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Abstract

Among existing techniques for the visualization of vector and tensor fields,
topology-based methods offer a synthetic and accurate way to depict the struc-
ture of the associated flows. This approach was introduced quite recently in
Scientific Visualization but its roots and inspiration are to be found in the
genius work of Poincaré at the end of the 19th century. Practically, the consi-
dered domain is partitioned by a graph into subregions of homogeneous qua-
litative behavior. Extracting and visualizing this graph permits to convey the
most meaningful properties of large vector or tensor datasets. This has moti-
vated the design of many topology visualization schemes that aim at fitting
the requirements of today’s applications. Yet, there are deficiencies that still
inconvenience their use in typical practical cases. This thesis attacks two of
them.

First, turbulent flows exhibit very complicated structures. Hence, their to-
pologies result in a visual clutter that is of little use for interpretation. To
overcome this limitation, two new methods are presented to simplify the topo-
logy while ensuring structural consistency with the original data. The first one
is based on a scaling strategy and enables the merging of close singularities by
means of local grid deformations. It applies to vector and tensor fields. The
second one works out successive removals of pairs of critical points and is desi-
gned for vector fields defined over triangulations. It permits to retain only the
most significant features, according to any prescribed criterion. Both methods
act on the field along with its topology and clarify the visualization results.

Second, existing techniques for time-dependent vector and tensor fields pro-
vide no way to depict the continuous topology evolution over time. They miss
essential features called bifurcations that correspond to dramatic structural
changes. A new technique is proposed that accurately detects and characte-
rizes bifurcations in vector and tensor fields. It produces three-dimensional
pictures where the whole topological graph is precisely tracked over time, de-
scribing surfaces that provide the structure of the time-dependent topology.



Zusammenfassung

Unter den heutigen Methoden fiir Vektor- und Tensorfeldvisualisierung bieten
topologiebasierte Verfahren die Moglichkeit, die Struktur einer Stromung exakt
darzustellen. Obwohl topologiebasierte Methoden erst seit kurzem in der Vi-
sualisierung wissenschaftlicher Daten eingesetzt werden, konnen ihre Wurzeln
bereits in der bahnbrechenden Arbeit von Poincaré am Ende des neunzehn-
ten Jahrhunderts gefunden werden. Im Prinzip wird das Definitionsgebiet des
betrachteten Feldes durch einen Graphen in Regionen gleichartigen qualita-
tiven Verhaltens unterteilt. Durch Extraktion und Visualisierung dieses Gra-
phen kann man die bedeutsamsten Eigenschaften eines grofien Vektor- oder
Tensorfelds hervorheben. Diese Moglichkeit motivierte die Entwicklung vieler
topologiebasierter Visualisierungsverfahren, die darauf abzielen, die Anforde-
rungen heutiger Anwendungen zu erfiillen. Dennoch haben sie immer noch
Schwichen, die ihren Einsatz in der Praxis erschweren. Diese Dissertation ent-
wickelt Losungsanséitze fiir zwei dieser Schwichen.

Zum einen weisen turbulente Stromungen sehr komplizierte Strukturen auf.
Folglich wirkt die Visualisierung ihrer Topologie hidufig uniibersichtlich. Um
diesen Nachteil zu {iberwinden, werden zwei Verfahren vorgestellt, die die To-
pologie vereinfachen, aber dennoch ihre Struktur konsistent zu den Original-
daten halten. Das erste basiert auf einer Skalierungsstrategie und verschmilzt
nahe beieinanderliegende Singularitédten durch lokale Deformationen des Git-
ters. Das zweite arbeitet auf Vektorfeldern, die iiber Triangulierungen definiert
sind, und entfernt schrittweise Paare von kritischen Punkten. Es ermoglicht, in
Abhéngigkeit eines vorgegebenen Kriteriums nur die wichtigsten Eigenschaf-
ten beizubehalten. Beide Methoden vereinfachen das Vektorfeld zusammen mit
dessen Toplogie und resultieren in einer iibersichtlicheren Darstellung.

Zum anderen bieten existierende Techniken fiir zeitabhingige Vektor- und
Tensorfelder keine Moglichkeit, die stetige Verdnderung der Topologie iiber die
Zeit darzustellen. Sie iibergehen Bifurkationen, die drastischen Anderungen in
der Struktur eines Felds entsprechen. Diese Arbeit stellt eine neuartige Tech-
nik vor, die automatisch Bifurkationen in Vektor- und Tensorfeldern findet
und charakterisiert. Sie erzeugt dreidimensionale Bilder, die den vollstindigen
topologischen Graphen iiber die Zeit hinweg prizise verfolgen und Flichen
angeben, die die Struktur der zeitabhingigen Topologie vermitteln.
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Chapter 1

Introduction

Computers have become indissociable from our daily life. Their capability
to process continually increasing amounts of data has found various fields of
application. They ease innumerable tasks and open new horizons by pushing
back the limits of our understanding. Scientific Visualization in particular is a
very active discipline of Computer Science, in charge of producing images that
convey meaningful aspects of numerical datasets. The appeal of these geomet-
ric depictions is due to the fantastic ability of human beings to comprehend
and interpret visual information.

Vector and tensor fields are traditionally objects of major interest for vi-
sualization. The significance of these symbolic objects is due to their key
role in the description of many notions in physics and, by extension, in engi-
neering sciences. This is especially true in fundamental physics, optics, solid
mechanics or fluid dynamics on one hand but also civil engineering, aeronau-
tics, turbomachinery or climate prediction on the other hand, to mention just
a few. From a theoretical viewpoint, vector and tensor fields have received
much attention from mathematicians, leading to a precise and rigorous frame-
work that greatly facilitates their practical study. In particular, Poincaré’s
work [Poi75, Poi99] laid the foundations of a genius geometric interpretation
of vector fields associated to dynamical systems. This provides an aesthetic
way to apprehend the signification hidden behind the language of multivariate
data. Nowadays, following this very rich theoretical inheritance, analysts typi-
cally center their attention on the topology of large vector and tensor datasets
provided by Computational Fluid Dynamics (CFD) or Finite Elemente Meth-
ods (FEM). Informally, the topology is the structure of a field: Practically, this
is a graph where so-called singularities play the role of vertices and are con-
nected by special curves that constitute the edges. It partitions the domain
of interest into subdomains of equivalent qualitative nature. Therefore, ex-
tracting and studying this structure permits to focus the analysis on essential
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properties. For visualization purposes, the depiction of the topology results
in synthetic representations that transcribe the fundamental characteristics of
the data. These ideas are at the basis of the topological approach that has
gained an increasing interest in vector and tensor field visualization during the
last decade. First introduced for planar vector fields by Helman and Hesselink
in [HH89a|, this technique has experienced many contributions and extensions
that aimed at better fitting the actual requirements of practical applications.
A crucial milestone on this way was the PhD thesis of Delmarcelle [Del94] that
transposed the vector formalism to symmetric, second-order tensor fields. In-
deed, a tensor field can be interpreted as the set of its eigenvector fields which
induces a deep similarity to vector fields.

At present, some remaining challenges must still be addressed to broaden
the scope of topology-based vector and tensor field visualization. One of them
is the excessive complexity of structural graphs associated with turbulent flows.
As a matter of fact, the presence of a large number of close singularities leads to
cluttered images that confuse interpretation since meaningful information can-
not be distinguished from local, small-scale details. So far, existing techniques
to solve this problem are limited to the graph representation and provide no
field description consistent with the simplified topology. As a consequence,
no alternative visualization technique like e.g. drawing of integral curves can
be applied afterward. Another deficiency is the lack of specific technique to
properly visualize the topology of parameter-dependent vector or tensor fields.
In fact, any attempt in this direction must face the fundamental issue of bifur-
cations. Indeed, an additional parameter enables the occurrence of structural
changes that leads to dramatic modifications of the topology. This topic has
thus raised a wide interest in the mathematics community leading to numer-
ous theoretical advances. It follows that an accurate and precise visualization
of such fields must permit both detection and identification of bifurcations
to provide insights into the continuous structural evolution. Up to now, the
proposed methods content themselves with displaying persistent features and
observing that topological consistency may have been lost between successive
discrete parameter values.

In this context, the contributions of this thesis are the following: First,
the mathematical connections between vector and tensor fields are precisely
exposed and commented (chapter 3). This is, at least to our knowledge, the
first time that a rigorous theoretical framework is explicitly formulated for the
topological visualization of two-dimensional symmetric tensor fields. In par-
ticular, concepts taken from differential geometry are used to properly define
the notion of tensor lines and prove their existence in the vicinity of singular
points. Second, the study of low-order interpolation schemes from the topo-
logical viewpoint enables us to detect and model singularities with arbitrary
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structures in piecewise linear vector and tensor fields (chapter 4). Next, the
problem of visual clutter encountered by topology-based schemes with turbu-
lent flows is attacked and solved for both vector and tensor fields defined over
structured or arbitrary grids (chapter 6). Our method is based on a scaling
approach that simulates the merging of close singularities thanks to local grid
deformations. This permits to replace a complex local structure by a new, sim-
pler one, that presents the same aspect in the large and preserves consistency.
This scheme is completed by a second one, designed for planar vector fields
defined over piecewise linearly interpolated triangulations (chapter 8). In this
case, simplification takes place via the successive pairwise pruning of singu-
larities, monitored by arbitrary qualitative or quantitative criteria. At last, a
topology-based visualization technique for time-dependent planar vector and
tensor fields is proposed (chapter 7). In accordance with what precedes, while
tracking the topology over time, we detect and characterize the bifurcations
that affect the local or global structure. This leads to a three-dimensional
visualization of these continuous transitions, where time is embedded in a 3D
space-time grid.

Structure of the text The mathematical foundations of two-dimensional
vector field topology are first introduced in chapter 2. All useful notions are
precisely defined and explained. Following the ideas of Poincaré and of his
many successors, we emphasize a geometric approach. Special attention is
paid here to the theory of bifurcations and structural stability to lay the the-
oretical basis required for the methods presented later on.

This framework is next extended to symmetric, second-order two-dimensional
tensor fields in chapter 3. The theory originally proposed by Delmarcelle is
rigorously investigated and completed to fit the needs of our applications. In
particular, the existing parallel between vector and tensor fields is underlined
by means of covering spaces. The theory of bifurcations is sketched in this
context, keeping the same geometric approach as before.

After this mathematical introduction, common grid structures and associated
interpolation schemes are presented in chapter 4. The related topological prop-
erties are discussed for the two-dimensional case. The chapter ends with a
method for the extraction and modeling of singularities with arbitrarily com-
plex structure in piecewise linear fields. This completes the description of all
the concepts required for our visualization purposes.

The state of the art in topology-based visualization of vector and tensor fields
is described in chapter 5. The original methods for vectors and tensors are
presented along with the improvements and extensions achieved since their
introduction. In particular, existing methods for topology simplification and
time-dependent topology visualization are considered.
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Chapter 6 provides all details about our topology scaling method of vector
and tensor fields defined over structured and unstructured grids. Results are
shown on both artificial and practical turbulent datasets. All demonstrate the
ability of our technique to clarify the depiction while preserving all meaningful
aspects of the original data.

Our theoretical knowledge about bifurcation theory is used in chapter 7 to
accurately visualize the topological evolution of parameter-dependent vector
and tensor fields. Pictures generated by our method are proposed that illus-
trate various types of bifurcations. The tracking of singularities together with
associated structures is processed on datasets chosen for their interesting topo-
logical properties. We show the resulting three-dimensional images.

Chapter 8 describes a new method for the simplification of piecewise linear
planar vector fields. It permits to remove insignificant singularities pairwise
with respect to any user-prescribed criteria without altering the global nature
of the associated flow. An interpretation in terms of bifurcations underlines
the continuous, natural flavor of the algorithm. The application focuses on a
turbulent CFD dataset: The results confirm that a very high simplification
rate can be achieved although consistency is preserved.

Finally, a few comments on the numerical issues related to the presented meth-
ods are given in appendix A.

Datasets The new methods presented in this thesis were tested with practi-
cal CFD datasets provided by Wolfgang Kollmann, from the Mechanical and
Aeronautical Engineering Department of the University of California at Davis.
These vector and tensor datasets correspond to numerical simulations of a
swirling jet with inflow into a steady medium. They are of great interest in
the context of this work because they are turbulent and exhibit very compli-
cated structures. Further details can be found in [SHJ00]. Prof. Kollmann
provided also many helpful comments on the role of topology in fluid dynamics.
I would like to take the opportunity to thank him for this contribution.



Chapter 2

Vector Fields and Dynamical
Systems

This chapter is devoted to the theoretical framework of vector field topol-
ogy as it is defined and used in Scientific Visualization. The essential idea
is the notion of phase portrait of a dynamical system that provides a vector
field with a geometric interpretation. Special features of major interest, called
critical points and closed orbits, play a key role. Therefore, a precise qualita-
tive analysis has been designed to study their properties. Furthermore, when
considering parameter-dependent vector fields, the fundamental concepts of
structural stability and bifurcation naturally arise to describe and understand
the qualitative changes that may be encountered. An overview of all these
topics is given.

2.1 Basic Notions and Fundamental Theorems

In this section, the notions of dynamical system, flow and phase portrait re-
lated to a vector field are defined and the fundamental theorems ensuring the
existence and uniqueness of the solution to the Cauchy problem are given.

2.1.1 First Definitions

Definition 1 The differential equation associated with a vector field f is
a system

dx

E = f(t’w)a

where © is a n-dimensional function of an independent real variable t (say
time) and f : (I CIR) x (UC IR") — IR" is a smooth function.

11
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Remark 1 If f does not depend on time, the equation is called autonomous.
Otherwise the system is said non-autonomous.

The addition of an initial condition to the differential equation leads to the
Cauchy problem:

Definition 2 The Cauchy problem is defined as the system
& = fte)
.’D(to) = Xy

The equation x(ty) = xo is called initial condition of the problem.

Remark 2 In practice, one usually takes €(0) = xq as initial condition, that
1s tg = 0. Note that in the case of an autonomous system, the problem is
unchanged by any translation of time, i.e. is independent of the choice of t,.

When dealing with a differential equation, one typically studies the properties
of its associated flow which is defined as follows.

Definition 3 The vector field f generates a low ¢, : U C IR — IR"™, where
¢y = ¢d(x,t) is a smooth function defined for (x,t) € U x (I C IR) salisfying

d
E¢(mvt) = f(Ta ¢(:B,7'))

t=T
for all (x,7) € U x I.
Property 1 With the definition above, ¢, satisfies the group properties:
1. ¢ =1d
2. ¢yo s = @5 and therefore ¢y o ¢, = id.

