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Abstract

Topology-based methods have become standard tools foistlnv
ization of planar vector and tensor fields. This successdgaltheir
ability to convey huge discrete datasets into synthetiplyidepic-
tions that exhibit all qualitative properties of the flow. thrat way
one reduces dramatically the amount of information whiksprv-
ing insight into essential characteristics. Yet, in theegafgurbulent
flows the original technique of topology visualization lead clut-

tered images and inconveniences interpretation. The papsents
a continuous topology simplification method that attaclks dhefi-

ciency. It works for vector and tensor fields. Its basic gpleis

to identify unimportant features in the original graph brefaod-
ifying the field in a neighborhood to force their pruning. Tde

formation ensures structural consistency with the origiogology.

The theoretical background is given by the theory of biftiores

that permits an interpretation of this transformation asrgiouous
process.

1 Introduction

Vector and tensor visualization is an issue of major intefes

in practice (like linear or bilinear interpolation), besaithey lack
the local flexibility required to precisely reproduce cldepologi-
cal features. Consequently they confuse the results bydating
artifacts. For these reasons topology-based methods geadthis
context pictures that inconvenience analysis becausateisea-
tures cannot be distinguished from local details or nuraérioise.

These deficiencies explain why a simplification method is re-
quired to prune insignificant features according to quidiaand
quantitative criteria, specific to the considered applicat The
problem was first addressed by de Leeuw et al. [11]. Their atkth
removes pairs of singular points connected by the topotbgi@aph
along with the corresponding edges while preserving ctersiy
with the original topology. The method is graph-based andrigs
the underlying continuous data. Hence, no descriptionefédctor
field is provided that corresponds to the simplified topold@yher
classical flow visualization methods, e.g. streamlines Ia 8],
cannot be applied afterward to offer consistent depictidngpre-
vious work [12, 13] we proposed an alternative approach éotar
and tensor fields in which close singularities are mergeslltieg
in a higher order singularity that synthesizes the stratiorpact of
several features of small scale in the large. This reduesdim-
ber of singularities as well as the global complexity of thepdn.
Nevertheless this technique has several limitationst,Ririsnplies

many scientific and engineering areas. Namely these mathema local grid deformations to simulate the singularities’ gieg com-

cal objects play a key role in the qualitative and quantieatie-
scription of numerous phenomena like e.g. in fluid dynansosd
mechanics, magnetics but also computational fluid dyna(@E®)
or finite element analysis. Today’s numerical simulationexper-
imental measurements provide scientists and engineenshuge

bined with local modifications of the interpolation scher8econd,
it is unable to remove completely singular points due to micak
noise since a singularity is always introduced afterwarislast,
the simplification can only be conducted with respect to getem
ric criteria (the relative distance of neighboring singities) which

amount of vector and tensor data that must be analyzed and in-can lead to the disappearance of meaningful flow features.

terpretated. Therefore there is a need for visualizatichrtigues
that convey this discrete, abstract input data into medniingic-
tures that permit to extract efficiently the essential infation. In
this context topology-based visualization methods haweett very
successful in enabling a good insight into the qualitatisure of
vector and tensor field while dramatically reducing the sizéhe
data required for analysis. They were initially designedviector
fields [5, 6, 7] before being extented to symmetric, secamiio
tensor fields [9, 10]. Their inspiration leads back to thelitpa
tive theory of dynamical systems [1, 2] on one hand and diffeal
geometry [3] on the other hand. Their basic principle cdasis
focusing the visualization of the field on its singularitiasd on
special integral curves that connect them, partitionirggdbmain
into subregions of uniform qualitative behavior. This fesin a
synthetic graph depiction that points out the features gbmater-
est for the identification of both local and global flow prajpes.
Yet turbulent flows, like those typically encountered in C$ibula-
tions, are usually associated with vector and tensor tgpegachar-
acterized by the presence of many structures of very smalésc
Their proximity and interconnection in the global depiaticesult
in visual clutter with classical methods. Moreover, thiawback
is emphasized by low-order interpolation schemes, tylyiceded

