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Summary. Numerical simulations of tubulent flows produce both veetnd tensor fields
that exhibit complex structural behavior. The topologstaidy of these datasets dramatically
reduces the amount of information required for analysisvéier, the presence of many fea-
tures of small scale creates a cluttered depiction thatusesf interpretation. In this paper,
we extend previous work dealing with vector fields to syminesecond-order tensor fields.
A simplification method is presented that removes degea@aints from the topology pair-
wise, driven by arbitrary criteria measuring their impoa in the overall structure. It is
based on an important property of piecewise linear tenshisfibat we prove in the paper.
Grid and interpolation scheme are preserved since the whetbes small local changes of
the given discrete tensor values to achieve simplificaflé resulting topology is clarified
significantly though structurally consistent with the anij one. The basic idea behind this
technique leads back to the theory of bifurcations and stg@ad interpretation as a contin-
uous simplification process.

1 Introduction

Tensors are essential mathematical objects involved irdéseription of a wide
range of scientific and technical fields. They are used faam in fluid flow, fluid
mechanics, civil engineering and medical imaging. Consatjy, scientists and en-
gineers need methods to extract essential informationfemynlarge tensor datasets
that are provided by modern numerical simulations. Thida#rp the increasing in-
terest in tensor field visualization during the last decdde first topology-based
visualization of symmetric, second-order, planar tensbd$iwas presented by Del-
marcelle [2]. Basically, one focuses on one of the two eigetuor fields correspond-
ing to the minor or major eigenvalue. This permits the corafjah of so-called
tensor lines that extend the traditional notion of streame.liThe foundations of
this technique have been laid down by the work of Helman argsélank on vec-
tor fields [6]. The theoretical background is provided by thmlitative theory of
dynamical systems [1] and differential geometry [9]. Theuwdlization results in
a graph representation, where the edges are special téms®chlled separatrices
and the nodes are singularities (called degenerate paihtisg tensor field, i.e. lo-
cations where both eigenvalues are equal. This technique@isuitable for tensor
fields with simple structure because the extracted topotmgyains few degener-
ate points and separatrices, leading to a clear structiserigéon. Nevertheless,
turbulent flows provided by Computational Fluid Dynamic$-[I} simulations or
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experimental measurements create cluttered depictiansth of little help for in-
terpretation. Indeed, the topology of such flows is charasd by the presence of
a large number of features of very small scale that greathgpticate the global
picture of the data. This shortcoming induces a need forlgficgtion methods that
prune insignificant features, driven by qualitative andrdiative criteria specific
to the considered application. Several techniques havefiresented in the past for
the simplification of vector fields [5, 8]. The issue of vedietd topology simplifi-
cation was first addressed by de Leeuw and van Liere [7] whpgs®d a method
to prune critical points from the topological graph. Howetkeir approach pro-
vides no vector field consistent with the topology after difigation. In previous
work [10, 11], we presented a scheme that merges close aingoints, resulting
in a higher-order singularity that synthesizes the stmattimpact of several fea-
tures of small scale in the large. This reduces the numbengfikrities along with
the global complexity of the graph. Nevertheless, thisnémpie has several limita-
tions. First, it implies local grid deformations to simddhe singularities’ merging,
combined with local modifications of the interpolation sefee Second, it is un-
able to remove singularities completely from a given regorce a higher-order
singularity is always introduced afterward. This is a pewblif the goal is to filter
out insignificant local features in a given region. Finalhg simplification can only
be driven by geometric criteria (the relative distance afhkoring singularities)
which prevents to take any additional qualitative aspeitt account. The present
method extends previous work on vector fields [12] and has Hesigned to over-
come these drawbacks. The basic principle consists in ssivedy removing pairs
of degenerate points while preserving the consistencyeofiéid structure. Each of
these removals can be interpreted as a forced local defomihtat brings a part
of the topology to a simpler, equivalent structure. The reathtical background
is provided by the theory of bifurcations, originally dempéd within the qualita-
tive analysis of dynamical systems (see e.g. [4], an apmic&o the tensor case is
described in [13]). Practically, the method starts withanjalr piecewise linear trian-
gulation. We first compute the topological graph and deteerpiairs of degenerate
points. We retain those that satisfy both a proximity thoddland some relevance
criteria specified by the user. The pairs are then sortedrefbect to their distance
and processed sequentially. For each of them, we determie#i pad enclosing
both degenerate points and slightly modify the tensor watuweh that both degen-
erate points disappear. This deformation is controlledriuar constraints on the
new eigenvector values while keeping constant those Idaatethe pad boundary.
After the processing of all pairs, we redraw the simplifigodiogy.