Remark 3 For a given t € IR, the point ¢y(x) with € € IR", can be seen
as the new position reached after time t by a particle located at * at t = 0,
submitted to the flow ¢.

Remark 4 With the definition above, the function ¢(xy,.) : t — ¢(xo,1) is a
solution of the Cauchy problem with initial condition &(0) = x¢. This solution
will be referred to as integral curve, trajectory or orbit in the following.

If one considers all integral curves as a whole, one forms the phase portrait.

Definition 4 The family of all integral curves as subsets of IR? X IR is called
phase portrait of the dynamical system.
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2.1.2 Existence and Uniqueness

The results cited here are taken from [ZDH92]. Before stating the fundamental
theorem on local existence and uniqueness of a solution to the Cauchy problem,
the Lipschitz condition for a function must be introduced.

Definition 5 The function f : V C E — FE, E normed vector space, is said
to be Lipschitz on V' if there exists a positive constant K > 0 such that

Vz,y € V,||f(z) = f()lle < Kllz — yll5.

K is called Lipschitz constant of f.

Definition 6 The function f : V C E — FE, E normed vector space, is said
to be locally Lipschitz on V', if for any point xo € V', there exists a constant
b > 0, such that

Vy,ze{z €V, |l —zollp <b} CV,[[f(y) — f(2)l|p < Kully — 2[|5-
Here, K, is a constant depending on x.

One can now state the fundamental theorem on the local existence and unique-
ness of a solution of the Cauchy problem.

Theorem 1 Let U C IR™ be an open subset of real euclidean space, let I C IR,
f:IxU — IR" be a continuous, Lipschitz function with respect to € € U
and xg € U. Then there is some a > 0 and a unique solution

z: (—a,a) — U
to the Cauchy problem with initial condition x(0) = x,.

Proof: see [ZDH92, pp. 1-4].

This theorem is only local because it deals with the existence and uniqueness
of a solution of the Cauchy problem in a neighborhood of the initial point
x,. Fortunately, the solution can be continued to a larger (open) interval as
described in the next theorem.

Theorem 2 Suppose that f(t,x) is continuous for (t,x) in the region G =
(I C R) x (U C IR"), and satisfies a local Lipschitz condition with respect to
x. Then the solution of the Cauchy problem can be continued to the boundary
of G (possibly c0).
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Proof: The proof of this theorem results from the uniqueness of the solution
to the Cauchy problem (c.f. theorem 1) and from the continuity of the flow
(see [ZDH92, p. 13]).

In the special case of vector fields defined over a compact region, which typi-
cally occurs in practice, the previous theorem ensures the global existence of
solutions.

Remark 5 If f(t,x) is continuous for (t,x) in the region IR x M C IR",
with M compact, and satisfies there a local Lipschitz condition with respect to
x, then either the solutions to the Cauchy problem © = ¢(t) are unbounded
(and therefore leave M through its boundary) or they erist in the interval
(—00,+00).

The practical relevancy of integral curves is due to their continuity with respect
to initial conditions. This is formalized in the next theorem.

Theorem 3 Consider the Cauchy problem

{ w@) B

where f(t,x) is continuous for (t,x) in the region G = (I C IR) x (U C IR")
and satisfies a Lipschitz condition with respect to x, then there exists a constant
a' > 0 and a unique solution

z: (=d,d)— U
Moreover, x = x(t,n) is a continuous function of (t,n).

Proof: see [ZDH92, p. 10].

The fundamental meaning of the previous theorem is that if the initial condi-
tion of the Cauchy problem is only approximated and therefore provided with
a small error, then the corresponding solution will be related in a “nice” way
to the one of the original problem.

2.2 Critical Points

We deal in the following with critical points of vector fields that only depend
on the space variable x, i.e. that are autonomous. The main focus is on two-
dimensional vector fields where a complete classification of critical points has
been provided by Andronov et al. [ALG73].
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Definition 7 A critical point xy € U C IR" of a vector field f : U — IR"
18 characterized by

f(zo) =0

Remark 6 Critical points are also known as singular points or simply singu-
larities. Since the constant function x(t) = xq is a solution of the differential
equation related to f, they may also be called fixed or equilibrium points.
A point that is not singular is called regular.

Remark 7 Because of the local uniqueness of the solutions of the Cauchy
problem, integral curves generally cannot meet. Now, the fundamental partic-
ularity of a critical point, as opposed to a reqular point, is that integral curves
can possibly meet asymptotically at its position as t approaches +o0o.

When studying a critical point, one is typically interested in its stability.
The precise definitions are given next. Note that the following notions are not
classical (although they constitute straightforward generalizations of the tra-
ditional definitions) but conform to the formalism introduced in [Sch00]. The
reason for this choice is that they better fit typical qualitative considerations
in Scientific Visualization.

Definition 8 A critical point x is said to be w- (resp. a-) stable if for every
neighborhood V. C U of x there exists a neighborhood W C V' such that every
solution x(t) with initial condition £(0) = xy € W is defined and lies in
V for all't > 0 (resp. t < 0). Furthermore, if W can be chosen so that
x(t) — = when t — oo (resp. t — —o0), then x is said to be w- (resp.
a-) asymptotically stable.

We now consider two-dimensional vector fields. A fundamental special case
is provided by the critical points of linear vector fields.

2.2.1 Critical Points of Planar Linear Vector Fields

The following results are taken from [HS74, pp. 82-96] that offers a complete
treatment of this subject.

Definition 9 A vector field f : IR — IR" is (affine) linear if there exists a
matriz A € R(n,n) and a vector b € IR"™ such that

Ve € R, f(x) = Az + b.

If furthermore, b = 0, f is homogeneous linear and the coordinate origin
O 1s a critical point.
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Remark 8 If A is invertible (i.e. detA # 0), setting €y = A~ 'b, one gets
g(z) = f(x — xo) = Ax. That is, with a convenient translation of the coordi-
nate system, one obtains a homogeneous linear vector field. Note that in this
case Ty is the only critical point of the vector field.

The generic classification of critical points of a homogeneous linear vector
field is based on the following property.

Property 2 The critical points of homogeneous vector fields are characterized
by the eigenvalues of their matriz A.

In the two-dimensional case, the matrix A has two eigenvalues A\, Ay € C'. The
possible cases are enumerated next.

e Case 1. A has real eigenvalues with opposite signs. The zero is called a

=

Figure 2.1: Saddle point

.

e Case 2. Both eigenvalues have negative real parts. The zero is called a
sink, because any integral curve tends toward O for t — oc.

==

Figure 2.2: Node sink Figure 2.3: Focus sink

— Case 2a. A is diagonalizable and its eigenvalues are different. The
zero is called a node sink. The eigenvector related to the eigenvalue
with largest (resp. smallest) modulus corresponds to the direction
of “fast” (resp. “slow”) convergence. The special case where the
eigenvalues are equal is called a focus sink.
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— Case 2b. A is not diagonalizable but has one real negative eigen-
value. The zero is called an improper node sink.

— Case 2c. A has two complex conjugate eigenvalues with negative
real parts. The zero is called a spiral sink.

Figure 2.4: Improper node sink Figure 2.5: Spiral sink

e Case 3. Both eigenvalues have positive real parts. The zero is called a
source, because any integral curve tends toward it for t — —oc.

— Case 3a. A is diagonalizable and its eigenvalues are different. The
zero is a node source. If both eigenvalues are equal, the zero is a
focus source.

&= ==

Figure 2.6: Node source Figure 2.7: Focus source

— Case 3b. A is not diagonalizable but has one real positive eigen-
value. The zero is called an improper node source.

Figure 2.8: Improper node source Figure 2.9: Spiral source
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— Case 3c. A has two complex conjugate eigenvalues with positive
real parts. The zero is called a spiral source.

e Case 4. A has pure imaginary (conjugate) eigenvalues. The zero is

called a center.

Figure 2.10: Center

2.2.2 Non-Linear Case

If one now focuses on general, non-linear vector fields, the study of a critical
point concentrates on the local behavior of the phase portrait in its vicinity.
More precisely, the vector field is linearized at the considered critical point.
The approximating linear vector field is thus defined as

d
2 = Df(20)y.

where D f is the Jacobian matrix of the vector field f, that is (gi; ). Note that
this local approximation is only valid if the Jacobian matrix has full rank at

the critical point.

Definition 10 If a critical point x of a vector field f is such that the Jacobian
matriz D f (xo) has full rank (i.e. det Df(xy) # 0), then the critical point is
said to be of first order. Otherwise, it is said to be of higher order or
non-linear.

Hyperbolic critical points are a subclass of first order critical points.

Definition 11 A critical point xoy of a vector field f is said to be hyperbolic
if the Jacobian matriz D f(xo) has no eigenvalue with zero real part.

Among all possible types of critical points, special attention is paid to sinks
and sources. Their definition is based on the property of the Jacobian matrix
at their location. They generalize the linear sinks and sources encountered
previously.
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Definition 12 If all eigenvalues of the Jacobian matriz D f(xy) have nega-
tive real parts, then the critical point xqy is called a sink. Conwversely, if all
etgenvalues have positive real parts, &y 1s called a source.

The intuitive meaning of this classification is stated more precisely by the
following theorem.

Theorem 4 Let xy be a sink of the vector field f with corresponding flow ¢.
Suppose every eigenvalue of Df(xy) has real part less than —c, ¢ > 0. Then
there is a neighborhood U of o such that there is an euclidean norm satisfying

i) — @o| < exp™™ | — @y
forallx e U, t>0.

Proof: see [HS74, pp. 181-182].

Remark 9 With the definitions above, a sink (resp. source) is a w- (resp. a-)
stable critical point. If furthermore Df(xo) has no eigenvalue with zero real
part, it is w- (resp. a-) asymptotically stable.

The fundamental relation between the local aspect of the integral curves of a
non-linear vector field in the vicinity of a critical point and its linear approxi-
mation is given by the next theorem.

Theorem 5 (Hartman-Grobman) If a critical point xy of a non-linear vector
field f is hyperbolic then there is a homeomorphism h defined on some neigh-
borhood U of xq locally taking integral curves of the non-linear flow ¢, related
to f to those of the corresponding linear flow. The homeomorphism preserves
the sense of integral curves and can also be chosen to preserve parametrization.

Proof: see [Har64, Theorem 7.1, p. 244].

Consequently, for hyperbolic critical points, the aspect of the integral curves
in their neighborhood will be similar to one of the ten cases enumerated pre-
viously. Fig. 2.11 gives an idea of this correspondence.

The general classification of non-linear critical points in the plane distinguishes
two types of critical points: The center and the non-center types.

Definition 13 A critical point that is approached by no integral curve is said
to be of center type. If on the contrary, at least one integral curve converges
to it, it is of non-center type.

Remark 10 In the non-center case, there are actually two integral curves at
least that converge toward the critical point.
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Figure 2.11: Relation between a linear and a non-linear saddle point

curvilinear
sector

critical
@ points i\

center type non center type

Figure 2.12: Center and non-center types

In the non-center case, the integral curves converging to the critical point
determine so-called curvilinear sectors. These notions are illustrated in
Fig. 2.12. The possible natures of a curvilinear sector are introduced next.

Definition 14 The curvilinear sectors of a critical point can be of three dif-
ferent types.

e Case 1. If one (bounding) converging integral curve tends toward 0 for
t — oo, and if the other tends toward 0 for t — —oo, and if every
wntegral curve passing through the sector leaves it for both t — oo and
t —» —o0, the sector will be called o hyperbolic or saddle sector. In
this case, both bounding converging integral curves are called separatri-
ces of the singular point O.

e (Case 2. If both bounding converging integral curves tend to O fort — oo
(resp. t — —o0) and if every integral curve through the sector tends
toward 0 for t — oo (resp. t — —o00) without leaving it and leaves the
sector for t —» —oo (resp. t —> 00), the sector is called a parabolic
sector.
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e (Case 3. If both bounding converging integral curves are actually the same
and if all integral curves through a point inside this loop form nested loops
tending to O for both t — o0 and t — —o0, the sector is called an
elliptic sector.

An illustration of the different sector types is proposed in Fig. 2.13.

(a) Hyperbolic (b) Parabolic (c) Elliptic

Figure 2.13: Sector types

Remark 11 By considering a neighborhood with a small enough radius, one
can always get a decomposition in the sector types defined above (analytical
case).

Remark 12 The boundaries of an elliptic sector cannot be determined locally.
If one restricts the study of an elliptic sector to a neighborhood of the critical
point, this sector will always be bounded on both sides by parabolic sectors.

Remark 13 An integral curve bounding a hyperbolic sector is called separatriz
because it separates two sets of integral curves that diverge from another as
t— 00 ort — —o0, as illustrated in Fig. 2.14.

Remark 14 In the special case of linear vector fields, the only critical point
presenting hyperbolic sectors and thus separatrices is the saddle point: It has
four separatrices that are the integral curves converging toward it along the
direction of its eigenvectors.

Consequently, any singular point may be characterized by the type, angular
location, and number of its curvilinear sectors. The precise meaning of this
characterization is the following.
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hyperbolic sector
L, Separatrix

after sufficient time,

the corresponding integral
curve in the hyperbolic sector
leaves any €—neighborhood

initial conditionson

both sides lie in the same
€—neighborhood of the
separatrix

Figure 2.14: A separatrix

Theorem 6 If the structures of two singular points are related through a one-
to-one correspondence between their respective separatrices converging fort —
oo, separatrices converging for t — —oo and elliptic regions then there exists
a curve-preserving topological mapping of a neighborhood of the first onto a
neighborhood of the second preserving orientation and direction of t.

Proof: see [ALGT73, ch. 8|.

Moving away from the vicinity of a critical point to consider its influence on
the global structure of the phase portrait, one introduces the notion of basin.

Definition 15 The union of all integral curves that tend toward a critical
point xy as t —> o0 s called the w-basin of ®y. The union of all integral
curves that tend toward a critical point g for t — —oo is called the a-basin

Of Iy.

Remark 15 The w-basin of a source is reduced to the source itself whereas
the a-basin of a sink is reduced to the sink itself.

2.3 Closed Orbits

Definition 16 A closed orbit is a periodic solution to the Cauchy problem,
that is, if v denotes the trajectory of an closed orbit ¢; with initial condition
x € v, there exists a t; # 0 such that ¢y, = .

Corollary 1 With the notations above and by uniqueness of the solution of
the Cauchy problem, it follows that ¢n, = x, for alln € Z.