The new method presented next has been designed to overcome
these drawbacks and to offer a continuous way to simplify the
topology of planar vector and symmetric, second-order aens
fields. The basic idea consists in successively removings i
singularities from the graph while preserving the consisgeof
the field structure. Each of these removals is induced by @etbr
local deformation that brings a part of the topology to a $enp
equivalent, uniform structure. The mathematical fouratatof
these deformations is given by the theory of bifurcationse(s
e.g. [4]). Practically, the method starts with a planar eieise
linear triangulation. We first compute the topology and eige
singularities’ pairs with numerical measures that evaugteir
relevancy in the global structure. Next, we sort the paicoeding
to these criteria and retain those with values over preBpdci
thresholds. Then we process all pairs sequentially. Foh eac
of them we first determine a cell pad enclosing both singular
points. In this pad, we slightly modify the field values subhtt
the singular points disappear. This deformation is coletoby
angular constraints on the new values imposed by those kept
constant on the frame of the pad. The processing ends with the
recomputation of the simplified topology.



The contents are structured as follows. We review basionsti

of vector and tensor field topology and briefly consider a isppec

type of local bifurcation in section 2. The strategy useddteomine
the significance of singularities’ pairs and sort them fanoeal is
discussed in section 3. Section 4 details how local defoomsibf
the field are carried out to suppress the selected pairs.|liResa
finally proposed on a vector and a tensor CFD dataset in setio

2 Topology

For visualization purposes the topology of a vector or adefisld

is the qualitative structure of the associated flow. This fiswle-
fined as the set of all tangential curves integrated in the, fegteam
lines or tensor lines. Of particular interest are the lasatiwhere
these curves do not behave uniformly. They correspond tabee
singularities and constitute the nodes of the topologicaph. In
their neighborhood few curves play a special role. Integtaway
from the singular point they build the edges of the topologkis

definition is completed by adding closed orbits. Furtheseasal
qualitative properties of a field can be characterized thaokhe
notion of index. Precise definitions are given next.

2.1 Vector Field Topology

The singular points (ocritical points) of a vector field are the po-
sitions where the field magnitude vanishes. Their spegjfisithe
fact that they are the only locations where stream lines ceatm
The classification of critical points is based in the linease (suf-
ficient for the present method) on the eigenvalues of thebiaco
matrix. Depending on the real and imaginary parts of thegerei
values there exist several basic configurations shown inlFig
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Figure 1: Basic configurations of 1st-order critical points

because of the asymptotic behavior of the streamlines invioin-
ity. Fig. 2 illustrates such a configuration. These streaadliare
periodic.

Figure 2: Attracting closed orbit (sink)

A fundamental concept in vector field topology is the soezll
Poincaré index (or simply index) of a simple closed curtenéa-
sures the number of rotations of the vector field while triznggbnce
along the curve in positive direction. Remind that the indeal-
ways an integer by continuity of the field. By extension onfirges
the index of a critical point as the index of a simple closedreu
around its position. Dealing with first-order critical ptérsaddles
have index -1 whereas sources and sinks have index +1. Furthe
more the index of a closed orbit is +1. In the following we will
make use of two fundamental properties: First, the index i-a
gion enclosing no critical point is zero. Second, the indea ce-
gion enclosing several critical points is the sum of thegfividual
indices. Now in linear vector fields there is at most one sruyit-
ical point (except in degenerate cases). Moreover thigatipoint
has either index +1 or -1. Hence if the index of a closed cusve i
zero it contains no critical point.

