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Abstract

Topology-based methods have become standard tools for the visual-
ization of planar vector and tensor fields. This success is due to their
ability to convey huge discrete datasets into synthetic graph depic-
tions that exhibit all qualitative properties of the flow. Inthat way
one reduces dramatically the amount of information while preserv-
ing insight into essential characteristics. Yet, in the case of turbulent
flows the original technique of topology visualization leads to clut-
tered images and inconveniences interpretation. The paperpresents
a continuous topology simplification method that attack this defi-
ciency. It works for vector and tensor fields. Its basic principle is
to identify unimportant features in the original graph before mod-
ifying the field in a neighborhood to force their pruning. Thede-
formation ensures structural consistency with the original topology.
The theoretical background is given by the theory of bifurcations
that permits an interpretation of this transformation as a continuous
process.

1 Introduction

Vector and tensor visualization is an issue of major interest for
many scientific and engineering areas. Namely these mathemati-
cal objects play a key role in the qualitative and quantitative de-
scription of numerous phenomena like e.g. in fluid dynamics,solid
mechanics, magnetics but also computational fluid dynamics(CFD)
or finite element analysis. Today’s numerical simulations or exper-
imental measurements provide scientists and engineers with huge
amount of vector and tensor data that must be analyzed and in-
terpretated. Therefore there is a need for visualization techniques
that convey this discrete, abstract input data into meaningful pic-
tures that permit to extract efficiently the essential information. In
this context topology-based visualization methods have proved very
successful in enabling a good insight into the qualitative nature of
vector and tensor field while dramatically reducing the sizeof the
data required for analysis. They were initially designed for vector
fields [5, 6, 7] before being extented to symmetric, second-order
tensor fields [9, 10]. Their inspiration leads back to the qualita-
tive theory of dynamical systems [1, 2] on one hand and differential
geometry [3] on the other hand. Their basic principle consists in
focusing the visualization of the field on its singularitiesand on
special integral curves that connect them, partitioning the domain
into subregions of uniform qualitative behavior. This results in a
synthetic graph depiction that points out the features of major inter-
est for the identification of both local and global flow properties.
Yet turbulent flows, like those typically encountered in CFDsimula-
tions, are usually associated with vector and tensor topologies char-
acterized by the presence of many structures of very small scale.
Their proximity and interconnection in the global depiction result
in visual clutter with classical methods. Moreover, this drawback
is emphasized by low-order interpolation schemes, typically used

in practice (like linear or bilinear interpolation), because they lack
the local flexibility required to precisely reproduce closetopologi-
cal features. Consequently they confuse the results by introducing
artifacts. For these reasons topology-based methods produce in this
context pictures that inconvenience analysis because essential fea-
tures cannot be distinguished from local details or numerical noise.

These deficiencies explain why a simplification method is re-
quired to prune insignificant features according to qualitative and
quantitative criteria, specific to the considered application. The
problem was first addressed by de Leeuw et al. [11]. Their method
removes pairs of singular points connected by the topological graph
along with the corresponding edges while preserving consistency
with the original topology. The method is graph-based and ignores
the underlying continuous data. Hence, no description of the vector
field is provided that corresponds to the simplified topology: Other
classical flow visualization methods, e.g. streamlines or LIC [8],
cannot be applied afterward to offer consistent depictions. In pre-
vious work [12, 13] we proposed an alternative approach for vector
and tensor fields in which close singularities are merged, resulting
in a higher order singularity that synthesizes the structural impact of
several features of small scale in the large. This reduces the num-
ber of singularities as well as the global complexity of the graph.
Nevertheless this technique has several limitations: First, it implies
local grid deformations to simulate the singularities’ merging com-
bined with local modifications of the interpolation scheme.Second,
it is unable to remove completely singular points due to numerical
noise since a singularity is always introduced afterwards.At last,
the simplification can only be conducted with respect to geomet-
ric criteria (the relative distance of neighboring singularities) which
can lead to the disappearance of meaningful flow features.