The paper is structured as follows. We review basic notiétensor field topol-
ogy and briefly present the notion of bifurcation in sectiorfBe special case of
piecewise linear tensor fields is considered from the tagiodd viewpoint in sec-
tion 3. In particular, an angular property of eigenvectsrgrioven in this context
that plays a key role in the following. In section 4, we showvhee determine
pairs of degenerate points to be removed and sort them iroatpiist. Section 5
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presents the technique used to locally deform the tensar ifiebrder to remove
both singularities of a given pair. Results for a CFD datasetshown in section 6.

2 Topology of Tensor Fields

The present method deals with a planar triangulation ofeestassociated with 2D
symmetric second-order tensor values, i.e. symmetricicestr The interpolation
scheme is piecewise linear and provides a matrix valuedifumdefined over the
domain. Therefore, we only consider topological featufds st order. In this case,
topology is defined as the graph built up of all first-orderetegrate points and some
particular tensor lines connecting them, called sepaegriThe required definitions
are given next.

2.1 Tensor Lines and Degenerate Points

A real two-dimensional symmetric matridd has always two (possibly equal) real
eigenvalues\; < )\ with associated orthogonal eigenvectersandes:

Vi € {1,2}, Me; = \e;, with e; € IR? ande; # 0.

Since the multiplication of an eigenvector by any non-zeraar yields an addi-
tional eigenvector, eigenvectors should be considergabwitnorm nor orientation
which distinguishes them fundamentally from classicateex Moreover, the com-
putation of the eigenvectors af is not affected by its isotropic part defined as

1
— 1
tr M2

where trM is the trace of\/ (i.e. the sum of its diagonal coefficients) ahdstands
for the identity matrix inlR? x IR?. Consequently, we restrict our considerations
to the so-calledleviatorthat corresponds to the trace-free partiéf The matrix
valued function that we processed is thus of the form:

Pamevem o - (0 0G0)

wherea andg are two scalar functions defined over the considered twaedsgional
domain. One defines a major (resp. mineigenvector fieldt each position of the
domain as the eigenvector related to the major (resp. maigenvalue of the ten-
sor field. For visualization purposes, one restricts théyaisto a single eigenvector
field (either minor or major), using the orthogonality of #igenvectors to extrapo-
late the topological structure of the other. In an eigermefitld, one definetensor
linesas curves everywhere tangent to the eigenvectors. It felfomm this definition
that these curves have no inherent orientation as opposticbton lines. Moreover
tensor lines cannot be computed at locations where bothwagigees are equal since
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sep. sep. sep. sep.

TRISECTOR WEDGE POINTS

Fig. 1. First Order Degenerate Points

every non-zero vector is an eigenvector in this case. At egte point, the de-
viator value is a zero matrix. In linear tensor fields, thesgudarities exist in two
possible typesTrisectoror wedge poin{see Fig. 1). Due to orientation indetermi-
nacy of tensor lines, these singularities exhibit strueduhat would be impossible
in the oriented, vector case (consider for example the flowamh side of the single
line converging toward the singularity in the second typwetige points). Remark
that more general singularities can be encountered in #eepise linear case as
already mentioned in [11].

In the neighborhood of a degenerate point, the regions wieesor lines pass
the singularity by in both directions are called hyperhdlibe regions where they
reach the singularity, on the contrary, are called parab®he curves that converge
toward a degenerate point and bound a hyperbolic regionaledcseparatrices.
These special tensor lines constitute the edges of thedgjeal graph. Accord-
ing to this definition, a trisector has three hyperbolic sestind three associated
separatrices while a wedge point has one hyperbolic sentbe#her one or two
separatrices. In the latter case the separatrices bounthhgbia sector. Refer to
Fig. 1.

2.2 Tensor Index

A major notion for the structural classification of an tenield is the so-called ten-
sor index. Itis computed along a closed non self-interagaturve as the number of
rotations of the eigenvectors when traveling once alongthree in counterclock-
wise direction. An illustration is shown in Fig. 2. This entis to tensor fields the
essential notion of Poincaré index defined for vector fieRkcause of the lack of
orientation of eigenvectors, the tensor index is a multtﬁlé. The index of a re-
gion that contains no degenerate point is zero. If the censdiregion contains a
first-order degenerate point we get an inde%dor a trisector point while a wedge
point has inde)el—%. The index of a region containing several degenerate p@nts
the sum of their individual indices. Remark that in the linease, since only trisec-
tors and wedges can be encountered, if the index of a closed uzero then the
enclosed region contains no degenerate point. This propaditprove essential in
the following.



