to recognize the intricacy
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of the flow. The lower right image gives a closeup of the
apex stream surface. It visualizes the formation of primary,
secondary and tertiary vortices above the wing and the flow
between them. In the upper right, the ICE dataset has been
treated with a stream surface that shows the various vortices
created on the lee side of the train.

6.3. Vortex Core Boundaries

Figure 6 (upper row) shows the result of our extraction
method applied to the Delta Wing data set. Of particular in-
terest are the different shapes of the primary, secondary and
tertiary vortices. They are better understood in the light of
Figure 8. As a matter of fact, these three vortical structures
coexist on both sides of the wing and are intimately related.
Most striking is the squeezed shape of the tertiary vortex.
Observe that the extraction scheme is able to distinguish be-
tween the different structures although they are very close on
the front of the wing. It is worth mentioning that the strong
deformations induced by the vortex breakdown entail a loss
of consistency of the vortex core boundary. The results of
the same technique applied to the ICE train dataset are given
in Figure 6 (lower row). The streamlines and the wrapping
streamsurface show that the computed tubes confirm the na-
ture and position of the vortex core line as extracted by our
surface-based scheme.

6.4. Vortex Core Line Extraction

In order to ensure the utility of our stream surface based
vortex core line extraction scheme (cf. sec. 5.1), we em-
ployed the algorithm of Sujudi and Haimes [SH95], imple-
mented using the parallel operator of Roth [Rot00] to com-
pare against.

The upper image of Figure 7 gives an overview of the
ICE dataset with the vortex core segments extracted using
the Sujudi-Haimes analysis. It yields incoherent results and
a number of false positives (numerical ghosts of attachment
and separation on the train surface, indicated by the arrows).
To confirm the existence of the upper vortex, the technique
described in section 5.1 has been used and rotating behavior
of the streamlines is clearly visible. (Note that the swirling
stream surface has been kept short for the purpose of the
image.) The vortex core is extracted using the proposed al-
gorithm and results in a much more coherent and smooth
feature definition. The lower row of the same figure gives
an overview of the delta wing (left), again comparing our
method of feature extraction to the results of the Sujudi-
Haimes algorithm and showing vortex cores extracted based
on these features. Primary, secondary and tertiary vortex
cores are extracted reliably and do not overlap. On the right
side, plane singularities (cf. section 5.2) above the wing are
displayed together with the resulting stream surfaces that
show that the singularities do indeed belong to vortices (ro-
tation visible by surface coloring according to s-parameter).

6.5. Stream Surface Color Mapping

Some examples of the techniques described in section 5 are
depicted in Figure 9. In the upper left two stream surfaces
are extracted from the F6 dataset. Wake vortex formation
is clearly visible (compare e.g. to the drawings of Dall-
mann [Dal83]). The stream surface passing near the wing tip
has been colored according to streamline stretching, and one
can see that the streamlines do not diverge much until the
vortex is forming by a twisting of the surface. The second
surface in this image is passing through and split into three
fronts by the engine and is color mapped according to resam-
pled pressure values from the dataset. Stretching of the delta
wing apex surface is shown in the upper right, and Gaussian
curvature for the same surface is given in the lower left. A
color mapping of helicity magnitude (lower right) visualizes
a strong correlation between increased helicity and the onset
of vortex breakdown. It was computed in-place at the stream
surface vertices, using resampling of velocity and vorticity
and forming the scalar product pointwise for computational
efficiency.

7. Conclusion and future work

The objective of the work presented in this paper was to es-
tablish surface techniques in the visualization of complex
CFD datasets, with a strong emphasis on vortices. Stream
surface computation was improved to the point where com-
plicated flows can be treated. We discussed a vortex core re-
gion definition that is physically justified and introduced an
extraction scheme that can visualize the shape of vortices.
Furthermore, we pointed out some applications of stream
surfaces going beyond pure visualization, namely visual ver-
ification of presumed vortices and phenomenological extrac-
tion of vortex core line features. Our results and observations
are summarized below, together with some ideas for future
work.