2.2 Tensor Field Topology

Two-dimensional symmetric second-order tensors are inXag
symmetric matrices. A real two-dimensional symmetric imaidd
has always two (not necessarily distinct) real eigenvalues. .
with associated orthogonal eigenvectors. Per definitigenvec-
tors have neither norm nor orientation which distinguisttesm
fundamentally from the classical vectors considered presly.
Since the computation of the eigenvectors\éfis not affected by
the isotropic part (which is multiple of the identity mafriwe only
consider the trace-free part 8f, called deviator. Thus we process
in the tensor case matrix-valued functions of the form:

Blz,y) > 7

T:(z,y) €UC R — T(z,y) = < aEz,y) —a(z,y)

B(z,y)

where o and 8 are two scalar functions defined over the con-
sidered two-dimensional domain. One defines a major (resp.
minor) eigenvector fieldat each position of the domain as the
eigenvector related to the major (resp. minor) eigenvaluthe®
tensor field. One defines major (resp. mintasor linesas the

The separatrices mentioned above are the curves connected t curves everywhere tangent to the major (resp. minor) eigeov

saddle points along the eigenvectors. For every other tfgeito
ical point the sign of both eigenvalues’ real parts is eithasitive
or negative, corresponding to a repelling (source) or aactthg
(sink) nature respectively. Hence a separatrix is linked saddle
point and typically starts at a source or ends at a sink.

Some additional topological features play the role of sewcsink
in a vector field: These are closed orbits that are also ligttes

field. Consequently, as opposed to stream lines these chawes

no inherent orientation. Yet this definition only holds ddés
locations where both eigenvalues are equal. There eigtmgec
cannot be uniquely determined since every non-zero vestani
eigenvector. These singular points are called degeneritgsp
They correspond to a zero value of the deviator. Remark that
the lack of orientation leads to topological structures novin



in vector fields. In the linear case these singularitiestériswo
possible typesTrisectoror wedge poin{see Fig. 3). Separatrices

Trisector
emanate here from both wedges and trisectors. They are thescu
that bound regions where tensor lines pass by the singuliarit
both directions, called hyperbolic sectors. Closed telises exist
for tensor fields too. Nevertheless they are rare in practice

S2 S2

Wedge Point

Figure 3: First Order Degenerate Points

The notion of index can be extended in this context. Analsgou

to the vector case one defines the index of a closed curve as the

number of rotations of the eigenvectors along the curveceSiinese
eigenvectors are orthogonal the tensor index applies to ¢igen-
vector fields. The lack of orientation entails index valuadtiple
of % In particular a trisector has indexi, a wedge has inde}e%.
An illustration is proposed in Fig. 4. Remark that the praoiesr

Figure 4: Tensor index of a trisector

mentioned for the vector index hold for the tensor index too.

2.3 Pairwise Annihilations

The definitions introduced previously apply to an instaatars
topological state of a vector or tensor field. Now this stedtéte
may evolve in another one by slight changes of underlyingupar
eters. A typical example is provided by time-dependent dietide
singularities of which may move, appear or vanish over tilead-
ing to topological changes. These changes preserve stalictn-
sistency. In particular the index of the concerned regida as an
invariant. If a topological transition only affects a smabion of
the field it is calledocal bifurcation If it leads to a global struc-
tural change on the contrary this isgiobal bifurcation For our
purpose we only consider a particular kind of local bifuimat It
consists of the pairwise annihilation of two singularitigigh oppo-
site indices. Since these singularities have global indthe are
equivalent to a configuration without singular point. Cangantly
they vanish after merging. The vector case is illustrateBign 5:
A saddle point and a sink (resp. source) node are merged.rAs fa
as degenerate points are concerned, the situation is sindvig.i6.
Here a trisector is merged with a wedge.

Practically we want to reduce the number of singularitieb st
sociated separatrices while remaining consistent withotiiginal

ek

Figure 5: Saddle-node bifurcation
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Figure 6: Pairwise annihilation (tensor)

topology. So we force locally pairwise annihilations of aldie
with a node, resp. of a trisector with a wedge. This can besaehli
by small local changes in the field values as we show in theviall

ing.