Topology Simplification of Symmetric, Second-Order 2D TarSields 5

Fig. 2. Tensor index

2.3 Bifurcations

The definitions introduced previously apply to an instaatars topological state of
a tensor field. Now, this stable state may evolve into anatherby slight changes
of underlying parameters. A typical example is providedimetdependent tensor
fields, the degenerate points of which may move, appear dslvawer time, lead-

ing to topological changes. These changes preserve s@licansistency and the
tensor index acts as a topological invariant. If a topolabiiansition only affects a
small region of the field, it is calledlacal bifurcation If, on the contrary, it leads to
a global structural change, it is calledjmbal bifurcation For our purpose we only
need to consider a particular kind of local bifurcation: dnsists of the pairwise
annihilation of a wedge and a trisector point. Since thesgudarities have global
index 0, they are equivalent to a configuration without degete point and there-
fore disappear right after merging. This transition issthated in Fig. 3. Additional

information on the topic of tensor bifurcations can be founmf 3].

A\
A
A

Fig. 3. Pairwise annihilation

Practically, since we want to reduce the number of degemprints and associ-
ated separatrices while being consistent with the origof@blogy, we locally force
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pairwise annihilations of a wedge and a trisector. This caldne by small local
changes in the field values as we show in the following.

3 Linear Tensor Fields

For the simplification method to come, we first need to consagémportant prop-
erty of linear tensor fields from the topological viewpoint.

As discussed previously, we consider deviator tensor figtisen in the form of
equation 1, where andg are linear functions of the positida;, ). The eigenvec-
toreg = (cos 6, sin ) identified by its angular coordinafiesatisfies the relation

Teg X eg = O,
wherex stands for cross-product. This leads after calculus to
asin20 — fcos20 = 0,

that is

tan 20 = é
«

Thus, we get the following differential equation

adf — Bda

1
do = - 2
2 a2+ B2 )
If we now consider an arbitrary linear interpolated efld&] with parametrization
t € [0, 1], we can consider the restriction’Bfto this edge. We write(t) = ag+tay
andg(t) = fBo + tB1. We now compute the angle variation of an eigenvector along
[AB] by integrating Equation 2 (remark that this angle variatthe same for both

eigenvectors since they are everywhere orthogonal to anjoth

/Bd9 _ b —aifo /1 dt
A 2 o at>?+bt+c

wherea, b andc are functions oty ; andgy, ;. Furthermore, the discriminant =
b? — 4ac is negative. Therefore it follows (after calculus)

/B do — sign(ao 1 — a1 o)
A 2

(atanuy — atanpg)

whereyy andy; are two real scalars that dependayy andjp ;. Since the function

atan mapsdR onto the open set-7, 7 ), we finally obtain

B
/d@
A

< g Q)
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Thusthe angle variation of an eigenvector along a linear intdgied edge is al-
ways smaller thar .

We use this property now to compute the index of a linear tefistal along
the edges of a triangle. Since the field is linear, it is deteechby the three tensor
values at the vertices of the triangle. We denotedpyb:, 0, the corresponding
angle coordinates of one of both eigenvector fields at thes#ipns, enumerated
in counterclockwise order. Because eigenvectors havharaiiorm nor orientation
these angle values are defined modul@@enoted] in the following). We set by
conventiords := 6, so we have

index= E?ZOA(GiaeiJrl)- (4)

By Equation 3 and using the notation= 6,1 [x] — 6;[x], it comes

A0 0is1) =0, 0f |6 < @
o, +m if 6 < —%
0; — T if o; > %

4 Selective Pairing of Degenerate Points

As mentioned before, we aim at annihilating pairs of degateguoints of opposite
indices. Moreover, the corresponding topology simplifmaimust take geometric
and any additional criteria into account to fit the considéngéerpretation of the ten-
sor field. Our geometric criterion is the proximity of theginarities to be removed
pairwise. This choice is motivated by two major reasonstFitose singularities re-
sult in small features that clutter the global topology @épn since they can hardly
be differentiated and induce many separatrices. Secoackise linear interpola-
tion is likely to produce topological artifacts consistimignumerous close first-order
singularities, especially if numerical noise is an issugergfore, based on a prox-
imity threshold, we determine all possible pairs of wedges taisectors satisfying
the geometric criterion and sort them in increasing distaAdditional criteria may
be provided to restrict the range of the considered singigato those that are little
relevant for interpretation. Practically, a quantity i®yided that characterizes the
relevance of each degenerate point and one retains foriizatibn only those with
a value under a user-prescribed threshold. Thus, if a givgukarity is considered
important for interpretation, it will be included in no pand therefore will not be
removed from the topology. Remark that compared to thermastrategy used in
previous work for the vector case [12], the connection ohtsdhgularities in a pair
through a separatrix is not used as criterion. This is bexausry degenerate point
exhibits at least one hyperbolic region which entails thegtasatrices emanating
from a singularity often do not reach any other one.
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5 Local Topology Simplification