As for critical points, one defines the asymptotic stability of closed orbits.
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Definition 17 Let v be a closed orbit of a dynamical system with flow ¢. 7 is
said to be w- asymptotically stable if for every open set VDO v, there exists
an open set W DV D v such that ¢,(W) CV for allt > 0 and

lim d(4(z),7) = 0.

where d(x,7) is the minimal distance from x to a point on 7. Replacing t by
—t in the definition above, one defines similarly an c-asymptotically stable
closed orbit.

Fig. 2.15 shows an asymptotically stable closed orbit.

Figure 2.15: Asymptotically stable closed orbit

The study of a closed orbit can be done by the use of the Poincaré map.

Definition 18 Let ¥ C IR™ be a local cross section of a closed orbit v of a flow
¢ in IR™. The section is chosen such that the flow is everywhere transverse
to it (that is not tangent). Let U C X be a neighborhood of the unique point p
where the closed orbit intersects 3. The Poincaré map is then defined as the
map P :U — % such that

Vg e U, P(q) = ¢:(q),

where T 1is the time taken for the orbit ¢.(q) based at q to first return to X.
(See Fig. 2.16.)

Remark 16 With the notations above, p is a fized point for the map P.
Note that P actually defines a discrete map

o1 = P(gn), ne”Z

The stability of p for the map P corresponds to the stability of the closed
orbit v for the flow ¢;. Classification is based, as in the vector case, on the
eigenvalues of the linearization of the Poincaré map at p. In the case of two-
dimensional vector fields, this map is one-dimensional and there is a single
(real) eigenvalue. The definitions are as follows.
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Figure 2.16: Poincaré map

Definition 19 Let ¢; be a two-dimensional flow on the plane IR?. Let v be
a closed orbit of ¢; and P the corresponding one-dimensional Poincaré map
defined on some cross section X2 of v. If the linearization of P at its fixed point
p € v has an eigenvalue A < 1, p is said to be a sink for P. If A > 1, p s said
to be a source for P.

Remark 17 With the notations above, the value of A is necessarily a positive
value in the planar case because a negative value would correspond to integral
curves that alternatively meet the cross section on each side of p (i.e. of the
closed orbit), which is impossible because integral curves cannot cross the closed
orbit.

The link between the stability of p for P and the stability of ~ is formalized,
in the general case, by the next theorem.

Theorem 7 With the notations above, if p is a sink for the Poincaré map P,
i.e.
nlgglo P"(q) =p, forall q in U,

then the closed orbit v is w-asymptotically stable. Similarly, if p is a source
for the Poincaré map P, i.e.

lim P"(q) =p, forallq in U,

n——00
then the closed orbit v is a-asymptotically stable.

Proof: see [HS74, pp. 282-283].
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As for critical points, one can define the hyperbolicity of a closed orbit, which
completes the classification introduced previously between sinks and sources
in two dimensions.

Definition 20 If the linearization of the Poincaré map P at the fized point
p (lying on the closed orbit) has no eigenvalue with unit modulus, then p is a
hyperbolic fixed point for the discrete map P and the closed orbit is said to be
hyperbolic as well.

Remark 18 In the two-dimensional case, a closed orbit is either hyperbolic
and then a- or w-asymptotically stable (i.e. attracting or repelling) or non-
hyperbolic.

Two non-hyperbolic closed orbits are shown in Fig. 2.17.

Figure 2.17: Non-hyperbolic closed orbits

2.4 Topological Graph

The concepts introduced so far are the constituent parts of the structure of the
phase portrait of a dynamical system, also called topological graph or simply
topology. By extension, one calls it topology of the corresponding vector field.
The definition used in the following is given next.

Definition 21 The topology of a planar vector field f is built up of all crit-
ical points, separatrices and closed orbits of f.

Note that the notion of separatrix, as defined previously, is closely related
to the local structure of the phase portrait in the vicinity of a critical point.
This definition is actually too restrictive. As a matter of fact, the essential
property of a separatrix is to separate groups of integral curves that have
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different asymptotic behaviors. In other words, a separatrix locally divides
the domain of definition of a vector field into two subdomains inside which all
integral curves converge to the same critical point (or closed orbit) for ¢ — oo
and all converge to the same critical point (or closed orbit) for ¢ - —oco. An
equivalent definition consists in considering a separatrix as the intersection of
the closure of two basins.

An interesting problem arises when dealing with vector fields defined over
closed bounded domains (compacts). In this case, the asymptotic behavior of
all integral curves is not only determined by the critical points and the closed
orbits located inside the domain but also by the restriction of the vector field to
the boundary of the domain: This boundary can locally act as source (where
the vector field is directed inwards), sink (where the vector field is directed
outwards) or saddle (separating the former two). Therefore, the generalized
notion of separatrix also includes the integral curves starting at the boundary
saddles. A presentation of this topic from the visualization viewpoint can be
found in [SHJ00]. The previous notions are illustrated in Fig. 2.18.

boundary saddle
boundary sink
boundary saddl& /
boundary sink \< N i
R i
boundary saddle

Figure 2.18: Topology of a vector field over a bounded domain

Remark that this topology contains no separatrix emanating from critical
points.
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2.5 Poincaré Index

The index is a fundamental concept that has been introduced by Poincaré in
the qualitative theory of dynamical systems. This notion has many theoretical
and practical applications. It is based on the rotation of a planar vector field
along a simple closed curve. The definitions are given next as well as funda-
mental theorems that will prove extremely useful in the following.

At a position where a two-dimensional vector field f = (fx, fy)T is not
vanishing (i.e. away from every critical point), one can define the angle between
the positive z-axis and the direction of f as the scalar 6 satisfying

fiX sin 9 — fiy
VI%+ 5 VIX+

Furthermore, if f is continuous, the angle # is uniquely determined modulo
27 and is a continuous function of the position. The index of a simple (non
self-intersecting) closed curve is then defined as follows.

cos 0 =

Definition 22 The index of a simple closed curve I' of the plane relative
to a continuous vector field f is the number of positive field rotations while
traveling once along T in positive direction, that is (with the notations above)

1
I(Faf) = % ﬁ_i_dea

where the curve I' contains no critical point of the vector field f.
Remark 19 The index is an integer by continuity of 6 along the closed curve.

The index of a simple closed curve around a saddle point is illustrated in
Fig. 2.19.

*».\—:—/.«‘—\.—i—/—»

Figure 2.19: Simple closed curve of index -1

One can now state the first fundamental theorem about the index.
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Theorem 8 Let " be a simple closed curve in the domain of definition U of a
continuous vector field f and let T denote the closure of the domain bounded
by T. If all points of T are in U and the interior of T contains no critical
point, then the index of T relative to f is zero: I(T') = 0.

Proof: See [ALGT73, p. 194].

This theorem generalizes as follows.

Theorem 9 With the hypotheses above, if the interior domain of I' contains
sitmple closed curves I'y, ..., I',,, then one has the relation

Ir)y = I(Ty)+...+I(Ty,)
Proof: See [ALGT73, p. 194].

We now come to the important notion of index of an isolated critical point.

Definition 23 The index of an isolated critical point x, of a continuous
vector field f is defined as the index of any simple closed curve I' containing
Ty in its interior and enclosing no other critical point, either in or on .

One gets immediately a corollary of theorem 9:

Corollary 2 With the hypotheses above, let I' be a simple closed curve en-
closing n critical points x4, ..., T, in its interior, then the index of I' is given
by

IT) = I(zy) + ... + I(x,)
Getting back to first-order critical points, one gets the following property.

Theorem 10 The index of a critical point of first order is either +1 (sink,
source and center) or —1 (saddle point).

Proof: See [ALGT73, p. 199].

Considering closed orbits, one obtains:

Theorem 11 The index of a closed orbit of a dynamical system related to a
continuous vector field f is +1.

Proof: See [ALGT73, p. 195].

Theorem 11 together with theorem 9 lead to the following corollary.

Corollary 3 A closed orbit that contains only first order critical points con-
tains at least one critical point of index +1. Furthermore, if it contains several
first order critical points, then this number is odd, say 2n+ 1, and there are n
saddle points and n+ 1 critical points of index +1 (sinks, sources or centers).
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2.6 Structural Stability

The previous sections focused on autonomous dynamical systems. Now, if the
considered vector field depends on an additional parameter, the structure of
the phase portrait may change as the value of this parameter evolves. There-
fore, the analysis of non-autonomous dynamical systems is concerned with the
essential question of structural stability of the phase portrait, i.e. the abil-
ity of a given topology to maintain its qualitative nature under small changes
of the parameter value. The present section introduces the notions required
to precisely define structural stability, and states the fundamental theorem
of Peixoto. The first definition precises the nature of the “small changes”
mentioned above.

Definition 24 Let F' be a a function of class C™ in IR™,r > 1 (that is r
times continuously differentiable) and € > 0. Then G is a C' e-perturbation
if there exists a compact K C IR" such that F = G on IR"\K and for all
i €{0,..,n—1}, one has

0
8:131'

The preservation of the qualitative nature of a dynamical system is intimately
related to the notion of equivalence as defined next.

(F-G)| <e

Definition 25 Two C" vector fields f and g are said to be C* equivalent
(k < r) if their exists a C* diffeomorphism (all derivatives are invertible and
their inverse are continuous) h which takes orbits ¢f () of £ to orbits ¢?(x) of
g, preserving sense but not necessarily parametrization by time. If furthermore
h does preserve parametrization by time, then h is called conjugacy.

Remark 20 This definition means that for any x and t,, there is a ty such
that

h(8, () = 7, (h(z))
The structural stability is now defined as follows.

Definition 26 A C" vector field f is structurally stable if there is an e > 0
such that all C' e-perturbations of f are topologically (i.e. C°) equivalent to

f.
The focus is again on planar vector fields. One first needs to introduce special
cases of separatrices of first order critical points.

Definition 27 A separatriz connecting two saddle points is called a hetero-
clinic connection. A closed separatriz connecting a saddle point with itself
1s called « homoclinic connection.

Saddle connections are shown in Fig. 2.20.
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(a) Heteroclinic (b) Homoclinic

Figure 2.20: Saddle connections

We now have all the definitions required to state the fundamental Peixoto
theorem [Pei62] on structural stability for two-dimensional flows defined over
compact domains. For convenience and to keep in the scope of this thesis, we
restrict it to the euclidean case.

Theorem 12 (Peixoto) A C" vector field on a two-dimensional compact pla-
nar domain of IR? is structurally stable if and only if:

1. the number of fixed points and closed orbits is finite and each is hyper-
bolic;

2. there are no orbits connecting saddle points (heteroclinic or homoclinic).

Remark 21 The actual theorem deals with two-dimensional manifolds and is
concerned with non-wandering sets and orientability, concepts that go beyond
the theoretical needs of the present overview.

Practically, Peixoto’s theorem implies that a planar vector field typically presents
saddle points, sinks and sources as well as attracting or repelling closed orbits.
Furthermore, it asserts that non-hyperbolic critical points or closed orbits are
unstable because small perturbations can make them hyperbolic. Saddle con-
nections, as far as they are concerned, can be broken by small perturbations
as well. The next section is concerned with such structural transitions.

2.7 Bifurcations

The term bifurcation was originally used in the literature to describe the split-
ting of equilibrium points in a parameter-dependent dynamical system, as the
value of this parameter comes to change over its domain of definition: If one
depicts the curve describing the successive positions of the equilibrium over
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the space embedding euclidean and parameter space, one notices for a partic-
ular parameter value the presence of a fork that leads to several alternative
equilibria. This basic idea is illustrated in Fig. 2.21 for the simplest case of one-
dimensional euclidean space (variable x) and one-dimensional parameter space
(variable u1). The structure associated with the parameter value where the fork

X

branches of equilibria

— e >

bifurcation point

Figure 2.21: Bifurcation diagram

occurs is thus unstable for slight changes of this value can lead to another dif-
ferent structure (non equivalent in the sense of definition 25). Therefore, one
gets the following definition.

Definition 28 A wvalue o of the parameter y for which the flow is not struc-
turally stable is called a bifurcation value of p.

Remark 22 In the definition above, the notion of bifurcation is restricted
to a one-dimensional parameter space. This is motivated by the fact that
the approach of structural stability developed in this thesis is limited to time-
dependent vector fields where time is the only (considered) parameter. How-
ever, bifurcation problems go far beyond this restriction and actually apply to
any n-dimensional parameter space.

The theory of bifurcations is thus concerned with the structural transitions
that occur at the bifurcation values of the parameter. These transitions may
be very complicated and an exhaustive classification is impossible, even in
the simple case treated here. Yet, two categories exist: On one hand, some
bifurcations only affect the nature of a critical point or a closed orbit, and the
corresponding new stable state (reached after transition) is to be found in a
neighborhood. These bifurcations are called local bifurcations. On the other
hand, bifurcations that change the global structure of the flow and cannot be
deduced from local information are called global bifurcations. Both types are
considered next.
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2.7.1 Local Bifurcations

In this section, one focuses on local bifurcations that involve two-dimensional
time-dependent vector fields (where time can be seen as any one-dimensional
parameter). For simplicity, we shall consider here only the simplest local bi-
furcations that occur in this case, which suffices for the visualization methods
to come.

As said previously, local bifurcations correspond to structural changes that
take place in the vicinity of a critical point or a closed orbit. Now, from the
viewpoint of critical points or closed orbits, structural instability is due to
non-hyperbolicity, as defined previously. One considers in the following the
most common cases, in the sense of practical applications, which is actually
deeply related to considerations inherited from the mathematical theory of
transversality, as explained in [GH83].

Bifurcations of Critical Points

Recalling a previous definition, the non-hyperbolicity of a critical point is due
to the fact that the Jacobian matrix at the corresponding position has an
eigenvalue with zero real part. For two-dimensional vector fields, two situations
may thus be encountered: One eigenvalue is zero or both are conjugate and
purely imaginary.

Saddle-Node Bifurcations This type of bifurcation is also called static
fold by some authors [AS82]. This is the most usual case of local bifurcation
related to a non-hyperbolic critical point with zero eigenvalue. Considering
the corresponding dimension, the graph of the one-dimensional bifurcation
is as shown in Fig. 2.22. In the situation depicted here, no critical point is

X

—— sink
- - - source

Figure 2.22: Saddle-node bifurcation (1D)
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present at the beginning. At the bifurcation point, a critical point appears and
the associated eigenvalue is zero. The non-hyperbolicity of this singularity
is characterized by both an attracting and a repelling nature at the same
time. This critical point is then replaced by a source and a sink, moving
away from another. For this reason, this bifurcation is also called pairwise
creation. Getting back to a two-dimensional vector field, the successive local
aspects of the topology are shown in Fig. 2.23. Note that this two-dimensional

N
- -

Figure 2.23: Saddle-node bifurcation (2D)

picture has been obtained by adding a stable (i.e. attracting) eigenspace to the
previous (one-dimensional) critical points. The presence of a saddle point and a
sink after transition justifies the name chosen for this bifurcation. Obviously,
the same kind of bifurcation is obtained by adding an unstable (repelling)
eigenspace to both one-dimensional critical points: The sink is replaced by a
source.