3 Selective Pairing of Singularities

As said previously, we aim at annihilating pairs of singujamts
with opposite indices. Moreover, the corresponding togplsim-
plification must take geometric and any additional criténta ac-
count to fit the considered interpretation of the vector orste
field. Our geometric criterion is the proximity of the singtities

to be removed pairwise. This choice is motivated by two major

reasons. First, close singularities result in small festtinat clutter
the global topology depiction since they can hardly be diffitiated
and induce many separatrices. Second, piecewise lineapata-
tion is likely to produce topological artifacts consistionumer-
ous close first-order singularities, especially if numaricoise is
an issue. Therefore, given a proximity threshold, we deitezrall
possible pairs of saddle and sinks, resp. wedges and tisesht-
isfying the geometric criterion and sort them in increasliggance.
Remark that in the vector case we only consider pairs ofcatiti
points linked by a separatrix which strongly restricts taege of
possible pairs. Unfortunately this criterion cannot beliggpto
tensor topologies since every degenerate point exhibiesaat one
hyperbolic region. This entails that separatrices emagdtom a
singularity often do not reach any other one, i.e. sepaextrof-
ten leave the domain through the boundary. Additional Gaiteay
be introduced to restrict the range of the considered samijigs
to those that are little relevant for interpretation. BaBica quan-
tity is provided that characterizes the significance of esinbular
point and one retains for simplification only those with auealin-
der a user-prescribed threshold. Consequently if a givegugarity
is considered important for interpretation it will be leftat. Doing
so it will not be removed from the topology.

Practically we will consider in section 5 the norm of the irdi
ing cell as a criterion to characterize the importance ofiécaf
point. As a matter of fact singularities located in a cellhwfitny
vector field magnitude are likely to be due to numerical noise



4 Local Deformation

Once a pair of singularities has been identified that fulilis cri-
teria it must be removed. To do this we start a local deforomati
of the field in a small area around the considered singulartgoi
Practically we only modify vector or tensor values at theiees of

the triangulation and do not change the interpolation seherhis
ensures obviously continuity over the grid after modifioati In

the following we detail first how vertices to be modified ar¢etde
mined. Next we explain how new values are set at those vertice
to ensure the absence of remaining singular points in theidént
cells afterwards.

4.1 Cell-wise Connection

Consider the situation shown in Fig. 7. We first compute tlerin
sections of the straight line connecting the first singutdnipto the
second with the edges of the triangulation. For each inttse
point, we insert the grid vertex closest to the second sarqubint
(see vertices surrounded by a circle) in a temporary listerkhis,
we compute the bounding box of all vertices in the list anduide
all grid vertices contained in this box. This includes eveeytex
marked in the former step. The vertices concerned with meadifi

Figure 7: Cell-wise connection

tion are surrounded by squares. We call thetarnal verticesn the
following. Since the modification of a vertex value has andance
on the topology in all triangle cells it belongs to we incluglery
cell incident to a selected vertex in the cell group. Thedks eee
colored gray. Further processing will have to associateénteenal
vertices with values that ensure the absence of any singolat
in the cell group with respect to the values defined atinendary
vertices(marked by big dots in Fig. 7) that will not be changed.
Notice that the connection fails if one of the included cetistains
a singular point that does not belong to the current paihisdase
the global index of the cell group is no longer zero. If it occwe
interrupt the processing of this pair. Nevertheless susksaan be
mostly avoided by simplifying pairs of increasing distance

4.2 Angular Constraints

The basic principle of the local simplification techniquéétter un-
derstood when considering a single internal vertex togetita its
incident triangles: See Fig. 8. Suppose that every positiarked
black is associated with a constant value and the globakiatine
triangle stencil is zero. The problem consists in detemgra new
tensor value at the internal vertex (in white) such that roidient

AT
A2

Figure 8: Configuration with single intern vertex and incitleells

cell contains a critical point. This is equivalent to a sitoa where
every incident triangle has index 0 according to what presed

We come now to an important property of linear vector and ten-
sor fields that is used to drive the pairwise removal of siagtiés.

Property 4.1 The angle variation of a linear vector field (resp.
eigenvector field of a linear tensor field) along an edge isagisv
smaller thanr (resp. 3).