Streamsurface computation The described improvements
to Hultquist’s algorithm make the application of stream sur-
faces for the visualization of involved flow structures possi-
ble. Vortex breakdown serves as an impressive example. In
general, selecting a starting location or curve still requires
good knowledge of the dataset, or otherwise it is very time-
consuming to create good visualizations by trial and error.
Turk and Banks have accomplished automatic seeding for
streamlines in 2D [TB96], however, for stream surfaces no
work on this topic has been published so far. Stream sur-
faces are also subject to visual clutter if not applied econom-
ically. Noting the importance of three-dimensional separa-
tion in e.g. aerodynamics, stream surfaces will likely prove
a useful tool in creating visualizations of three-dimensional
topological structures.

Vortex Cores A scheme for the extraction of vortex core
boundaries according to the Rankine model was introduced.
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The generated boundary surface serves to represent the
shape of the vortex. The method is computationally cheap
and produces good results. Some open issues remain, most
prominently the influence of the provided feature line on the
result. Moreover, the generated surface is not a stream sur-
face. The interaction of both types of surfaces may prove
interesting.

Streamsurface Techniques We showed here that a num-
ber of insightful visualizations can be provided by stream
surfaces aside from mere display. The color mapping tech-
niques show that they can serve as flow adherent cutting-
plane like two-dimensional probes for the visualization of
flow related properties. Furthermore, it proved valuable to
study the geometry of the surfaces more closely. Our phe-
nomenological feature extraction approach performed well
in our test cases even though the results given by stan-
dard methods were doubtful. It should be emphasized here
that our scheme is not meant to replace automatic methods.
Rather, we seek to provide a tool that can improve under-
standing of a dataset through visual exploration and help
in creating expressive visualizations. As to future work, the
choice of radius employed for the stream surface computa-
tion and how it affects the results of the feature extraction
scheme should be examined in detail. Again, a connection
to the visualization of topological structures should be con-
sidered.
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Figure 6: Upper row: Vortex cores boundaries above the delta wing. Note the clean distinction between the vortices and the non-
trivial shapes. Lower row: Vortex core boundaries in the ICE dataset. Although detected incompletely by the Sujudi-Haimes
algorithm, vortex cores could be extracted by our method. The streamlines give a rough impression of how the vortices are
created (right). The streamsurface across the nose of the train “wraps” the head vortex (right).

Figure 7: Upper image: Results of stream surface based vortex core line extraction on the ICE train: Sujudi-Haimes output with
false positives indicated by arrows (blue), vortex core lines computed as gravity lines (magenta), visual verification of the upper
vortex using a wrapping stream surface, with color mapping to show the rotation around the vortex axis (yellow/green). Note:
not all vortex cores lines have been extracted. Lower left image: Results of vortex core line and vortex core boundary extraction
on the delta wing: Sujudi-Haimes output (dark blue, false positives indicated by arrows), vortex core lines from gravity lines
(magenta), triangle meshes of vortex core boundaries (primary: blue, secondary: green, tertiary: red). Lower right image:
Cutting plane with closed stream surfaces started using plane singularities. Stream surface coloring indicates rotation and
confirms the existence of vortices.
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Figure 8: Upper left: Overview of the delta wing dataset with vortex creation at apex and the two primary vortices, breaking
down differently. Upper right: Stream surface around ICE train showing vortices on the lee side. Lower left: Vortex breakdown
cut open, revealing recirculation. Lower right: Formation of primary, secondary and tertiary vortices at wing apex. Note how
the shape of the tertiary vortex is strongly elliptic.

Figure 9: Upper left: Stream surfaces in the F6 dataset. Vortex generation at the wing. Upper right: Stream surface showing
vortex breakdown, helicity magnitude color mapping. A strong correlation between helicity magnitude and the onset of vortex
breakdown is evident. Lower row: Apex surface in the delta wing dataset, colored according to Gaussian curvature (left) and
streamline stretching (right), revealing geometric properties of the stream surface.
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