The new method presented next has been designed to overcome
these drawbacks and to offer a continuous way to simplify the
topology of planar vector and symmetric, second-order tensor
fields. The basic idea consists in successively removing pairs of
singularities from the graph while preserving the consistency of
the field structure. Each of these removals is induced by a forced
local deformation that brings a part of the topology to a simpler,
equivalent, uniform structure. The mathematical foundation of
these deformations is given by the theory of bifurcations (see
e.g. [4]). Practically, the method starts with a planar piecewise
linear triangulation. We first compute the topology and associate
singularities’ pairs with numerical measures that evaluate their
relevancy in the global structure. Next, we sort the pairs according
to these criteria and retain those with values over prespecified
thresholds. Then we process all pairs sequentially. For each
of them we first determine a cell pad enclosing both singular
points. In this pad, we slightly modify the field values such that
the singular points disappear. This deformation is controlled by
angular constraints on the new values imposed by those kept
constant on the frame of the pad. The processing ends with the
recomputation of the simplified topology.



The contents are structured as follows. We review basic notions
of vector and tensor field topology and briefly consider a special
type of local bifurcation in section 2. The strategy used to determine
the significance of singularities’ pairs and sort them for removal is
discussed in section 3. Section 4 details how local deformations of
the field are carried out to suppress the selected pairs. Results are
finally proposed on a vector and a tensor CFD dataset in section 5.

2 Topology

For visualization purposes the topology of a vector or a tensor field
is the qualitative structure of the associated flow. This flowis de-
fined as the set of all tangential curves integrated in the field, stream
lines or tensor lines. Of particular interest are the locations where
these curves do not behave uniformly. They correspond to so-called
singularities and constitute the nodes of the topological graph. In
their neighborhood few curves play a special role. Integrated away
from the singular point they build the edges of the topology.This
definition is completed by adding closed orbits. Further, essential
qualitative properties of a field can be characterized thanks to the
notion of index. Precise definitions are given next.

2.1 Vector Field Topology

The singular points (orcritical points) of a vector field are the po-
sitions where the field magnitude vanishes. Their specificity is the
fact that they are the only locations where stream lines can meet.
The classification of critical points is based in the linear case (suf-
ficient for the present method) on the eigenvalues of the Jacobian
matrix. Depending on the real and imaginary parts of these eigen-
values there exist several basic configurations shown in Fig. 1.

Saddle Point:
R1<0, R2>0,
 I1 = I2 = 0

Attracting Focus:

   I1 = −I2 <> 0
R1 = R2 < 0,

Repelling Focus:
   R1 = R2 >0,
  I1 = −I2 <> 0

Repelling Node:

    I1 = I2 = 0
R1, R2 > 0,

Attracting Node:
     R1, R2 < 0,
     I1 = I2 = 0

Figure 1: Basic configurations of 1st-order critical points

The separatrices mentioned above are the curves connected to
saddle points along the eigenvectors. For every other type of crit-
ical point the sign of both eigenvalues’ real parts is eitherpositive
or negative, corresponding to a repelling (source) or an attracting
(sink) nature respectively. Hence a separatrix is linked toa saddle
point and typically starts at a source or ends at a sink.
Some additional topological features play the role of source or sink
in a vector field: These are closed orbits that are also limit cycles

because of the asymptotic behavior of the streamlines in their vicin-
ity. Fig. 2 illustrates such a configuration. These streamlines are
periodic.

Figure 2: Attracting closed orbit (sink)

A fundamental concept in vector field topology is the so-called
Poincaré index (or simply index) of a simple closed curve: It mea-
sures the number of rotations of the vector field while traveling once
along the curve in positive direction. Remind that the indexis al-
ways an integer by continuity of the field. By extension one defines
the index of a critical point as the index of a simple closed curve
around its position. Dealing with first-order critical points saddles
have index -1 whereas sources and sinks have index +1. Further-
more the index of a closed orbit is +1. In the following we will
make use of two fundamental properties: First, the index of are-
gion enclosing no critical point is zero. Second, the index of a re-
gion enclosing several critical points is the sum of their individual
indices. Now in linear vector fields there is at most one single crit-
ical point (except in degenerate cases). Moreover this critical point
has either index +1 or -1. Hence if the index of a closed curve is
zero it contains no critical point.