Once a pair of degenerate points has been identified thdlSwlfir criteria, it must

be removed. To do this, we start a local deformation of thedefield in a small area
around the considered singular points. Practically, wg amddify tensor values at
the vertices of the triangulation and do not modify the iptédation scheme which
obviously ensures continuity over the grid after modifioatiln the following, we

detail first how vertices to be modified are determined and toav new values are
set at those vertices to ensure the absence of remainingaiitigs in their incident
cells after processing.

5.1 Cell-wise Connection

The method used here is the same as the one in [12] since khis the same as in
the vector case: Determine well-shaped cell groups thitWo singularities over
the grid. Consider the situation shown in Fig. 4. We first categghe intersections
of the straight line connecting the first degenerate poithesecond with the edges
of the triangulation. For each intersection point, we ihgee grid vertex closest
to the second degenerate point (see vertices surroundedilnted in a temporary
list. After this, we compute the bounding box of all vertigeghe list and include
all grid vertices contained in this box. Thus, every vertearked in the former
step is included. The use of a bounding box is intended torerswvell shaped

Fig. 4. Cell-wise connection

deformation domain, especially useful if many cells sefgab@th singular points.
This configuration occurs if the distance threshold has bssigned a large value to
obtain a high simplification rate. The vertices concernat wiodification are called
internal verticesand are shown surrounded by squares. Since the modificdtan o
vertex tensor value has an incidence on the indices of alhgte cells it belongs
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to, we include every cell incident to one of the selectedizestin a cell group.
These cells are colored in gray. Further processing wilthiaxassociate the internal
vertices with tensor values that ensure the absence of agylar point in the cell
group with respect to the tensor values defined abthendary vertice¢marked by
black dots in Fig. 4) that will not be changed. The connecti@y fail if one of the
included cells contains a degenerate point that does nohféb the current pair:
In this case, the global index of the cell group is no longepz# it occurs, we
interrupt the processing of this pair. Nevertheless, sases can be mostly avoided
since we simplify pairs of increasing distance.

5.2 Angular Constraints

The basic principle of our simplification technique can b#dyeunderstood when
considering a single internal vertex together with its deeit triangles, see Fig. 5.
Suppose that every position marked black is associatedaxitnstant tensor value
and that the global index of the triangle stencil is zero. phablem consists in

determining a new tensor value at the internal vertex (nthvideite) such that no

incident cell contains a degenerate point. This is equntaie a situation where

every incident triangle has index 0 according to what prdese

A/
SE

Fig. 5. Configuration with single internal vertex and incident sell

Now, in each triangle the angle coordinates of the eigenvecatefined at the
black vertices (say, andd;) induce an angular constraint for the new eigenvector:
in equation 3A(6y, 01) is already set to a value that is strictly smaller tHarThe
two missing terms must induce a global angle change stsatigller tharr (for the
index of a linear degenerate point is a multiple—%c)f This condition holds if and
only if the new eigenvector value has angle coordinatéint- 3, 6o + %) (modulo
), with [0, 0] being an interval with width smaller thaf, i.e. the actual angle
change along a linear edge fraljto 6, (see Fig. 6).

This provides a constraint on the new value for a single g¢d@nintersecting
the intervals imposed by all incident triangles, one is &vally able to determine
an interval that fulfills all the constraints. Note that thigserval may be empty. In
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6, 0

0

right angle

wrong angle

Fig. 6. Angular constraint in a triangle cell

this case, the simplification is (at least temporarily) iregible. Once a satisfactory
angle interval has been found for the new eigenvector, we proside the vertex
with a corresponding tensor value difs an angle in the interval then the following
tensor value will be solution:

7 _ (cos 20 sin26
new T\ sin20 —cos20 )

5.3 lterative Solution

For each internal vertex (see Fig. 4) we must now find a newoteredue that ful-
fills all the angle constraints induced by the edges conmgthie incident vertices.
These incident vertices are of two types: internal or bowndartices. Edges link-
ing boundary vertices are considered constant and indue éirgular constraints.
Internal vertices still must be provided a final tensor vedne introduce flexibil-
ity in the simplification scheme. Practically, the problemsblve can be seen as
an optimization problem. The quantity to minimize for eanternal vertex is the
distance of its current angle value to the interval of adibissangles induced by its
neighbors. This distance is considered zero if the angeniéhin the interval. Ini-
tially, the angle values of the internal vertices are unaefifuring a first iteration,
boundary vertices create angular constraints on the atjadernal vertices. These
constraints are then propagated iteratively to their n@ghin the next steps. If the
current angle values of the surrounding vertices corregporan empty interval,
their mean value is used as predictor for the next itera@mmsequently, the whole
processing can be interpreted as a local constrained singaththe tensor field.