If one inverts the direction of time, one gets additional bifurcations: Start-
ing with a saddle point and a sink (resp. source), close to another, both critical
points come to merge together to form a non-hyperbolic critical point that dis-
appears to let place to a local structure where no critical point is present. This
reverse bifurcation is therefore called pairwise annihilation.

Pitchfork Bifurcations This second type of bifurcation is also related to
the presence of a zero eigenvalue in the Jacobian. Its major difference to the
previous one is that a critical point maintains through the bifurcation point.
Considering the dimension associated with the zero eigenvalue, one obtains the
one-dimensional situation proposed in Fig. 2.24.

In this case, a stable sink is present originally. At the bifurcation point this
critical point becomes non-hyperbolic but keeps its attracting nature. After
bifurcation, two stable sinks move away from another, separated by a stable
source between them. If one gets back to a two-dimensional problem, e.g. by
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X

— sink
- - - source

Figure 2.24: Pitchfork bifurcation

adding an attracting (stable) dimension to this picture, one gets the bifurcation
shown in Fig. 2.25.

Figure 2.25: Pitchfork bifurcation (2D)

If one adds a repelling dimension to the one-dimensional bifurcation, one
obtains a final configuration with two saddle points connected through a sink.
Similar pictures are obtained by replacing the original sink by a source. Ad-
ditional cases correspond to a reversed time direction.

Hopf Bifurcations This is the bifurcation that typically occurs when the
Jacobian has two purely imaginary conjugate eigenvalues. Recalling what was
said previously about linear vector fields, in the first order case such a critical
point is a center and is surrounded by infinitely many closed orbits. This
bifurcation is fundamentally two dimensional, as opposed to the saddle-node
presented previously. The situation is illustrated in Fig. 2.26.

The evolution is as follows: Before the bifurcation point, a spiral sink is
present. The attracting character of this sink weakens until it vanishes: No
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cDe o

Figure 2.26: Hopf bifurcation

integral curve converges toward the critical point that becomes a center point.
This non-hyperbolic singularity gives raise to a spiral source (i.e., the attracting
nature has mutated in a repelling one through a center nature) surrounded by
an attracting closed orbit, that ensures global consistency of the new local
structure with the rest of the topology (the whole structure acts as attracting
in the large, like before).

Once again, one obtains additional similar bifurcations by reversing the
direction of the flow (the sink at the beginning becomes a source and the source
after bifurcation becomes a sink while the surrounding closed orbit has now
a repelling nature). Inverting the direction of time provides at last two more
bifurcations where a closed orbit surrounding a critical point disappears to let
place to another critical point with opposite (attracting/repelling) nature.

Bifurcations of Closed Orbits

The non-hyperbolicity of a closed orbit corresponds to an eigenvalue of the
Poincaré map with unit modulus. In the case of two-dimensional vector fields,
this map is one-dimensional and the only possible cases are eigenvalues equal
to 1 or -1. Nevertheless, as shown in section 2.3, negative values are impossible
in the planar two-dimensional case. Therefore, only the case of an eigenvalue
equal to 1 is treated.

Periodic Fold This kind of bifurcation is the equivalent of the (one-dimensional)
saddle-node bifurcations mentioned previously for the Poincaré map. The most
common situation is illustrated in Fig. 2.27.

Before the bifurcation point, an attracting spiral is present and no closed
orbit can be found in its vicinity. This corresponds to a Poincaré map that has
originally no fixed point on any cross section of the flow in this vicinity. A fixed
point appears then with associated eigenvalue 1. At this instant, a closed orbit
surrounds the spiral source that acts as attracting from outside and as repelling
from inside. This is an unstable structure that is then replaced by two stable
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attracting spiral non—hyperbolic closed orbit attracting closed orbit

Figure 2.27: Periodic fold

closed orbits, inside one another and moving away from another: The external
closed orbit has an attracting nature (which ensures global consistency with
the rest of the topology) while the internal closed orbit has repelling nature.
Both closed orbits have now Poincaré maps with hyperbolic fixed points.

2.7.2 Global Bifurcations

As said previously, global bifurcations correspond to structural changes that
involve global aspects of the flow. As a consequence, their analysis cannot be
reduced to the neighborhood of a critical point or a closed orbit. Furthermore
they may be very complicated and a complete, systematic classification is
impossible. For this reason, this presentation only deals with some simple
cases. Their common characteristic is to involve saddle connections. These
connections are unstable in the sense of Peixoto’s theorem. They can be of
two types: Heteroclinic or homoclinic, as defined previously.

Basin Bifurcation This first global bifurcation is based on a heteroclinic
saddle connection. Only two saddle points are involved. It entails radical
changes in the basins in the vicinity of these critical points. The evolution is
depicted in Fig. 2.28. As one can see, before the bifurcation point, a separatrix
tending toward a saddle point comes closer to a second separatrix emanating
from the other saddle point. At the bifurcation point, both separatrices merge:
The saddle points are connected through a heteroclinic connection. This un-
stable state is replaced by a new configuration where the respective position
of the separatrices is inverted, with respect to the original situation: These
separatrices have been swapped.

The following bifurcations involve homoclinic connections.
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Homoclinic Bifurcation with Center Point This bifurcation is shown
in
Fig. 2.29 (see also [GH83, pp. 291-292]). Originally, a saddle point is con-

homoclinic connection

X9 >XP xP

center source

Figure 2.29: Homoclinic bifurcation with center point

nected to a sink by one of its separatrices. The attracting nature of the sink
weakens until it becomes a center: This is the bifurcation point. The center
nature of the second critical point constrains the separatrix that reached it so
far to become homoclinic, that is to return to the saddle point. This unstable
state is immediately replaced by a configuration where the center has become
a source and two separatrices have been swapped with respect to the original
situation. The whole process, from the viewpoint of the sink, is analogous to
a Hopf bifurcation. Nevertheless, as a saddle point is involved too, the bifur-
cation becomes global and no closed orbit remains after transition. Inverting
the direction of time (which corresponds here to replacing the original sink by
a source) provides an additional bifurcation.

A similar bifurcation exists that results in the creation of a closed orbit.
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Homoclinic Bifurcation with Closed Orbit Consider Fig. 2.30.

homoclinic connection repelling closed orbit

sink sink sink

Figure 2.30: Homoclinic bifurcation with closed orbit

Like in the previous case, one has at the beginning a saddle point connected
to a sink. Yet, as opposed to the bifurcation above, the present one has no
incidence on the nature of the sink. Here, the separatrix connecting the sad-
dle point to the sink becomes homoclinic at the bifurcation point. The sink
maintains at this moment so the homoclinic closed orbit acts as a source (re-
pelling nature) in its interior. After the bifurcation point, a repelling closed
orbit is emitted from the homoclinic connection which induces a new stable
situation where the original separatrix now converges towards a closed orbit
surrounding the sink. An analogous situation is obtained when replacing the
sink by a source. Inverting the direction of time, one obtains the progressive
disappearance of a closed orbit through a homoclinic connection of a saddle
point located in its vicinity.

The last example presented in this brief overview of global bifurcations is
called Q-explosion in [Zee82)].

Explosion Bifurcation It involves three critical points as shown in Fig. 2.31.

Source

> >

sink non-hyperbolic critical point attracting closed orbit

Figure 2.31: Explosion bifurcation
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Before the bifurcation point, a saddle point is connected to a source by one
separatrix and to a sink by both of its repelling separatrices. The saddle
point and the sink get closer and merge at the bifurcation point. This gives
raise to a non-hyperbolic critical point, lying on a closed integral curve. This
configuration is then replaced by an attracting closed orbit surrounding the
unchanged source, i.e. the non-hyperbolic critical point has disappeared. The
name ezxplosion of this kind of bifurcation is due to the fact that the attractor
of the source, originally reduced to a single point (the sink) “explodes” at the
bifurcation point to become a whole closed orbit.

Analogous bifurcations exist with inverted roles of sink and source and by
inverting the time direction.



Chapter 3

Topology of Symmetric,
Second-Order, Planar Tensor
Fields

In this chapter, we are concerned with symmetric, second-order, planar tensor
fields. The topological approach was recently introduced in Scientific Visual-
ization by the PhD thesis of Delmarcelle [Del94]. Yet its theoretical framework
is inherited from differential geometry. The main idea consists in studying the
structure of the eigenvector fields associated with a real symmetric tensor field.
As we will see, this leads to the qualitative analysis of line fields (or fields of
directions). Such fields lack orientation. Therefore they exhibit topological fea-
tures that are unknown in the standard (oriented) vector case. Nevertheless,
using the profound connections between both, we shall extend many results of
the previous chapter obtained in the treatment of dynamical systems. Practi-
cally, the presentation is structured as follows. After a brief definition of con-
venient notations, the notion of tensor line is introduced: Results on existence
and uniqueness are given. This naturally leads to the definition of singular
points. Analogous to vector fields, singularities are the unique locations where
tensor lines can meet. Hence they locally determine the topological structure
of the field. The geometric study of singularities yields local configurations
that may be classified in a way similar to the sector decomposition presented
previously in section 2.2.2. After a treatment of the autonomous (or steady)
case, we finally turn to time-dependent tensor fields and study the question
of structural stability. To do so, we make use of the knowledge provided by
the analysis of dynamical systems (section 2.6). The focus is on basic local
bifurcations as well as on simple global structural transitions. This eventu-
ally provides the whole mathematical material required for the visualization
methods to come.

40
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3.1 Definitions

This preliminary section is only intended to give basic notions of tensor analy-
sis. For a detailed treatment of this subject, see e.g. [Tho65] for a mathematical
presentation or [You78| for an overview from the applications’ viewpoint.
First, one defines the notion of tensor.

Definition 29 A tensor of order p is a geometric invariant that corresponds
to a linear transformation of an euclidean space of dimension n into an eu-
clidean space of dimension nP~t. Considered in a particular cartesian coordi-
nate system, it is thus described by n? scalar components. Practically, a tensor
of order 0 is equivalent to a scalar (by convention), a tensor of order 1 is
equivalent to a vector and a tensor of order 2 is equivalent to a matrix, all
with appropriate behavior under changes of the parametrization.

The definition above is too general for our purpose. In fact, we restrict our
considerations to second-order tensor fields.

Definition 30 A second-order tensor field T defined over a subset U of
a n-dimensional euclidean space E 1s a map that associates every point x € U
with a second-order tensor, that is a linear transformation T(x) of E into
itself. Focusing on a particular cartesian coordinate system, T(x) is described
by a n X n matriz, i.e. characterized by n* real components.

Remark 23 Tensors fields of higher order are possible, too. For instance, the
gradient field of a second-order tensor field is of third order, see section 3.4.2.

In the following, the considered tensor fields are always supposed to be Lip-
schitz continuous and are considered in a cartesian coordinate system (such
tensors are called cartesian tensors). Furthermore, the basis is supposed to be
orthonormal. We are interested in symmetric, second-order tensor fields.

Definition 31 A symmetric, second-order tensor field on a subset U of
an euclidean n-dimensional space E is a second-order tensor field that maps
every ¢ € U to a self-adjoint operator. Thus, it is everywhere associated with
a symmetric matriz T(x) = T(x)* with respect to any particular orthonormal
basis.

In the symmetric case, a tensor field can thus be seen as a multivariate
function determined by $n(n + 1) independent scalar functions.

Remark 24 An arbitrary second-order tensor field can always be decomposed
into its symmetric and anti-symmetric parts

T=S+A,
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where 1
S = E(T +TT) is the symmetric part

and 1
A= E(T —T7) s the anti-symmetric part.

We now turn to the focus of the current presentation: Symmetric second-
order tensor fields of dimension 2. For convenience, they are often simply
called tensor fields in the following. Their matrix representation in a cartesian
coordinate system is of the form

T: IR? — IR?
) o> Ty = (Do) Loy

From the structural point of view, a symmetric tensor field is fully charac-
terized by its deviator part. The definitions are as follows.

Definition 32 An isotropic n-dimensional tensor corresponds to a diagonal
matriz of the form u 1, where u is a real scalar and I, denotes the identity
matrix in IR".

This suggests the definition of the isotropic part of a symmetric tensor.

Definition 33 Let T be a n-dimensional symmetric tensor. Its isotropic
part is defined as the matriz pl,, where y is the mean of the (real) eigenvalues
of T, i.e.
u= 1 tr T
n
with tr T denoting the trace of T.

When one subtracts the isotropic part of a symmetric matrix, the result is a
deviator matrix:

Definition 34 One calls deviator a trace free tensor. Hence the deviator
part D of a symmetric tensor T is obtained by the relation

T=upl,+D,

where u I, 1s the isotropic part of T, as defined above.
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Remark 25 [t follows from this definition that a deviator part in two-dimensions
s of the form
a p
o-(5 %)
with o, B € IR.
We restrict our considerations to deviator tensor fields and adopt these nota-

tions for further investigation, in particular in the solving of the eigensystem
(see next).

As mentioned in the introduction, the structural analysis of tensor field is based
on the topology of so-called eigenvector fields. These notions are introduced
next.

3.2 Eigenvector Fields

Basically the tensor fields that we consider are matrix-valued functions. The
traditional analysis of matrix systems in linear algebra focuses on the prop-
erties of the eigensystem. It determines stable and unstable subspaces of the
euclidean space with respect to the considered linear map. The expression of
this system is detailed next.

We first need to underline the characteristic of eigenvectors: By definition
the eigensystem of a linear system with matrix M can be written

Me=)\e

where the eigenvector e is non-zero and the eigenvalue A is a complex number
in general. Now, let e be an eigenvector of M with respect to the eigenvalue
A, it holds

Vv e R, v+#0, M(ve) = vMe = vie = \(ve)

i.e. ve is an eigenvector associated with A too. In other words, an eigenvector
is determined modulo a non-zero scalar coefficient. Practically, this means
that this kind of vector has neither norm nor orientation. This characteristic
plays a fundamental role in the following.

Remark 26 In the equations above, the eigenvalues are not explicitly men-
tioned: This underlines the fact that the topology of tensor fields, as we are
about to define it, only focuses on the structural aspects of a field and conse-
quently neglects the quantitative information associated with eigenvalues, as it
1s typically interpreted in physics. We will get back to this remark during our
presentation of the corresponding visualization methods in chapter 5.
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Now, as far as symmetric real matrices are concerned, they possess a very
useful property that greatly facilitates their study.