2.2 Tensor Field Topology

Two-dimensional symmetric second-order tensors are in fact 2x2
symmetric matrices. A real two-dimensional symmetric matrix M
has always two (not necessarily distinct) real eigenvaluesλ1 ≤ λ2

with associated orthogonal eigenvectors. Per definition, eigenvec-
tors have neither norm nor orientation which distinguishesthem
fundamentally from the classical vectors considered previously.
Since the computation of the eigenvectors ofM is not affected by
the isotropic part (which is multiple of the identity matrix) we only
consider the trace-free part ofM , called deviator. Thus we process
in the tensor case matrix-valued functions of the form:

T : (x, y) ∈ U ⊂ IR
2 7→ T (x, y) =

(

α(x, y) β(x, y)
β(x, y) −α(x, y)

)

,

where α and β are two scalar functions defined over the con-
sidered two-dimensional domain. One defines a major (resp.
minor) eigenvector fieldat each position of the domain as the
eigenvector related to the major (resp. minor) eigenvalue of the
tensor field. One defines major (resp. minor)tensor linesas the
curves everywhere tangent to the major (resp. minor) eigenvector
field. Consequently, as opposed to stream lines these curveshave
no inherent orientation. Yet this definition only holds outside
locations where both eigenvalues are equal. There eigenvectors
cannot be uniquely determined since every non-zero vector is an
eigenvector. These singular points are called degenerate points.
They correspond to a zero value of the deviator. Remark that
the lack of orientation leads to topological structures unknown



in vector fields. In the linear case these singularities exist in two
possible types:Trisectoror wedge point(see Fig. 3). Separatrices

Wedge Point

S1 S1 S2 S1 S2=

S3S2
Trisector

Figure 3: First Order Degenerate Points

emanate here from both wedges and trisectors. They are the curves
that bound regions where tensor lines pass by the singularity in
both directions, called hyperbolic sectors. Closed tensorlines exist
for tensor fields too. Nevertheless they are rare in practice.

The notion of index can be extended in this context. Analogous
to the vector case one defines the index of a closed curve as the
number of rotations of the eigenvectors along the curve. Since these
eigenvectors are orthogonal the tensor index applies to both eigen-
vector fields. The lack of orientation entails index values multiple
of 1

2
. In particular a trisector has index− 1

2
, a wedge has index+ 1

2
.

An illustration is proposed in Fig. 4. Remark that the properties

1
2

e
e2

1

λ2
λ1

θ

θd
1
π2

Figure 4: Tensor index of a trisector

mentioned for the vector index hold for the tensor index too.

2.3 Pairwise Annihilations

The definitions introduced previously apply to an instantaneous
topological state of a vector or tensor field. Now this stablestate
may evolve in another one by slight changes of underlying param-
eters. A typical example is provided by time-dependent fields, the
singularities of which may move, appear or vanish over time,lead-
ing to topological changes. These changes preserve structural con-
sistency. In particular the index of the concerned region acts as an
invariant. If a topological transition only affects a smallregion of
the field it is calledlocal bifurcation. If it leads to a global struc-
tural change on the contrary this is aglobal bifurcation. For our
purpose we only consider a particular kind of local bifurcation: It
consists of the pairwise annihilation of two singularitieswith oppo-
site indices. Since these singularities have global index 0they are
equivalent to a configuration without singular point. Consequently
they vanish after merging. The vector case is illustrated inFig. 5:
A saddle point and a sink (resp. source) node are merged. As far
as degenerate points are concerned, the situation is shown in Fig. 6.
Here a trisector is merged with a wedge.

Practically we want to reduce the number of singularities and as-
sociated separatrices while remaining consistent with theoriginal

Figure 5: Saddle-node bifurcation

Figure 6: Pairwise annihilation (tensor)

topology. So we force locally pairwise annihilations of a saddle
with a node, resp. of a trisector with a wedge. This can be achieved
by small local changes in the field values as we show in the follow-
ing.