This is obvious in the vector case. For a proof in the tensee ca
see [15]. We now use this property to compute the index of-a lin
ear vector (resp. tensor) field along the edges of a triargjlece
the field is linear it is determined by the three values at the v
tices of the triangle. We denotg, 6+, 62 the corresponding angle
coordinates of the vectors (resp. eigenvectors) enunteiatmun-
terclockwise order. Because eigenvectors have no orienttte
angles are in this case defined modwlo We set by convention
03 := 0y, so we have

index= 27 oA(6;,0:.1). (1)

To unify the discussion we introduce the symbothat we define
aso := 2 in the vector case ang := = in the tensor case. Fur-
thermore we sei; := 6,11 — 6;. With the property above we have
finally

A(Hi, 9i+1) = 57, if |57,| < %
Si+o i 6 < -3
0 — 0O if 0; > %.

Getting back to a given triangle of the stencil depicted &hov
the angle coordinates of the vectors (resp. eigenvect@f@)ed
at the black vertices (saffp and ;) induce an angular constraint
for the new value. Indeed in Equation(6o, 61) is already set
to a value that is strictly smaller thaf. The two missing terms
must induce a global angle change smaller thaffor the index
of a linear singular point is a multiple of-). It will be the case
if and only if the new vector (resp. eigenvector) value haglen
coordinate ind; + §, 60 + [ (moduloo), with [0, 6:] being an
interval with width smaller tharg, i.e. the actual angle change
along a linear edge frot, to 6; (see Fig. 9).

This provides a angle constraint on the new value for a sitnigle
angle. Intersecting the intervals imposed by all incideiaingles,
one is eventually able to determine an interval that fulfilisthe
constraints. Notice that this interval may be empty. In tase
the simplification is (at least temporarily) impossible. ®®ra sat-
isfactory angle interval has been found we provide the wesfi¢h
a corresponding value. In the vector case, the magnitudet i®s
the average of the field magnitude on the stencil boundaryhdn
tensor case if is an angle in the interval the following tensor value
will be solution:

Thew = (

cos 20
sin 260

sin 26
— cos 20



possible angle 5 5 Results

We show the results of the method applied to two datasetsrggem

from CFD vortex breakdown simulations provided by Wolfgang
Kollmann from UC Davis. The first one is a velocity dataset and
is of vector type. The second one is a rate of deformationotens
dataset. Both exhibit turbulent behaviors and complex|tmpes.

5.1 Velocity

wrong angle The grid is rectilinear and has 124 x 101 vertices rangingnftb
t0 9.84 inz and from -3.864 to 3.864 ip. The triangulation has

Figure 9: Angular constraint in a triangle cell (moduip 24600 linearly interpolated cells. The original topologyshown in
Fig. 10. There are 94 critical points and 134 correspondiigsp

We first simplify without magnitude control. The only thredth

6,49

4.3 lterative Solution

For each internal vertex (see Fig. 7) we must now find a new vec-
tor (resp. tensor) value that fulfills all the angle constiminduced

by the edges connecting the incident vertices. These intid-
tices are of two types: Internal or boundary vertices. Edig&ng
boundary vertices are considered constant and induce fixed ¢
straints. Internal vertices still must be provided a findugaand
introduce flexibility in the simplification scheme. The pdetcode

of the method is as followsean_angl e is the mean value of the
neighbors’ angles).