Property 3 A symmetric real linear system of dimension n € IN has an
etgenspace spanned by n orthogonal eigenvectors. Furthermore, the associated
eigenvalues are real.

Proof: see [HS74, pp. 207-208].

If we turn back to deviator matrices and reformulate the eigensystem in the
following way (eliminating the eigenvalue)

Dexe=0
(x denotes cross product), we obtain an equation in e = (e}, ep)”
2ae1ey + (€5 — el) = 0. (3.1)

Straightforward calculus leads to the following expression for an eigenvector

e:(—ai§m> (3.2)

but for convenience, we set for some angle

e — e1 _ cos
“\le )/ \ sinf )’
i.e. we consider normalized eigenvectors. Thus, Equation 3.1 can be rewritten

asin20 — [cos20 =0 (3.3)

The special case @ = = 0 which corresponds to a zero deviator matrix
D leads to a singular eigensystem. In this case, every nonzero vector is an

eigenvector. The case a = 0, 8 # 0 leads to 6 = 7[7] (this notation stands for

T modulo 7). Otherwise, we may write

tan20 = p (3.4)
o}
which is equivalent to
1
6 = 3 arctan (g) [g] (3.5)

A geometric interpretation is proposed in Fig. 3.1. Note that the angle so-

lution 6 is determined modulo % which is due to the orthogonality of both
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(a, B)
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a

Figure 3.1: Signification of equation 3.4

eigenvectors in the symmetric real case on one hand and to the arbitrary ori-
entation of an eigenvector in general on the other hand. Therefore, if e is an
eigenvector (e.g. a normalized one), then every vector obtained by rotation of
e by an angle k7 is an eigenvector too. Moreover, the special case o = 0 cor-
responds to the limit case § = 7[7] as tan 20 tends toward o0 in Equation 3.4.

Through its corresponding eigensystem, any symmetric real tensor field can
now be associated a set of two orthogonal eigenvector fields. For convenience,
the notations are as follows in the remaining of this presentation.

Definition 35 Let Ay > Ay be the two real eigenvalues of the symmetric tensor
field T (i.e. Ay and Ay are both scalar fields as functions of the coordinate vector
(xz,y)). The corresponding eigenvector fields e; and ey are respectively called
major and minor eigenvector field.

In other words, solving the eigensystem for each position (z,y) of the con-
sidered planar domain yields two eigenvectors that are classified according to
their eigenvalue. This finally defines two orthogonal (eigen-)vector fields over
the domain. Once again, these eigenvector fields have neither norm nor orien-
tation. We now resume computation and determine the eigenvalues.

det(D—AL) =0 <=> X2 = (a®*+5%) =0

)\1,2 = :f:\/ o? + ﬁ2

where A; is the major and Ay the minor eigenvalue. Equation 3.4 can now be
formulated in an equivalent way

Hence

ftan?f + 2cctanf — B =0

where
+Va? + % -«

tanf =
B
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is the solution associated to the major eigenvector and

VETF-a
B

the one associated to the minor eigenvector.

tanf =

At this stage, one should mention that the distinction between minor and
major eigenvector fields is only possible if both eigenvalues are not equal. This
is almost always the case but there exist singularities where this distinction is
no longer possible. We should get back to this later on.

We now come to tensor lines that will be the objects of our structural
analysis.

3.3 Tensor Lines

These curves are defined as follows.

Definition 36 A tensor line computed in a Lipschitz continuous eigenvector
field, is a curve that is everywhere tangent to the direction of the field.

Because of the lack of both norm and orientation, the tangency is expressed at
each position in the domain in terms of lines. For this reason, an eigenvector
field can be thought of as a line field for our purpose. Consequently, the
theorems introduced in the context of dynamical systems cannot be applied
directly to ensure existence and uniqueness of such curves. Notice furthermore
that the definition implies that tensor lines are only defined over regions where
the scalar eigenvalue fields are not equal (see section 3.4).

These preliminary considerations allow us to deal with tensor lines defined
over regions without degenerate point. Let the open U be such a region. The
major and minor eigenvector fields can thus be determined at any position
over U. If one focuses on a particular eigenvector field, one can find a normal-
ized vector field v that is everywhere tangent to the associated line field (see
Fig. 3.2). (In fact, there are two possibilities for this vector field, depending
on the arbitrary choice of the orientation.) Practically, this consists in deter-
mining a continuous angular function #* defined modulo 27 that is everywhere
equal to the angular coordinate 6 of the line field, modulo 7.

Y(z,y) € U?, 6*(z,y) =0 [n]

Note that inconsistency in the local determination of a tangent vector field
only occurs in the neighborhood of a degenerate point as we will show. But for
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Figure 3.2: Line field and an associated normalized vector field

now, we have a well-defined vector field and the tensor lines locally agree with
the integral curves of this vector field. Note that these integral curves exist
and are unique (modulo the arbitrary choice of orientation for the vector field)
by Theorem 1! By treating in this way every neighborhood along the path of a
tensor line, we are clearly able to proceed “integration” until one either leaves
the considered domain (in the bounded case) or one enters the neighborhood
of a degenerate point. The argumentation here is actually the same as the one
used to continue the local solutions of the Cauchy problem in Theorem 2 (i.e.,
one makes use of the uniqueness of the integral curves in every neighborhood
and identifies the different curves in the intersections). The study of the tensor
lines in the vicinity of a degenerate point is considered next.

3.4 Degenerate Points

We first give the definition suggested previously.

Definition 37 A degenerate point of a two-dimensional second-order, sym-
metric tensor field is a location (xg,yo) where the field is isotropic: At this
position, every non-zero vector is eigenvector.

In the general case of two-dimensional symmetric real matrices, this corre-
sponds to a diagonal matrix of the form

A0
T(xo;yo):(o )\>=)\12

i.e. an isotropic tensor. In the case of a deviator matrix, this is a zero matrix
by definition.
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Remark 27 Like the vector case, the singularities of tensor fields have sev-
eral names in practice. Indeed these points may be called singular or umbilic.
The latter is taken from the formalism of differential geometry. In the follow-
ing however, we adopt the terminology introduced in [Del94] and call them
degenerate points.

The fact that every vector is an eigenvector explains why tensor lines can
meet at a degenerate point. Following the same logic as in our presentation
of vector fields, we start our presentation of degenerate points by considering
the simplest, linear case.

3.4.1 Degenerate Points in Planar Linear Fields

If the tensor field is linear, we can interpret the deviator field

p-(5 %)

as a matrix-valued function with coefficients o and /3 being linear scalar func-
tions of the coordinate (z,y). As we saw, the position of a singularity is char-
acterized by a zero value of the deviator. This means a(xg, y9) = B(x0, %) = 0.
Hence this yields a linear system in (zg,1o). If this system is non-singular, its
solution is then the position of the only singularity of the linear tensor
field. For convenience, we translate the coordinate system by taking this de-
generate point as new origin. Since D is zero at the origin, we obtain the
following formula:

_ [ izt ey Sz + foy
Die,y) = < bre+ fay —onx — oy )

Adopting notations in polar coordinates (x,y) = p(cos 6, sin f), it comes
D(z,y) = pDey

with ey = (cos@,sinf)”. This means that the eigensystem is independent
of the distance p to the origin. We now determine the positions where the
coordinate vector uy is parallel to the corresponding eigenvector:

D €y X €y = 0
With Equation (3.4) p. 44, this yields

B1cos @ + Posinf

tan 20 =
t a1 cosf + ay sinf
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Since
tan 20(1 — tan® §) = 2tan 6,

we set v = tan ¢ and obtain
2u(ag + anu) = (1 —u?) (B + Bou).
This finally leads to the following third-order polynomial equation in v = tan f
Bou® + (B1 + 20)u” + (201 — Bo)u — 1 = 0. (3.6)

The last equation has either 1 or 3 real roots that all correspond to angles
along which the tensor lines asymptotically reach the origin (“asymptotically”
refers to the construction used to “integrate” the tensor lines in the previous
section). These angles are defined modulo 7 so we actually obtain 6 possible
angle solutions for radial eigenvectors. Since we limit our discussion to a single
(minor / major) eigenvector field, we are finally concerned with up to 3 radial
eigenvectors.

The special importance of these radial tensor lines is actually explained by
their interpretation as separatrices (a formal definition is given in section 3.4.2).
In fact, the linear case presents two major types of linear degenerate points as
shown in Fig. 3.3. The geometry of the tensor lines in the vicinity of a trisec-

TRISECTOR WEDGE POINT S

S2 S1=82

Figure 3.3: Linear Degenerate Points

tor exhibits three hyperbolic sectors (for consistency with the terminologies
introduced in section 2.2.2, see also section 3.4.2). These sectors are bounded
by 3 separatrices: They correspond to the three radial tensor lines determined
by the polynomial equation above. As far as wedge points are concerned,
there exist two types: The first one has two separatrices that bound a hyper-
bolic and a parabolic sector. The second one has a hyperbolic sector that is
bounded by a single separatrix. This separatrix actually represents a parabolic
sector reduced to a single tensor line. A wedge point with two separatrices is
related to a situation where 3 roots exist to the polynomial in Eq. 3.6: Two



CHAPTER 3. TENSOR FIELD TOPOLOGY 50

correspond to actual separatrices and the third lies within the parabolic sector.
A wedge with one single separatrix occurs when the polynomial has a unique
real root.

Remark 28 The depiction of a wedge point with two separatrices in Fig. 3.3
could suggest that infinitely many radial lines exist within the parabolic sector.
Yet this is impossible in the linear case since these radial directions are deter-
mined by a cubic polynomial. As a matter of fact, such a polynomial can only
have infinitely many roots if all coefficients are zero. In our case, this leads to
a1 = ag = By = By This is a degenerate case where linear approximation s
no longer valid, as we explain next. Hence, actual tensor lines in a parabolic
sector looks here like those shown in Fig. 3.4.

radial direction

*_ radial direction

--. radial direction

Figure 3.4: Tensor lines in the parabolic sector of a wedge point

3.4.2 Nonlinear Degenerate Points

The configurations encountered so far are the simplest examples of degenerate
points that exist in tensor fields. They are valid when the linear element in
the Taylor expansion of the tensor is nowhere isotropic in the vicinity of the
singularity. In other words, let VD(O) be the third-order differential of the
deviator D at the origin O, that coincides with the position of the degenerate
point. The Taylor expansion of D in the vicinity of the degenerate point is
thus
D(dX)=D(0) 4+ VD(0)dX + o(dX).

Since by hypothesis D(O) = 0, the eigensystem at any point dX can be written

cosf
( sin 0 > + o(dX) = 0.

(VD(0)dX) ( Zifz )
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Hence, the structure of the eigenvector field can be linearly approximated in
the vicinity of O if and only if

VdX € U, (VD(0)dX) #0

(where U is a vicinity of the origin O) since we are dealing with deviators (a
deviator is isotropic if and only if it is zero). With our notations we have

60 g | B 08 g, 4 98
VD(0)dX = ( g0t gy e+ 5y )

%da} + %dy —g—‘;‘da} — g—;dy

Hence this is non-zero for any dX # 0 if and only if
da  da
‘ 5 o ‘ #0 (3.7)
Ay

(i.e. if the corresponding matrix is non-singular). A zero value of the determi-
nant above thus characterizes nonlinear degenerate points.

Remark 29 In the linear case, equation 3.7 is equivalent to

a1y — anfy # 0.

Therefore, every point on the line through the degenerate point of equation
a1 + oy = 0 is a degenerate point (degenerate case).

Remark 30 The determinant above is called § in [Del94] and is used to dis-
tinguish between what Delmarcelle calls simple and multiple degenerate points.

To study the geometric properties of the tensor lines in the vicinity of a
nonlinear degenerate point, we now involve new theoretical material. This
permits to overcome the difficulty induced by the lack of orientation around a
singularity. Practically, the goal is to relate the line field to a vector field that
characterizes its geometrical structure. The ideas described next are taken
from [Spi79, pp. 324-332].

As a preliminary, some notions of algebraic topology are required. For a
general introduction to this subject, refer to [Jin96] or [Gra75]. In the following
we consider topological spaces. Their formal definition is given next.

Definition 38 A topological space is a pair (X,0) where X is a set and
O s a set of subsets of X called open sets such that

(i) Every union of open sets is open.
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(ii) The intersection of two open sets is open.
(iii) @ and X are open.

We are interested in the relation between topological spaces.

Definition 39 Let X be a topological space. A topological space over X
is defined as a pair (Y, ), composed of a topological space Y and a continuous
surjective map m Y — X. This pair is simply denoted Y for convenience.
Moreover =1 (z) is denoted Y, and is called the fiber over x. The restriction
for an open U (w71 (U), w|x~"(U)) is written Y|U.

We now consider a special type of topological space.

Definition 40 A topological space Y over X is trivial if there exists a topo-
logical space F' such that 'Y s isomorphic to the canonical projection of X X F
onto X.

If one relaxes this condition, one defines local triviality.

Definition 41 A topological space Y over X is called a locally trivial bun-
dle with fiber if for each x € X there is a neighborhood U of x such that Y |U
is trivial.

The case where the fibers are discrete is of particular interest to us.

Definition 42 A locally trivial bundle with fiber is called covering space if
all fibers are discrete. For simply connected spaces X, the cardinality of the
fibers is constant. If every point of X is covered n times, the covering space is
called n-fold covering.

An illustration of a covering space is proposed in Fig. 3.5. This basic type
of covering space can actually be extended to include coverings without local
triviality. We proceed by defining branched covering spaces.

Definition 43 If a topological space Y over X is everywhere locally trivial
with discrete fiber except at some points p; where it is not a homeomorphism,
it is called a branched covering space and the points p; are its branch
points.

A simple example of branched covering space is provided by the map z — 22
that takes {z € C, 0 < |¢| < 1} onto itself. This induces a 2-fold branched
covering space where 0 is the branch point. Next we have the following fun-
damental path lifting property.
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e

Figure 3.5: A 3-fold covering space

Property 4 Let (Y,7) be a covering space of X. Let c: I C IR — X be a
curve on X and a € Y such that w(a) = ¢(0). Then there is a unique curve
d: 1 =Y such that ¢’ = ¢ and ¢(0) = a.

Proof: See [Gra75, pp. 35-36].

With these new notions we can now turn back to the geometric structure of
line fields in the vicinity of a degenerate point. We consider the vicinity U of
an arbitrary degenerate point p. The line field A is then defined over U — {p}
and associates every point ¢ with a one-dimensional subspace (except zero):

A: U—-{p} — IR?
q — {pv, pe R—-{0}, [v|=1}."