3 Selective Pairing of Singularities

As said previously, we aim at annihilating pairs of singularpoints
with opposite indices. Moreover, the corresponding topology sim-
plification must take geometric and any additional criteriainto ac-
count to fit the considered interpretation of the vector or tensor
field. Our geometric criterion is the proximity of the singularities
to be removed pairwise. This choice is motivated by two major
reasons. First, close singularities result in small features that clutter
the global topology depiction since they can hardly be differentiated
and induce many separatrices. Second, piecewise linear interpola-
tion is likely to produce topological artifacts consistingof numer-
ous close first-order singularities, especially if numerical noise is
an issue. Therefore, given a proximity threshold, we determine all
possible pairs of saddle and sinks, resp. wedges and trisectors, sat-
isfying the geometric criterion and sort them in increasingdistance.
Remark that in the vector case we only consider pairs of critical
points linked by a separatrix which strongly restricts the range of
possible pairs. Unfortunately this criterion cannot be applied to
tensor topologies since every degenerate point exhibits atleast one
hyperbolic region. This entails that separatrices emanating from a
singularity often do not reach any other one, i.e. separatrices of-
ten leave the domain through the boundary. Additional criteria may
be introduced to restrict the range of the considered singularities
to those that are little relevant for interpretation. Basically a quan-
tity is provided that characterizes the significance of eachsingular
point and one retains for simplification only those with a value un-
der a user-prescribed threshold. Consequently if a given singularity
is considered important for interpretation it will be left apart. Doing
so it will not be removed from the topology.

Practically we will consider in section 5 the norm of the includ-
ing cell as a criterion to characterize the importance of a critical
point. As a matter of fact singularities located in a cell with tiny
vector field magnitude are likely to be due to numerical noise.



4 Local Deformation

Once a pair of singularities has been identified that fulfillsour cri-
teria it must be removed. To do this we start a local deformation
of the field in a small area around the considered singular points.
Practically we only modify vector or tensor values at the vertices of
the triangulation and do not change the interpolation scheme. This
ensures obviously continuity over the grid after modification. In
the following we detail first how vertices to be modified are deter-
mined. Next we explain how new values are set at those vertices
to ensure the absence of remaining singular points in their incident
cells afterwards.

4.1 Cell-wise Connection

Consider the situation shown in Fig. 7. We first compute the inter-
sections of the straight line connecting the first singular point to the
second with the edges of the triangulation. For each intersection
point, we insert the grid vertex closest to the second singular point
(see vertices surrounded by a circle) in a temporary list . After this,
we compute the bounding box of all vertices in the list and include
all grid vertices contained in this box. This includes everyvertex
marked in the former step. The vertices concerned with modifica-
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Figure 7: Cell-wise connection

tion are surrounded by squares. We call theminternal verticesin the
following. Since the modification of a vertex value has an incidence
on the topology in all triangle cells it belongs to we includeevery
cell incident to a selected vertex in the cell group. These cells are
colored gray. Further processing will have to associate theinternal
vertices with values that ensure the absence of any singularpoint
in the cell group with respect to the values defined at theboundary
vertices(marked by big dots in Fig. 7) that will not be changed.
Notice that the connection fails if one of the included cellscontains
a singular point that does not belong to the current pair. In this case
the global index of the cell group is no longer zero. If it occurs we
interrupt the processing of this pair. Nevertheless such cases can be
mostly avoided by simplifying pairs of increasing distance.

4.2 Angular Constraints

The basic principle of the local simplification technique isbetter un-
derstood when considering a single internal vertex together with its
incident triangles: See Fig. 8. Suppose that every positionmarked
black is associated with a constant value and the global index of the
triangle stencil is zero. The problem consists in determining a new
tensor value at the internal vertex (in white) such that no incident
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Figure 8: Configuration with single intern vertex and incident cells

cell contains a critical point. This is equivalent to a situation where
every incident triangle has index 0 according to what precedes.

We come now to an important property of linear vector and ten-
sor fields that is used to drive the pairwise removal of singularities.