[/ initialization
for each (internal vertex)

interval = fixed constraints
if (interval is enpty)
interrupt
end if
if (no fixed constraints)
interval = [0, SIGMA
end if
end for each Figure 10: Original vector topology

// iterations
nb_iterations = 0
repeat

succeeded = true

is therefore the graphical distance between critical goift/ith a
threshold of 1% of the grid width there are 10 removed pairghW

nb iterationstt athreshold of 5%, there are 19 removed pairs as shown in Eig. 1
for each i ntern vertex Applying a very large threshold of 50% we obtained the simpli
conpute nean_angl e of processed incident vertices fied topology shown in Fig. 12. There are only 18 critical psin
if (interval not enpty) remaining. Focusing on a small part of the topology we oleserv
if (mean_angle in interval) how features of small scale are removed. Compare Fig. 18¢h) a
current _angle = mean_angl e Fig. 13(b).
else To show the impact of a norm-based simplification on the topol
current_angle = best approxi mation ogy (i.e. filtering of computational noise) we apply a thiasghon
of mean_angle in interval the field magnitude and get the results presented in thenfwigp
end if table (the threshold is expressed with respect to the langes of
else the vector field).
succeeded = fal se
if (mean_angle in fixed constraints) threshold | satisfying pairs| connected pair§ removed pairs| removed sing.
current_angl e = mean_angl e 0.5% 25 (19%) 8 (6%) 8 (6%) 16 (17%)
else 1% 30 (22%) 11 (8%) 11 (8%) 22 (23%)
current_angl e = best approxi mation 5% 47 (35%) 15 (11%) 15 (11%) 30 (32%)
of mean_angle in interval 10% 77 (57%) 21 (16%) 21 (16%) 42 (45%)
end if 20% 95 (71%) 28 (21%) 26 (19%) 52 (55%)
end for each 50% 115 (86%) 36 (27%) 33 (25%) 66 (70%)

until (succeeded or
nb_iterations > MAX_NB_| TERATI ONS)

. . . . ) . 5.2 Rate of Deformation
If one of the internal vertices has incompatible fixed caists,

our scheme cannot succeed. Therefore we interrupt thegsolce- The topology exhibits 67 singularities and 140 separatriae
ing initialization and move to the next pair. If the iteraiprocess shown in Fig. 14 (the picture is rotated for convenience)e fiét-
failed at determining compatible angular constraints fongernal tilinear grid has 123 x 100 cells. Each rectangular cell ig spre-

vertices, we maintain the current pair and move to the newtedis sultin a triangulation containing about 25000 cells. Togify this



Figure 11: Simplified vector topology: Small graphic threish
(5%)

topology we consider only the euclidean distance betwegerde
erate points as criterion. The first simplified topology isadted
with a tiny distance threshold corresponding to 0.2% of thid g
diagonal. Every pair consisting of degeneracies that coatdbe
graphically differentiated has been removed. There areB®in-
ing singularities. The modified areas are indicated by repitar
boxes. See Fig. 15. The highest simplification rate is obthimith
a threshold of 5% of the grid diagonal. The correspondingltop
ogy is proposed in Fig. 16. The fact that this topology carbeot
simplified further (even with a very large geometrical timead) is
explained by the presence of incompatible fixed angle caimssr
on the boundaries of the cell pads containing the remainaisp
However a noticeably clarified graph can be obtained in thigec
while global strutural properties of tensor field have beeserved.
The local deformation corresponding to the simplified togas
shown so far is illustrated in Fig. 17. The topology is digeld
together with the underlying cell structure and the eigetors.

6 Conclusion

We have presented a method that simplifies the topology of pla

nar vector and symmetric, second-order tensor fields. Taés-p
processing step is necessary for the visualization of tartbdlows
like those provided by CFD simulations. Such datasets éxreby
complex structural behaviors. This results in visual elutind in-
conveniences interpretation of classical, topology-bapictions.
The processing preserves qualitative consistency witlotiggnal
data. The simplification is achieved by means of successia |
deformations of the field that entail the pruning of pairsiofslar
points with opposite indices. The pairing strategy can tgée-
metrical as well as any additional criterion into accounfitdahe
domain of application. The method makes use of deep commacti
between vector and eigenvector fields to handle both vectdr a
tensor cases in a very similar way. The mathematical foumlaf
this technique is provided by the notion of bifurcation. Nayrthe
disappearance of a pair of singularities with oppositedeslicorre-
sponds to their smooth, pairwise annihilation. The mettasldeen
evaluated on both a vector and a tensor CFD dataset stenoimg fr
numerical simulations of a vortex breakdown. These dateaeset
hibit many complex, local features and a complicated gltdyad|-

Figure 12: Simplified vector topology: Large graphic thrash
(50%)

ogy. The results demonstrate the ability of the method tookem
selectively structural features of small scale while feftihe rest of
the topology unchanged. This clarifies noticeably the depiand
eases interpretation.