We now construct a 2-fold covering space w where 7! associates every point

g in U — {p} with the two unit vectors in A(q). This map is locally equivalent
to the map 7 : 2z — 22 mentioned previously and p is the branch point. It
maps a vector field defined over 7=!'(U — {p}) onto the line field around p.
Hence if § : u € [0, 27[— IR is the angular coordinate of this vector field along
some arbitrary closed curve around p, the angle coordinate ¢ of the line field
obtained by projection 7 satisfies

#(2u) = 0(u) + 2u.

This means that we wrap the phase portrait around the origin. See also Prop-

erty 8. These definitions are better understood when looking at Fig. 3.6.
Note that this construction can be extended to the whole definition space

M of a line field A except at the locations {p;} of the singularities. If one
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Figure 3.6: 2-fold branched covering space over the vicinity of a degenerate
point

denotes by M’ the space 7~ '(M — {pi, .., px}), it can be completed by adding
new points {p},..,p;}. For each p}, the neighborhood is defined as the set
piUm '(A; — {p:}) with A a neighborhood of p; in M. If one deals with a
line field defined on a manifold M, then the set obtained by adding all the
new points to M’ is a manifold too, see [Spi79]. At this stage the path lifting
property cited above permits to relate the geometry of the tensor lines in
the vicinity of a degenerate point to the phase portrait of the corresponding
critical point obtained in the covering space. Two simple examples related to
the linear case are given next. Fig. 3.7 shows the vector field corresponding
to a wedge point that is defined in the covering space. Fig. 3.8 explicits this
relation for a trisector point.

;
\\L/,//\X

Figure 3.7: Covering vector field for a wedge point

Practically, the characterization of the local structure in terms of curvilin-
ear sectors (corresponding to different asymptotic behaviors of the curves in
the neighborhood of a critical point) can be used in this context to determine
the type of a degenerate point. Hence, the possible natures of a sector are
parabolic, hyperbolic or elliptic and the neighborhood of any degenerate point
is formed by the union of such sectors, see Fig. 3.9. This relation also suggests
the definition of the separatrix of a degenerate point.
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A %

/N

Figure 3.8: Covering vector field for a trisector point

Z Ii\ / ?i\ ZE;\
N 7 - 7 N 7

Figure 3.9: Sector types

Definition 44 The boundary curve of a hyperbolic sector in the vicinity of
a degenerate point is called separatrix. The set of all degenerate points to-
gether with their associated separatrices is called topology of the symmetric
tensor field for further considerations.

In fact, a complete definition of the topology involves closed tensor lines
too. They are the direct equivalent of the closed orbits observed in vector
fields. However they are very rare in practice and will not be considered by
the visualization methods to come. Further details on that topic can be found
in [Del94, pp. 139-146].

We need to extend an additional fundamental notion of dynamical systems
that will prove similarly useful in the context of tensor fields.

3.5 Tensor Index

From the study of vector fields we know that the index of a critical point
permits to characterize its action in the global structure of the field by counting
the number of field rotations induced in its vicinity. We introduce next an
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equivalent notion for tensor fields [Spi79].

In the following, one supposes for convenience that the degenerate point is
located at the origin O. IP! denotes the projective line corresponding to the
set of all lines through 0 € IR?. S! is the sphere with unit radius around 0 in
IR? and i the map on S defined by i(x) = ex for some € > 0. fa is the map
that associates every point on €S! with the corresponding line direction of the
line field A in IP!. Furthermore, one denotes by « the homeomorphism that
identifies P! and S as shown in Fig. 3.10. We can then define the index of a

X a a (X)

o
O=m Tt 0= 21

pt st

NS

Figure 3.10: Homeomorphism between IP' and S'

degenerate point as follows.

Definition 45 The index of A at pg is defined as
1 .
3 degree oo fa o1

where the degree of a map B of St onto itself at a non-singular point p is the
quantity
degree (B, pe S') = Y signdp,
q€B81(p)
which we denote degree B since this is constant over a simply connected neigh-
borhood of py. The sign of the differential df, is 1 if it is orientation-preserving,
—1 otherwise.

Remark 31 The definition above is quite abstract. In fact, the degree of a map
is the constant number of coverings of any non-singular point p with respect to

B with sign depending on the orientation. Further details on that subject can
be found in [Mil65].

If the line field is spanned by a vector field v then the definition above
agrees with the one given in the previous chapter, section 2.5. To see this,
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let f, be the map that associates every point ¢ in a neighborhood U of the
degenerate point p with the unit vector |:EZ§| € S'. Let m be the natural

projection of S' onto IP'. Then one has the diffeomorphism
mo fyoi~ fao1

where both maps are defined from S! onto IP'. Since the map azom has degree
2, one gets
inder of A atp =

degree o fa o1
degree acomo f, 014
= degree f, 01

= index of v at p

N [N | =

The geometric interpretation of the index is again the number of field rotations
along a closed curve enclosing the degenerate point, arbitrary close to it and
traveled in positive direction. The illustration is proposed in Fig. 3.11. Note
that the lack of orientation entails the existence of half-integer values. From

Figure 3.11: Tensor index

this observation, we come to the notion of index of a region enclosed by a curve
just as for vectors.

Definition 46 Let A be a Lipschitz continuous line field defined over an open
U C IR%. Let L be a simple closed curve in U such that no degenerate point
of A is on L. Then the index of the curve L relative to A is defined as
the number of positive field rotations obtained while rotating once along L in
positive direction.

This quantity is related to the following fundamental property.

Property 5 Let py,..pr be the degenerate points of a Lipschitz continuous line
field A contained in some region U of IR2. Then the indez I, of a closed curve
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L enclosing the {p;} relative to A depends on the indices {Ian(p;)} of the {p;}
as follows.

k
I = Z IA(pi)
7j=1

Proof: See [Del94, pp. 106-107].

With this property, it is clear that the notion of index enables the description
of the qualitative nature of a whole region: It “averages” the individual local
contributions of all degenerate points in it. This is particularly useful in the
study of structural stability, see section 3.6.1.

If one focuses on the linear case, one has the following useful property.

Property 6 Let D be a linear (deviator) tensor field. The angle variation of
D along any segment [A, B], A, B € IR?, is smaller than %.

Proof: according to equation 3.4, the angle 6 (defined modulo 7) satisfies

tan 20 = é

a
which entails the following differential equation
1 adf — Bda
2 a2+ p?
By hypothesis D is linear and so are the scalar functions o and 5. Hence, if we
consider segment [A, B], we can define a parametrization ¢ € [0,1] — [A, B]

such that o and § are linear functions of ¢ along [A, B], say a(t) = ag + ast,
idem for 8. Thus we get for the angle variation along [A, B|

B agb— By [t dt
df =
A 2 0o at?+bt+c

where a, b and c are functions of ag; and 3y ;. Furthermore, the discriminant
A = b? — 4ac is negative. Therefore it follows (after calculus)

do =

B ' _
/A df = sign(aof — o fh) (atanp; — atangy)

2

where py and 1y are two real scalars that depend on o, and ;1. Since the
function atan maps IR onto the open set (—3, 7), we finally obtain

2
B
/ do
A
which completes the proof.
With this property, we can determine the index of a linear degenerate point.

<1
=T
2
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Property 7 A linear degenerate point has either index % or —%.

Proof: According to property 5, the index of a degenerate point can be com-
puted on any closed curve that encloses no other degenerate point. In the
linear case we can thus consider a closed curve composed of three segments
(i.e. a triangle surrounding the degenerate point. If follows from the previous
property that the angle variation along each segment is strictly smaller than

™

% (in absolute value). Consequently, the global angle change around the lin-
ear degenerate point is smaller than 37” and the corresponding index strictly
smaller than %. The geometric interpretation of the index tells us that the ac-
tual value must be a multiple of a half-integer (by continuity of the eigenvector
field along the curve). Since a linear degenerate point is present the index is
nonzero and the possible values are finally % and —%. QED

Practically a trisector has index — while a wedge point has index +1
(compare with Fig. 3.3). If we return to the presentation above, the tensor
lines are interpreted as the projection of the phase portrait of a vector field
defined in a 2-fold branched covering space. The respective indices are related

by the following

Property 8 Let m: Y — X be a 2-fold branched covering space and let p be
a branch point. Let A be a line field defined on a neighborhood of p except at
p itself and let A’ be the associated distribution defined on a neighborhood of
7 1(p), except at w1 (p) itself satisfying 1A' = A. Then the index 7' of A' at
7~ (p) is related to the index i of A at p by

i’ = 21 — 1.

Proof: The demonstration of this property is based on the analogy with the
map z — z2. See [Spi79, pp. 328-329].

Remark 32 Compare with Fig. 3.7 and Fig. 3.8 shown previously: The crit-
ical point associated with a wedge point (i = % ) has index i' = 0 whereas the
critical point corresponding to a trisector point (i = —%) has index ' = —2
(monkey saddle).

Notice that this relation permits further to compute the Euler characteristic
X(M") of the manifold associated with a covering space [Spi79)].

3.6 Parameter-Dependent Topology

By analogy with the presentation of dynamical systems, the natural question
that arises at this stage is the structural stability of topology and degenerate
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points as defined so far. Indeed, if an additional parameter (say time) is in-
volved in the definition of the considered tensor field, the structures identified
in previous considerations only correspond to instantaneous states of the evolv-
ing topology. Hence the fundamental question is the persistence of degenerate
points under small perturbations of the parameter. This defines local stability.
In this short presentation, we restrict our considerations to the simplest cases
of local and global bifurcations to remain in the scope of the methods to come.
A general theoretical treatment of these questions would require to properly
extend in this context the knowledge gained about structural stability in the
vector case. A very appealing way is to study the topological properties of the
manifold associated with the covering space (see previous section).

3.6.1 Structural Stability

The observations proposed next are all based on geometric considerations. Yet
a formal approach could explore structural stability from the viewpoint of its
relation with a vector field defined in a proper covering space.

Degenerate Points

Following the ideas suggested by Peixoto’s theorem (section 2.6) we first char-
acterize stable degenerate points. As for critical points, the singularities ob-
tained in the linear, non-singular case are the only stable ones. As a matter
of fact, when considering the tensor lines in the neighborhood of a degener-
ate point, one can approximate their asymptotic behavior by the third-order
differential VD(O) except at locations where this differential is zero at some
points in the vicinity of the degenerate point. It was shown in section 3.4.2
that this occurs if and only if

da  da
or O _
‘% B_‘_o.
or 0Oy

This is by essence an unstable property since it corresponds to a degenerate
case and thus arbitrary small perturbations in the coefficients of the differ-
ential VD leads to one of both linear configurations. The stability of the
linear degenerate points themselves is also related to VD. Namely as shown
in [Del94], the value of the determinant above characterizes the type (trisector
/ wedge) of a degenerate point: A negative value corresponds to a trisector
and a positive value corresponds to a wedge. Thus only a crossing of this
determinant through zero can enforce the transition from a trisector point to
a wedge which is again, a degenerate case. Therefore trisector and wedge are
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both stable types. If we further investigate the wedge points, we may be inter-
ested in the possible instability of one of both types (with one single separatrix
or two separatrices and an associated parabolic sector). We saw in 3.4 that the
angle coordinates of the separatrices are solutions of a third order polynomial
(Equation 3.6). The wedge point with two separatrices is thus associated with
the case where three real roots exist and the wedge point with one separatrix
occurs when the polynomial equation has one single real root. Transition be-
tween both takes place when a perturbation entails the change of this number
of real roots. This is clearly an extraordinary fact and it separates both types
from another in a stable way. Note that these ideas are used again in chapter 7.

Separatrices

In the vector case we learned from Peixoto’s theorem that separatrices connect-
ing saddle points with another are unstable. The same holds in the tensor case
for the separatrices that lie on the boundary of hyperbolic sectors at both ends.
Examples are shown in Fig. 3.12. They show the heteroclinic case by analogy
with previous terminologies. (Homoclinic connections are possible too.) The

e

Figure 3.12: Heteroclinic connections in the tensor case

justification of this assertion is of geometric nature. It is based on the fact that
adding an arbitrary small angle perturbation to the line field around any point
along such a separatrix results in breaking the heteroclinic (resp. homoclinic)
connection. See [GH83, pp. 61-62].

These brief explanations allows us to discuss our actual focus, namely sim-
ple local and global bifurcations in tensor fields. We start with the former
ones.
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3.6.2 Local Bifurcations

We consider here the bifurcations associated with the instability of degenerate
points as defined previously. It was shown that such bifurcations occur when
the differential VD becomes zero or when a special condition is fulfilled with
respect to the number of roots to the polynomial equation 3.6. First, we present
the bifurcation corresponding to the saddle-node bifurcation for vectors.

Pairwise Creation and Annihilation

A wedge and a trisector have opposite indices. Therefore a closed curve en-
closing a trisector and a wedge has index 0. This simple fact is the basic idea
behind pairwise creations or annihilations. As a matter of fact, the index zero
computed along this closed curve shows that the combination of both degen-
erate points is structurally equivalent to a uniform flow. This local transition
from a uniform flow to a line field with a wedge and a trisector is a pairwise
creation. The reverse bifurcation (by inversion of the parameter) is thus a
pairwise annihilation and entails the disappearance of both a wedge and a
trisector. It can occur in several forms. Illustrations are proposed in Fig. 3.13
and Fig. 3.14. The former case corresponds to the disappearance of a sepa-
ratrix of the trisector in the parabolic sector of the wedge. It results in the
disappearance of two hyperbolic sectors and one parabolic one. The latter

>

Figure 3.13: Pairwise annihilation by disappearance of the
wedge’s parabolic sector

case occurs when a hyperbolic sector of the wedge merges with a hyperbolic
sector of the trisector. Observe the presence of a nonlinear singularity at both
bifurcation points.
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A
A

Figure 3.14: Pairwise annihilation by disappearance of the
wedge’s hyperbolic sector

-
2

Figure 3.15: Merging of two trisectors

X

Homogeneous Mergings

We mention here bifurcations corresponding to the pairwise merging of degen-
erate points of same type. Additional details can be found in [Del94, pp. 128-
131]. We know from what precedes that linear degenerate points of tensor
fields have half-integer indices. Hence, when they come to merge with another
singularity of the same type, the corresponding global index in the sense of
Property 8 is an integer and one can show that this corresponds to the local
phase portrait of a critical point, see [Spi79, pp. 326-327]. This becomes clear
when looking at the merging of two trisectors as shown in Fig. 3.15. The fusion
results in a singularity similar to a saddle point. This singularity has index
—% — % = —1 as expected. According to previous remarks on structural stabil-
ity, this new degenerate point is unstable. Consequently this bifurcation must
be seen as the creation from two trisectors of a saddle that instantaneously
vanishes to restore the two trisectors: It is a walk through.