Property 4.1 The angle variation of a linear vector field (resp.
eigenvector field of a linear tensor field) along an edge is always
smaller thanπ (resp. π

2
).

This is obvious in the vector case. For a proof in the tensor case
see [15]. We now use this property to compute the index of a lin-
ear vector (resp. tensor) field along the edges of a triangle.Since
the field is linear it is determined by the three values at the ver-
tices of the triangle. We denoteθ0, θ1, θ2 the corresponding angle
coordinates of the vectors (resp. eigenvectors) enumerated in coun-
terclockwise order. Because eigenvectors have no orientation the
angles are in this case defined moduloπ. We set by convention
θ3 := θ0, so we have

index= Σ2
i=0∆(θi, θi+1). (1)

To unify the discussion we introduce the symbolσ that we define
asσ := 2π in the vector case andσ := π in the tensor case. Fur-
thermore we setδi := θi+1 − θi. With the property above we have
finally

∆(θi, θi+1) = δi if |δi| < σ

2

δi + σ if δi < −σ

2

δi − σ if δi > σ

2
.

Getting back to a given triangle of the stencil depicted above,
the angle coordinates of the vectors (resp. eigenvectors) defined
at the black vertices (sayθ0 andθ1) induce an angular constraint
for the new value. Indeed in Equation 1∆(θ0, θ1) is already set
to a value that is strictly smaller thanσ

2
. The two missing terms

must induce a global angle change smaller thanσ (for the index
of a linear singular point is a multiple ofσ

2π
). It will be the case

if and only if the new vector (resp. eigenvector) value has angle
coordinate in]θ1 + σ

2
, θ0 + σ

2
[ (moduloσ), with [θ0, θ1] being an

interval with width smaller thanσ
2

, i.e. the actual angle change
along a linear edge fromθ0 to θ1 (see Fig. 9).

This provides a angle constraint on the new value for a singletri-
angle. Intersecting the intervals imposed by all incident triangles,
one is eventually able to determine an interval that fulfillsall the
constraints. Notice that this interval may be empty. In thiscase
the simplification is (at least temporarily) impossible. Once a sat-
isfactory angle interval has been found we provide the vertex with
a corresponding value. In the vector case, the magnitude is set to
the average of the field magnitude on the stencil boundary. Inthe
tensor case ifθ is an angle in the interval the following tensor value
will be solution:

Tnew =

(

cos 2θ sin 2θ
sin 2θ − cos 2θ

)

.
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Figure 9: Angular constraint in a triangle cell (moduloσ)

4.3 Iterative Solution

For each internal vertex (see Fig. 7) we must now find a new vec-
tor (resp. tensor) value that fulfills all the angle constraints induced
by the edges connecting the incident vertices. These incident ver-
tices are of two types: Internal or boundary vertices. Edgeslinking
boundary vertices are considered constant and induce fixed con-
straints. Internal vertices still must be provided a final value and
introduce flexibility in the simplification scheme. The pseudo-code
of the method is as follows (mean angle is the mean value of the
neighbors’ angles).

// initialization
for each (internal vertex)

interval = fixed constraints
if (interval is empty)

interrupt
end if
if (no fixed constraints)

interval = [0, SIGMA[
end if

end for each

// iterations
nb_iterations = 0
repeat

succeeded = true
nb_iterations++
for each intern vertex

compute mean_angle of processed incident vertices
if (interval not empty)

if (mean_angle in interval)
current_angle = mean_angle

else
current_angle = best approximation

of mean_angle in interval
end if

else
succeeded = false
if (mean_angle in fixed constraints)

current_angle = mean_angle
else

current_angle = best approximation
of mean_angle in interval

end if
end for each

until (succeeded or
nb_iterations > MAX_NB_ITERATIONS)

If one of the internal vertices has incompatible fixed constraints,
our scheme cannot succeed. Therefore we interrupt the process dur-
ing initialization and move to the next pair. If the iterative process
failed at determining compatible angular constraints for all internal
vertices, we maintain the current pair and move to the next aswell.