References

[1] H. Poincaré Sur les courbes définies par une équation
differentielle J. Math. 1, 1875, pp. 167-244. J. Math. 2, 1876,
pp. 151-217. J. Math. 7, 1881, pp. 375-422. J. Math. 8, 1882,
pp. 251-296.

[2] A.A.Andronov, E. A. Leontovich, I. I. Gordon, A. G. Maigr
Qualitative Theory of Second-Order Dynamic Systdsrsael
Program for Scientific Translations, Jerusalem, 1973.

[8] M. Spivak, A Comprehensive Introduction to Differential Ge-
ometry, Vol. 1-5Publish or Perish Inc., Berkeley CA, 1979.

[4] J. Guckenheimer, P. HolmesNonlinear Oscillations, Dy-
namical Systems and Linear Algebr&pringer, New York,
1983.

[5] J. L. Helman, L. Hesselink, Automated analysis of fluid
flow topology Three-Dimensional Visualization and Display
Technologies, SPIE Proceedings Vol. 1083, 1989, pp. 144-
152.

[6] J.L.Helman, L. Hesselinkyisualizing Vector Field Topology
in Fluid Flows IEEE Computer Graphics and Applications,
Vol. 11,No. 3, 1991, pp. 36-46.

[71 A. Globus, C. Levit, T. Lasinski, A Tool for the Topology
of Three-Dimensional Vector Field$EEE Visualization '91
Proceedings, IEEE Computer Society Press, Los Alamitos,
1991, pp. 33-40.

[8] B. Cabral, L. Leedom, Imaging Vector Fields Using Line
Integral Convolution Computer Graphics (SIGGRAPH 93
Proceedings) 27(4), 1993, pp. 263-272.



9]

[10]

[11]

[12]

[13]

[14]

(a) Original topology

(b) Simplified topology

Figure 13: Removal of small scale features (vector)

T. Delmarcelle, L. Hesselink,The Topology of Symmetric,
Second-Order Tensor FieldsIEEE Visualization '94 Pro-
ceedings, IEEE Computer Society Press, Los Alamitos, 1994,
pp. 140-147.

T. Delmarcelle, The Visualization of Second-Order Tensor
Fields. PhD Thesis, Stanford University, 1994.

W. C. de Leeuw, R. van Lier&ollapsing Flow Topology Us-
ing Area MetricslEEE Visualization '99 Proceedings, IEEE
Computer Society Press, Los Alamitos, 1999, pp. 349-354.

X. Tricoche, G. Scheuermann, H. HagénTopology simpli-
fication Method for 2D Vector Field$EEE Visualization '00
Proceedings, IEEE Computer Society Press, Los Alamitos,
2000, pp. 359-366.

X. Tricoche, G. Scheuermann, H. Hagérector and Tensor
Field Topology Simplification on Irregular GridsProceed-
ings of the Joint Eurographics-IEEE TCVG Symposium on
Visualization in Ascona, Switzerland, D. Ebert, J. M. Favre
R. Peikert (eds.), Springer-Verlag, Wien, 2001, pp. 108-11

X. Tricoche, G. Scheuermann, H. Hage&nntinuous Topol-
ogy Simplification of 2D Vector FieldsIEEE Visualization

'01 Proceedings, IEEE Computer Society Press, Los Alami-
tos, 2001, pp. 159-166.

Figure 14: Initial tensor topology with grid

[15] X. Tricoche, Vector and Tensor Topology Simplification,
Tracking, and Visualization PhD thesis, Schriftenreihe /
Fachbereich Informatik, Universitat Kaiserslauterr2@02.