The other kind of merging that we consider concerns two wedges. It is
illustrated in Fig. 3.16. The result of this merging is an unstable singularity
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that is similar to a focus (a node in the general case). It has index £ + 1 =
+1. Here this instantaneous configuration is replaced by two wedges after

bifurcation.

Figure 3.16: Merging of two trisectors

The last local bifurcation to be presented is not associated with a merging.

Wedge Bifurcation

This type of bifurcation was suggested by the remarks on the structural sta-
bility of wedge points: Each type of wedge corresponds to a specific number
of real roots of a cubic polynomial, either 1 or 3. Now the transition from one
type to another, say from a wedge with one separatrix to a wedge with two
separatrices, means the appearance of a parabolic sector. From a structural
viewpoint, this is a major change because from now on curves reach the wedge
point that were sweeping past it so far. Refer to Fig. 3.17.

—

Figure 3.17: Creation of a parabolic sector in the vicinity
of a wedge point

3.6.3 Global Bifurcations

To finish this presentation of structural transitions in line fields, we briefly
consider the simplest types of global bifurcations. They are very similar to
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the basin bifurcations encountered previously. They are intimately related to
the unstable separatrices defined above: They occur when two separatrices
emanating from two degenerate points come closer together to merge and then
split. At the instant of merging, an unstable heteroclinic connection exists. As
it breaks, it forces the swap of both separatrices. This modifies the asymptotic
behavior of most curves in the concerned region. An example is proposed in
Fig. 3.18 that involves 2 trisectors. Another one is given in Fig. 3.19 that is
based on a heteroclinic connection between a trisector and a wedge. Compare

to Fig. 2.28, p. 37.

—> —

20\ VRV

Figure 3.18: Global bifurcation with heteroclinic connection

A

Figure 3.19: Global bifurcation with heteroclinic connection (cont.)
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Chapter 4

Piecewise Interpolation and
Singularities

Grids are at the basis of most methods in Scientific Visualization. They pro-
vide discrete numerical data (resulting from measurements or numerical sim-
ulations) with a geometric structure which enables a piecewise analytic inter-
polation. In this chapter, one offers a brief description of the grid structures
typically used in practice. Furthermore, the associated interpolation schemes
are presented and their computation is detailed. This material is finally used
to consider piecewise interpolation from the point of view of critical and de-
generate points. In particular, it is shown that singularities with arbitrary
complex structure may be encountered and modeled in piecewise linear fields.

4.1 Grid Types

A grid represents the partition of a bounded domain of the euclidean space
into subdomains called cells, based upon a point distribution in the domain.
Basic definitions are given next. For an overview of this subject, see further
e.g. [Nie97].

A cell in the euclidean space IR" is defined by a set of points, called ver-
tices, that determine its geometry. More precisely, a cell is built of a union of
simplices of its vertices, where a simplex of n 4+ 1 points P; in IR" is the set

S={P€]R”,P=Z)\iPi, with Vi \; > 0 and Z,\i:1},

i.e. the set of all affine convex combinations of the P,. Note that the P;
must ensure non-zero volume for the corresponding set S. In practice, one

66
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uses mostly the few cell types enumerated below. Note that these types are
typical in Scientific Visualization. Yet cells with more complicated geometries
are common in finite elements methods, see e.g. [Hue75].

1. Two-dimensional case:

e A triangle has 3 vertices: This is a simplex in IR%.

e A quadrilateral has 4 vertices and is made of two triangles. If all
inner angles at the vertices of a quadrilateral are right angles, the
cell is called rectangle.

< vertex

< edge

triangle rectangle quadrilateral

Figure 4.1: Cells in two dimensions

2. Three-dimensional case:

e A tetrahedron has 4 vertices: This is a simplex in IR3.
e A prism has 6 vertices and is made of 3 tetrahedrons.

e A hexahedron has 8 vertices and can be decomposed in 5 or more
tetrahedrons. If the boundary of a hexahedron consists of rectan-
gles, the cell is called a voxel.

One calls face the two-dimensional intersection of two neighbor cells. The
one-dimensional intersection of two neighboring cells is called an edge. These
notions are illustrated in Fig. 4.1 and Fig. 4.2.

A grid is defined as a finite set of cells. The grid G associated with a set
of points must then fulfil the following requirements:

(i) Every point is a vertex of a cell of G.
(ii) The interiors of two cells do not intersect.
(iii) The union of the cells of G is the whole domain.

Among all possible grid types, the simplest one is the rectilinear grid: A
rectilinear grid is a grid where all cells are rectangles (in two dimensions) or
voxels (in three dimensions): see Fig. 4.3.
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tetrahedron prism vertex

face

voxel hexahedron

Figure 4.2: Cells in three dimensions

Figure 4.3: Rectilinear grids

A curvilinear grid is the generalization of a rectilinear grid: It consists
of quadrilateral cells in two dimensions or hexahedra in three dimensions (see
Fig. 4.4) and there exists a diffeomorphism ¢ that transforms it in a rectilinear
grid. One distinguishes then between physical space, the euclidean space
where a grid is curvilinear, and the computational space where the grid is
rectilinear (see Fig. 4.5).

The diffeomorphism ¢ can be defined cell-wise as the function that maps
the actual quadrilateral (resp. hexahedral) cell onto the canonic voxel [0, 1]?
(resp. [0,1]*). Furthermore, to preserve the shape of the cell, ¥ = ¢! is
required to be linear along the edges of the canonic voxel which ensures that
edges are mapped onto edges. If one considers a quadrilateral ABC'D in the
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Figure 4.4: Curvilinear grids

curvilinear rectilinear

mapped onto

TR

s e compuaiond sec

Figure 4.5: Physical and computational spaces

two-dimensional case, one obtains the following formula.

v: R o R
(r,s) » A+ (B—-A)r+(D—-A)s+(A—B+C—-D)rs

In the three-dimensional case, with a hexahedron ABCDEFGH, the results
are analogous:

v: R = R
(r,s,t) —» A+ (B—-A)yr+(D—-A)s+(E—At+(A—B+C—D)rs
+(A-B+F—-E)rt+(A—D+ H — E)st
+(-A+B-C+D+E—-F+G-H)rst

The function ¢ is then computed as the inverse of ¥: In the two-dimensional
case, this problem is quadratic and can be solved analytically. The problem
is indeed equivalent to the search for a critical point in a rectangle cell, as de-
scribed in the following. In three dimensions, the problem is more complicated
and a numerical search must be carried out.
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If a grid cannot be transformed into a rectilinear grid, it is said to be
unstructured. Such a grid has no global regular structure and can contain
cells of different types. In general, it is related to a set of scattered points,
i.e. without underlying point structure. A typical example is provided by a
triangulation in two dimensions, resp. a tetrahedrization in three dimensions:
These grids are exclusively made of simplices, see Fig. 4.6 for the planar case.

Figure 4.6: Unstructured grid: A triangulation

4.2 Interpolation Schemes

Once a geometric structure has been provided, an interpolation scheme must
embed the original discrete information in a continuous function, defined over
the whole grid. This continuous data is eventually processed for visualization.
More precisely, the interpolation is processed cell-wise and the interpolant
over the whole grid is thus defined as the union of these local cell interpolants.
Therefore a good knowledge of the properties of an interpolation scheme is
required for the design of visualization methods that apply to its resulting
function. For this reason, special attention is paid in the following to the
singularities in the planar case. The usual interpolation schemes associated
with the introduced cell types are considered now.

4.2.1 Linear Interpolation over a Triangle

For each scalar component of the considered field (vector or tensor), a linear
interpolant over a triangle 7" with vertices Py, P, P, and associated values
Qp, i1, 0o 1s defined as the real function

VP(z,y) €T, f(P)=a + bxr + cy,
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where a,b and c are the real coefficients of the interpolant. They are chosen
to satisfy the following relations.

T zo %o a e
Vi€eo,.,2, f(B)=o;thatis | 1 z; y | x| b | = | oy
1 2z yo c (e%)

An alternative formulation, based on barycentric coordinates, gives a bet-
ter insight into the nature of this interpolant: For every point P in IR?, its
barycentric coordinates with respect to the non-collinear points Py, P;, P», are
defined as the unique real triple (bg, b1, bo) satisfying

2 2
P=3b P with 3 b =1,

see Fig. 4.7.

Figure 4.7: Barycentric coordinates in two-dimensions

If furthermore, Vi b; > 0, the point P lies in the triangle (P, Py, P2). In
this case, the interpolant F' at P can be expressed as follows.

where F' is a multivariate function interpolating the multivariate values ays
defined at the P;s. In other words, the function value at a given point P is
obtained by a weighted combination of the vertices’ values, where the weights
correspond to the proximity of P to the vertices.
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Vector Case

In the two-dimensional vector case, a critical point is a location () satisfying
the following linear equation in its barycentric coordinates b;

2
i=0
where the «; are the two-dimensional vectors defined at the vertices P;. If
the system is non-degenerate, the solution is unique and the considered lin-
ear vector field has a unique critical point. Furthermore, if the condition
Vi, b; > 0 is satisfied, then the position found lies inside the triangle.
If one considers a single linearly interpolated edge, one has the following

important property: The angle rotation of the vector field is always smaller
than 7. This is illustrated in Fig. 4.8. Hence, one has the following result.

// N

right rotation \

/\

Figure 4.8: Angle rotation along a linear edge

wrong rotation

Property 9 The possible index of a linear vector field along the edges of a
triangle is either 0, -1 or +1.

Proof: The index is an integer value. Now, by definition, this value is given
by

index = 2— Z AB;,

=0

where Af; is the angle variation of the vector field along the i-th edge. Since
Vi, |A6;| < m, one has |index| < 2 which completes the proof.
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Tensor Case

In the symmetric, two-dimensional tensor case, when considering only the
deviator part, the linear interpolant is defined by

2
=0

where the D; is the 2x2 deviator part of the symmetric matrix defined at P;:

_ [ @y Bi
Di_(ﬂz’ —04z'>'

Now, a degenerate point () is characterized by a zero matrix. This is equivalent

to

{ Yiobia; = 0

—obifi = 0,

which leads to a linear system analogous to the vector case. Once again, in non-
degenerate cases, the solution is unique and the considered linear, symmetric
tensor field has thus a unique degenerate point. It lies in the triangle if
and only if Vi, b; > 0. As far as the tensor index is concerned, property 9 can
be extended as follows.

Property 10 The possible index of a linear tensor field along the edges of a
triangle is either —%, 0 or +%.

Proof: This is a direct corollary of property 7, p. 59.

4.2.2 Bilinear Interpolation over a Quadrilateral

The interpolant is first considered in computational space where the quadrilat-
eral is mapped onto a rectangle. For each scalar component of the considered
field (vector or tensor), a bilinear interpolant over a rectangle with vertices
Py, P, Py, P; and associated values ap, aq, aig, a3 is defined as the real function

VP(r,s), f(P)=a + br + cs + drs,

where a, b, ¢ and d are the real coefficients of the interpolant and (r, s) are the
local coordinates of P with respect to Py. Remark that the restriction of this
interpolant to each edge of the rectangle is a linear (one-dimensional) function.
The interpolation conditions lead to the following linear system.

1 7r9 so 70So a Qo

. . T S1 Tisi b a1
Vi€O0,..,3, f(P;) = «; that is = ,

1 To SS9 T9289 Cc Q9

1 T3 S3 T3S53 d (073
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where a point P; has local coordinates (7;, s;).

Note that a direct combination of the values of the vertices is possible too.
With the notations of Fig. 4.9, one obtains for each point P(r,s) with 0 <
r,s < 1, the formula

f(P)=1—=7r)1—9s)ag+7r(l—s)oy +rsag+ (1 —7)sas.

s
R, a
=1 =2 .Pz,az
] .P
P,, a P,a
szOc0 0 ‘ o 1
r=0 r r=1 r

Figure 4.9: Local coordinates in a rectangle

Back in physical space, if ¢ denotes the map that transforms a quadrilateral
cell in its rectangle equivalent in computational space, the interpolation at the
position () is then defined as follows.

This corresponds to first mapping the position () onto its equivalent in compu-
tational space (analytically or numerically) and then evaluating the function
there by bilinear interpolation. Remember that the coordinates’ transforma-
tion from physical to computational space is an expansive task. For this reason,
one usually carries out the whole computation in computational space, before
converting the results back in physical space.

Vector Case

In the two-dimensional vector case, the location Q(z,y) of a critical point in
computational space satisfies the following non-linear system.

f(Q)=a + br + ¢s + drs=0,

where a, b, ¢ and d are two-dimensional vectors. This leads to a quadratic
equation in one of the two variables. Eventually, this system may have zero,
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one or two solutions. FEach of them must then be tested to lie in the quadri-
lateral. Now, the edges of a bilinearly interpolated quadrilateral are linearly
interpolated. As said previously, the angle rotation along a linear edge is al-
ways smaller than 7. For this reason, the angle variation of a vector field
along the edges of a quadrilateral cell is the sum of four angles «;, with
Vi € 0,..,3, —m < o; < w. Consequently, the angle variation is strictly
comprised between —47 and 47. Hence, like the triangle case, we have the
following result.

Property 11 The possible index of a linear vector field along the edges of a
quadrilateral 1s either -1, 0 or +1.

Practically, it means that if two critical points are located in the same quadri-
lateral, then they must have opposite indices (saddle point and source or sink).

Tensor Case

In the symmetric, two-dimensional tensor case, the interpolant has following
expression in computational space:

F(P(r,s)) = Dy + 1D + sDy + rsDs,

where the D;s are 2 x 2 deviator matrices of the form

a. /34
D; = ! L.
' ( Bi —a; )
Finding the location of a degenerate point consists in solving the following
non-linear system:
ag+ a1+ ass+azrs =0
Bo + Bir + Bas + Bars =0

which is equivalent to the vector case. Furthermore, the index satisfies in this
context the following property.

Property 12 The possible index of a bilinear tensor field computed along the
edges of a quadrilateral is either —%, 0 or +%.

Proof: The reasoning used in the proof of property 11 can be also applied for
tensors by recalling that the linear angle variation of a tensor field along an
edge is (in absolute value) smaller than 7 (property 6, p. 58).

This means that if a quadrilateral cell contains two degenerate points, they
have opposite indices (a trisector and a wedge).
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4.2.3 Linear Interpolation over a Tetrahedron

The linear interpolation over a tetrahedron constitutes the extension to the
three-dimensional case of the linear interpolation over a triangle.