5 Results

We show the results of the method applied to two datasets steming
from CFD vortex breakdown simulations provided by Wolfgang
Kollmann from UC Davis. The first one is a velocity dataset and
is of vector type. The second one is a rate of deformation tensor
dataset. Both exhibit turbulent behaviors and complex topologies.

5.1 Velocity

The grid is rectilinear and has 124 x 101 vertices ranging from 0
to 9.84 inx and from -3.864 to 3.864 iny. The triangulation has
24600 linearly interpolated cells. The original topology is shown in
Fig. 10. There are 94 critical points and 134 corresponding pairs.
We first simplify without magnitude control. The only threshold

Figure 10: Original vector topology

is therefore the graphical distance between critical points. With a
threshold of 1% of the grid width there are 10 removed pairs. With
a threshold of 5%, there are 19 removed pairs as shown in Fig. 11.
Applying a very large threshold of 50% we obtained the simpli-
fied topology shown in Fig. 12. There are only 18 critical points
remaining. Focusing on a small part of the topology we observe
how features of small scale are removed. Compare Fig. 13(a) and
Fig. 13(b).

To show the impact of a norm-based simplification on the topol-
ogy (i.e. filtering of computational noise) we apply a threshold on
the field magnitude and get the results presented in the following
table (the threshold is expressed with respect to the largest norm of
the vector field).

threshold satisfying pairs connected pairs removed pairs removed sing.
0.5% 25 (19%) 8 (6%) 8 (6%) 16 (17%)
1% 30 (22%) 11 (8%) 11 (8%) 22 (23%)
5% 47 (35%) 15 (11%) 15 (11%) 30 (32%)
10% 77 (57%) 21 (16%) 21 (16%) 42 (45%)
20% 95 (71%) 28 (21%) 26 (19%) 52 (55%)
50% 115 (86%) 36 (27%) 33 (25%) 66 (70%)

5.2 Rate of Deformation

The topology exhibits 67 singularities and 140 separatrices as
shown in Fig. 14 (the picture is rotated for convenience). The rec-
tilinear grid has 123 x 100 cells. Each rectangular cell is split to re-
sult in a triangulation containing about 25000 cells. To simplify this



Figure 11: Simplified vector topology: Small graphic threshold
(5%)

topology we consider only the euclidean distance between degen-
erate points as criterion. The first simplified topology is obtained
with a tiny distance threshold corresponding to 0.2% of the grid
diagonal. Every pair consisting of degeneracies that couldnot be
graphically differentiated has been removed. There are 59 remain-
ing singularities. The modified areas are indicated by rectangular
boxes. See Fig. 15. The highest simplification rate is obtained with
a threshold of 5% of the grid diagonal. The corresponding topol-
ogy is proposed in Fig. 16. The fact that this topology cannotbe
simplified further (even with a very large geometrical threshold) is
explained by the presence of incompatible fixed angle constraints
on the boundaries of the cell pads containing the remaining pairs.
However a noticeably clarified graph can be obtained in this case
while global strutural properties of tensor field have been preserved.
The local deformation corresponding to the simplified topologies
shown so far is illustrated in Fig. 17. The topology is displayed
together with the underlying cell structure and the eigenvectors.

6 Conclusion

We have presented a method that simplifies the topology of pla-
nar vector and symmetric, second-order tensor fields. This post-
processing step is necessary for the visualization of turbulent flows
like those provided by CFD simulations. Such datasets exhibit very
complex structural behaviors. This results in visual clutter and in-
conveniences interpretation of classical, topology-based depictions.
The processing preserves qualitative consistency with theoriginal
data. The simplification is achieved by means of successive local
deformations of the field that entail the pruning of pairs of singular
points with opposite indices. The pairing strategy can takegeo-
metrical as well as any additional criterion into account tofit the
domain of application. The method makes use of deep connections
between vector and eigenvector fields to handle both vector and
tensor cases in a very similar way. The mathematical foundation of
this technique is provided by the notion of bifurcation. Namely the
disappearance of a pair of singularities with opposite indices corre-
sponds to their smooth, pairwise annihilation. The method has been
evaluated on both a vector and a tensor CFD dataset steming from
numerical simulations of a vortex breakdown. These datasets ex-
hibit many complex, local features and a complicated globaltopol-