The pseudo-code is as follows.
[/l initialization
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foreach (i nternal vertex)

interval = fixed constraints
if (interval is enpty)

exit
end if

if (no fixed constraints)
interval = [0, PI[
end if
end for each

/I iterations
nb_iterations = 0
repeat
succeeded = true
nb_iterations++
foreach i nternal vertex
conpute nean_angl e of processed incident vertices
if (interval not enpty)
if (mean_angle in interval)
current _angl e = nean_angl e
else
current _angle =
best approxinmati on of nean_angle in interval
end if
else
succeeded = fal se
if (mean_angle in fixed
constraints)
current _angl e = nean_angl e
else
current _angle =
best approxinmati on of nean_angle in interval
end if
end for each
until (succeeded or
nb_iterations > MAX_NB_| TERATI ONS)

If one of the internal vertices has incompatible fixed caxiats, our scheme will
fail. Therefore, we interrupt the process during initiation and move to the next
pair. If the iterative process failed at determining conigatangular constraints for
all internal vertices, we maintain the current pair and movilne next as well.

6 Results

The dataset used to test our method stems from a CFD simuldtids is the sym-
metric part of the rate of deformation (i.e. first-order dative) tensor field of a
vortex breakdown simulation that was provided by Wolfgaralidann from UC
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Davis. Vortex breakdown is a phenomenon observed in a yaofefiows ranging

from tornadoes to wing tip vortices, pipe flows, and swirljets. The latter flows
are important to combustion applications where they are tabtreate recirculation
zones with sufficient residence time for the reactions ta@ggh completion. This
is a typical case of turbulent global structural behavidre Topology exhibits 67
singularities and 140 separatrices as shown in Fig. 7. T¢tdimear grid has 123 x
100 cells. Each rectangular cell is split to result in a tyialation containing about
25000 cells. To simplify this topology we only consider theekdean distance be-

Fig. 7. Initial topology with grid

tween degenerate points as a criterion. Remember howeatdhthmethod does not
impose any restriction on the choice of additional qualieabr quantitative criteria
characterizing the importance of a singularity or of a gikegion of the graph. The
first simplified topology is obtained with a tiny distancedsinold corresponding
to 0.2% of the grid diagonal. Every pair consisting of degaors that could not
be graphically differentiated has disappeared. There @rerhaining singularities.
The modified areas are indicated by rectangular boxes. $e8.Fi

Increasing the threshold up to a value of 2% of the grid diafjamne obtains a
topology with 35 remaining singularities as shown in FigAoticeably clarified
graph can be obtained in this case while global struturgbgmies of tensor field
have been preserved. The highest simplification rate isredddavith a threshold of
5% of the grid diagonal. The corresponding topology is showrig. 10. The fact
that this topology cannot be simplified further (even withemywlarge geometrical
threshold) is explained by the presence of incompatiblelfaegle constraints on
the boundaries of the cell pads containing the remainingp@he local deforma-
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Fig. 9. Simplified topology: distance threshold = 2%

tion corresponding to the simplified topologies shown sadfdtustrated in Fig. 11.
The topology is displayed together with the underlying s#llicture and the eigen-
vectors.
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Fig. 10.Simplified topology: distance threshold = 5%

7 Conclusion

We have presented a method that simplifies the topology btitent planar, sym-
metric, second-order tensor fields while preserving stmattconsistency with the
original data. The simplification is achieved by means otessive local deforma-
tions of the field that entail the pruning of pairs of degetegints of opposite
indices. The pairing strategy can take geometrical as veelirgy additional crite-
ria into account to fit the domain of application. The theieadtbackground of this
technique is provided by the notion of bifurcation sincedisappearance of a pair
of singularities corresponds to the pairwise annihilabba wedge point and a tri-
sector. The method has been tested on a CFD simulation oftexvoreakdown
because this kind of datasets exhibit many complex feathetslutter the global
depiction. The results demonstrate the ability of the métbaemove structural fea-
tures of small scale while letting the rest of the topologghanged. This clarifies
noticeably the depiction and eases interpretation.
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Fig. 11. Local topology simplification: initial graph and simplifitens with 0.2%, 2% and
5% as thresholds
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