Figure 12: Simplified vector topology: Large graphic threshold
(50%)

ogy. The results demonstrate the ability of the method to remove
selectively structural features of small scale while letting the rest of
the topology unchanged. This clarifies noticeably the depiction and
eases interpretation.
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différentielle. J. Math. 1, 1875, pp. 167-244. J. Math. 2, 1876,
pp. 151-217. J. Math. 7, 1881, pp. 375-422. J. Math. 8, 1882,
pp. 251-296.

[2] A. A. Andronov, E. A. Leontovich, I. I. Gordon, A. G. Maier,
Qualitative Theory of Second-Order Dynamic Systems. Israel
Program for Scientific Translations, Jerusalem, 1973.

[3] M. Spivak,A Comprehensive Introduction to Differential Ge-
ometry, Vol. 1-5Publish or Perish Inc., Berkeley CA, 1979.

[4] J. Guckenheimer, P. Holmes,Nonlinear Oscillations, Dy-
namical Systems and Linear Algebra. Springer, New York,
1983.

[5] J. L. Helman, L. Hesselink, Automated analysis of fluid
flow topology. Three-Dimensional Visualization and Display
Technologies, SPIE Proceedings Vol. 1083, 1989, pp. 144-
152.

[6] J. L. Helman, L. Hesselink,Visualizing Vector Field Topology
in Fluid Flows. IEEE Computer Graphics and Applications,
Vol. 11,No. 3, 1991, pp. 36-46.

[7] A. Globus, C. Levit, T. Lasinski, A Tool for the Topology
of Three-Dimensional Vector Fields. IEEE Visualization ’91
Proceedings, IEEE Computer Society Press, Los Alamitos,
1991, pp. 33-40.

[8] B. Cabral, L. Leedom, Imaging Vector Fields Using Line
Integral Convolution. Computer Graphics (SIGGRAPH ’93
Proceedings) 27(4), 1993, pp. 263-272.



(a) Original topology

(b) Simplified topology

Figure 13: Removal of small scale features (vector)

[9] T. Delmarcelle, L. Hesselink,The Topology of Symmetric,
Second-Order Tensor Fields. IEEE Visualization ’94 Pro-
ceedings, IEEE Computer Society Press, Los Alamitos, 1994,
pp. 140-147.

[10] T. Delmarcelle, The Visualization of Second-Order Tensor
Fields. PhD Thesis, Stanford University, 1994.

[11] W. C. de Leeuw, R. van Liere,Collapsing Flow Topology Us-
ing Area MetricsIEEE Visualization ’99 Proceedings, IEEE
Computer Society Press, Los Alamitos, 1999, pp. 349-354.

[12] X. Tricoche, G. Scheuermann, H. Hagen,A Topology simpli-
fication Method for 2D Vector Fields.IEEE Visualization ’00
Proceedings, IEEE Computer Society Press, Los Alamitos,
2000, pp. 359-366.

[13] X. Tricoche, G. Scheuermann, H. Hagen,Vector and Tensor
Field Topology Simplification on Irregular Grids. Proceed-
ings of the Joint Eurographics-IEEE TCVG Symposium on
Visualization in Ascona, Switzerland, D. Ebert, J. M. Favre,
R. Peikert (eds.), Springer-Verlag, Wien, 2001, pp. 107-116.

[14] X. Tricoche, G. Scheuermann, H. Hagen,Continuous Topol-
ogy Simplification of 2D Vector Fields. IEEE Visualization
’01 Proceedings, IEEE Computer Society Press, Los Alami-
tos, 2001, pp. 159-166.

Figure 14: Initial tensor topology with grid
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Figure 15: Simplified tensor topology: distance threshold =0.2%

Figure 16: Simplified tensor topology: distance threshold =5% Figure 17: Local topology simplification (tensor): initialgraph and
simplifications with 0.2%, 2% and 5% as thresholds