For each scalar component of the considered field (vector or tensor), the lin-
ear interpolant over a tetrahedron 7" with vertices P, P, P», P; and associated
values ap, aq, g, a3 is defined as the real function

‘v’P(a:,y,z)ET, f(P):CL+ bz +cy+dz,

where a, b, ¢ and d are the real coefficients of the interpolant. They are chosen
to satisfy the following relation.

1z yo 20 a Qg

: _ . L 21y & b | _ | o
Vieo,..,3, f(P) = q that is 1 2y g 2 | .| = o
1 T3 Ys <3 d 3

Once again, one can reformulate the problem in barycentric coordinates: For
every point P in IR3, its barycentric coordinates with respect to non coplanar
points Py, Py, Py, Py are defined as the unique real triple (b, b1, by, b3) satisfying

3 3
P =Y b P, with > b =1.
i=0 1=0

If furthermore, Vi, b; > 0, the point P lies in the tetrahedron and the inter-
polant F at P can be expressed as

3
1=0

4.2.4 Trilinear Interpolation over a Hexahedron

The trilinear interpolant extends the bilinear interpolant defined over a quadri-
lateral. For each scalar component of the field, a trilinear interpolant over a
hexahedron with vertices P; and associated values «;, ¢ € 0,..,7 is defined in
computational space as the real function:

VP(r,s,t), f(P)=a + br + ¢cs + dt + ers + fst + grt + hrst,

where a..h are the real coefficients of the interpolant. They are chosen to
satisfy the following relation. Vi € 0, .., 4,

f(P;) = «; that is
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As for rectangle cells, a direct combination of the values of the vertices is pos-
sible (adding a local third coordinate ¢ to the ones introduced in the rectangle
case): For each point P(r,s,t) with 0 <7, s,t <1,

f(P) = A—-r(1-s)1—t)hag+r(l—s)(1—t)a; +rs(l—t)ag+ (1 —7)s(l —t)az +
(1 =7)(1 = s)tag + r(1 — s)tas + rstag + (1 — 7)stas.

In physical space, the interpolant g at a given position () is then defined
as follows (¢ denotes the transformation map):

9(Q) = f(¢(Q)).

As for the bilinear interpolation over quadrilateral cells, since the coordinates’
transformation is expansive, one usually prefers to process the whole calculus
in computational space before mapping back the results in physical space.

4.3 Singularities in Piecewise Linear Fields

We consider in this section the special case of piecewise linear, planar vector
and tensor fields defined over a triangulation. As a matter of fact, the piece-
wise linearity of such fields extends the range of topological features that may
be encountered in the linear case to singularities of higher order. Further, the
low order of the piecewise linear interpolant enables a precise detection of the
structure of such non-linear singular points.

Inside each triangle, the field is linear. So, if a singularity lies in its interior,
it has the topological structure of one of the linear cases enumerated previously
(see sections 2.2.1 and 3.4.1). Thus, the novelty with piecewise linear fields is
due to singular points lying on the boundary of a triangle cell (edge or vertex).
In this case, there is no neighborhood of the singular point completely lying
in the definition domain of a single linear field (i.e. in a single triangle).
Hence, the singularity is generally non-linear and local linear approximations
of its neighborhood (Jacobian matrix in the vector case, third-order differential
of the deviator in the tensor case) are unable to completely characterize its
structure. Actually, as one shows next, a singularity lying on a grid vertex
can have an arbitrary complex structure, depending on the connectivity of
the vertex in the grid. This observation permits the modeling as well as the
identification of any singularity in piecewise linear fields. Note that this special
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case of singular point can be seen as the merging (at the bifurcation point) of
several singularities lying in neighbor cells and getting infinitely close together.
This perspective will be developed further in chapter 7. One first considers the
case of singularities lying on the edge of a triangle before studying singularities
located at a vertex.

4.3.1 Singularities on an Edge

For convenience, one distinguishes vector and tensor fields.

Critical Points

The possible situations are illustrated in Fig. 4.10 and Fig. 4.11.

half-spiral

Figure 4.10: Saddle - spiral merging

As mentioned previously in the presentation of the bilinear interpolant, the
index of a closed curve built of four linearly interpolated segments is either 0,
-1 or +1. So, if two critical points are located in two cells sharing a common
edge, they must have opposite indices. In particular, when a critical point
lies on the common edge of two neighbor cells with global index 0, its phase
portrait looks like the merging of a saddle point located in one cell with a sink
or source lying in the other cell. Each of these two natures is determined by
the value of the Jacobian matrix in the respective cell. Note that the Jacobian
is constant over each cell in a piecewise linear interpolation. To determine the
local structure of this critical point (considered as a single one), one needs to
locate its separatrices, i.e. the boundary curves of its hyperbolic sectors, if
any. Now, (exactly) two separatrices of the saddle point, considered in the
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half-node

Figure 4.11: Saddle - node merging

corresponding cell, bound a hyperbolic sector entirely contained in this cell:
By definition, they are separatrices of the non-linear critical point, too. If one
considers the critical point from the other cell, it may be of two possible types:
Either a spiral or a node.

The spiral case is shown in Fig. 4.10. Since the convergence toward a spiral
occurs along rotating curves that get infinitely close to the singularity, the cut
of a half of a spiral’s neighborhood prevents any convergence to take place (see
enlargements). For this reason, The two separatrices identified so far are the
only ones and the singularity has two hyperbolic sectors.

The node case is shown in Fig. 4.11. Here the situation is different because
there are infinite many integral curves converging to the half-node in the corre-
sponding cell. The boundary between converging and non-converging integral
curves is actually delimited by the eigenvector of the node related to the eigen-
value with maximal modulus, i.e. the direction of “fastest” convergence (see
enlargements). This additional separatrix bounds a parabolic and a hyperbolic
sector. Finally, the singularity has two hyperbolic sectors and one parabolic
sector.

Degenerate Points

The possible cases are shown in Fig. 4.12.

As in the vector case, a degenerate point lying on an edge with index 0 can
be seen as the merging of two simple degenerate points of the two linear tensor
fields defined on both sides of the edge. Furthermore, these two degenerate
points must have different natures: This is a direct corollary of property 6
p- 58, analogous to the vector case. Therefore, one is only concerned with the
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Figure 4.12: Degenerate Point on an Edge

merging of a trisector and a wedge point. The continuity of the tensor field
across the edge prohibits other cases than those depicted in Fig. 4.12. The first
case corresponds to the degenerate point obtained at the bifurcation point in
the pairwise annihilation depicted in Fig. 3.13, p. 62. It corresponds to the
situation where the parabolic sector of the wedge point faces a separatrix of the
trisector. In the trisector’s triangle, a complete hyperbolic sector is bounded
by two separatrices of the half trisector. In the other triangle, no tensor line
converges to the wedge point. Consequently there is no separatrix in this
triangle and the singular point has two hyperbolic sectors. The second case
corresponds to the degenerate point at the bifurcation point in the pairwise
annihilation shown in Fig. 3.14, p. 63. It occurs when the hyperbolic sector of
the wedge point disappears by merging with a hyperbolic sector of the trisector.
It follows that this non-linear degenerate point has two hyperbolic sectors and
that its separatrices are the remaining ones of the trisector and the separatrix
(resp. both separatrices) of the wedge point in their respective triangles.

4.3.2 Singularities on a Vertex

The special case of a singular point lying on a vertex offers much more possi-
bilities for the local structure of the field in its vicinity. This is easily explained
by the fact that any neighborhood of such a point goes through every triangle
incident to the considered vertex. Now, depending on the connectivity of this
vertex, the topological complexity of the singularity arbitrarily increases as
the number of these triangles does. In the following, one first focuses on the
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identification of the local topological structure of a given singularity lying at a
vertex. With these ideas in mind, one shows then how to simply model critical
points with arbitrary complex structure in piecewise linear vector fields.

Local Topology Detection

Locating and analyzing the different topological sectors of a singular point
lying on a vertex consists in seeking the boundary curves of its hyperbolic
sectors and the different sets of nested loop curves tending to the singular
point in both directions (elliptic behavior). The basic idea behind the search
for separatrices is that they constitute a subset of the curves that converge
toward the considered singularity along straight lines. Vector and tensor cases
are distinguished next.

Vector Case One first proves a simple property that is used in the following.

Property 13 In the neighborhood of a critical point lying on a vertex of a
piecewise linear interpolated triangulation, the angle coordinate of the vector
field does not depend on the distance to the critical point.

Proof: Consider the situation shown in Fig. 4.13.

Mur

Figure 4.13: Angular coordinate in the vector case

In the triangle O AB, the vector value at P is linearly interpolated between
O and . One gets

v(P) = uwv(Q)+(1-u)v(0)
= uwv(Q)
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That is, v(P) is collinear to v(@) and thus, taking O as coordinate origin,
both vectors have the same angle coordinate. Q.E.D.

Using this property, one restricts the search for separatrices to the boundary
of the cell stencil made of all cells incident to the “singular” vertex: A position
on this boundary where the vector field is parallel to the coordinate vector
is the initial condition of an integral curve that converges toward the critical
point for ¢ — £o00. One is thus concerned with the restriction of the vector

field to a closed curve constituted by linearly interpolated line segments (see
Fig. 4.14).

linearly interpolated edge
-
incident cell

=4

Figure 4.14: Stencil of a singular vertex

considered
/ closed curve

This restriction to each edge [AB] is linear in one parameter (say t):
v(t)=v((1 —t)A+1tB)) = (1 —t)vs + tvg

Therefore, one looks on each edge of the stencil boundary for parameter values
where the vector field is collinear to the coordinate vector:

v(t) X ug(t) = 0 (cross product), with uy(t) = m

loQ@®)|I

These positions correspond to a separatrix if the straight line joining the posi-
tion to the singular vertex bounds a hyperbolic sector. Furthermore, one looks
for positions where the vector field is orthogonal to the coordinate vector:

v(t).up(t) = 0 (scalar product).

Both equations are quadratic and can be easily solved. This enables the dis-
tinction between hyperbolic and elliptic sectors and permits the complete
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characterization of the critical point. To simplify the results, one adopts
the following notations: at the positions where the vector field is orthogo-
nal to the coordinate vector, one distinguishes angles where the cross-product
ug X v(t) is positive (called orthogonal+) from those where it is negative
(called orthogonal-). At the positions where the vector field is parallel to the
coordinate vector, one distinguishes angles where the scalar product ug.v(?) is
positive (called parallel+) from those where it is negative (called parallel-).
These definitions are illustrated in Fig. 4.15.

Parallel+

Parallel+

Parallel+

Figure 4.15: Notations

One obtains then the graph shown in Fig. 4.16 for the determination of a sector
type.
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Parabolic Elliptic

ORTHOGONAL+

PARALLEL

RTHOGONAL—
*

Parabolic

Hyperbolic
Parabolic ‘ Hyperbolic

PARALLEL-

ORTHOGONAL-

Parabolic Elliptic

Figure 4.16: Sector type determination graph

Tensor Case Property 13 extends to the tensor case as follows.

Property 14 In the neighborhood of a degenerate point lying on a vertezr of a
piecewise linear interpolated triangulation, the angle coordinate of both eigen-
vector fields does not depend on the distance to the degenerate point.

Proof: It follows directly from the considerations of section 3.4.1.

Like the vector case, one uses this property to restrict the localization of
separatrices to the piecewise linear boundary of the stencil. Yet, the corre-
sponding eigenvector fields are not linear along each edge. From equation 3.2,
one knows that the eigenvectors are given in the deviator case by following

expression:
e = (,B(t),—a(t):t aQ(t)JrﬁQ(t))a

where e and 3 are linear functions in ¢ along each edge. The parallel condition
is here equivalent to the non-linear system

plt) =0

(@?(t) = (1)) B(t) — 2x(t)y(t)a(t) = O,

where z and y are the linear functions describing the coordinates of a point
Q(t) along the edge. Hence, this equation is cubic and can be solved analyti-
cally.
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Because of the lack of orientation of the eigenvector fields, the sector discrim-
ination cannot be based on the distinction between parallel+ and parallel-
or orthogonal+ and orthogonal-. An alternative approach, inspired by the
definition of the tensor index, consists in computing the angle variation A« of
the eigenvector fields between two consecutive parallel positions. As a matter
of fact, this value suffices to characterize each sector type:

e A = 0 in the parabolic case,
e Aa = 0 — 7 in the hyperbolic case,
e Aa = O+ in the elliptic case.

This is shown in Fig. 4.17.

Aa=0 Aa=06-1t Aq =0+

Figure 4.17: Angle variation in the parabolic, hyperbolic and elliptic case

Modeling of Critical Points

In this section, one deals with the following problem (see theorem 6):

Given a list of angles (w;)i=1,.n1 of w-separatrices (i.e. separatrices that
converge toward the critical point for t — +00), a list of angles (ci)i=1,.n2
of a-separatrices (i.e. separatrices that converge for t — —o0), and a list
(9i)i=1,.n3 of elliptic sectors, build a piecewise linear vector field that exhibits
an equivalent critical point.

Of course, the problem should be subdivided into modeling a single curvi-
linear sector starting and stopping at prespecified angular positions, given by
the sorted values of the angles introduced above. Consequently, one treats the
three possible sector type cases.

Remark: In the following, the neighborhood of the singular point is actually
the set of triangles that are incident to the considered “singular” vertex.
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Parabolic Sector According to the definitions of section 2.2.2, a parabolic
sector is bounded by two separatrices of the same kind (both w- or both a-
separatrices). Consider two w-separatrices located at # = w; and 0 = wy
respectively. Building a triangle as shown in Fig. 4.18

B(v,)
AW)

0(0)

Figure 4.18: Piecewise linear parabolic sector

and setting v; = —u,, and vy = —u,,, one gets the expected parabolic
behavior for all integral curves starting inside the triangle ABC.

Hyperbolic Sector A hyperbolic sector is bounded by two separatrices of
opposite kind (an w- and an a-separatrix). Consider an w-separatrix located
at # = w and an a-separatrix located at § = a. Building a triangle as shown
in Fig. 4.19,

B(v) AWV)

o o

0(0)

Figure 4.19: Piecewise linear hyperbolic sector

and setting v; = —u, and vy = +u,, one gets the expected hyperbolic
behavior for all integral curves starting inside the triangle ABC.
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Elliptic Sector In this case, one is not given two angle coordinates of two
bounding separatrices but a curvilinear sector bounded by a loop integral curve
that tends to O for both ¢ — oo and ¢ — —oo. The modeling of such a
sector by a piecewise linear vector field requires the curve itself to be described
in terms of its tangential directions for ¢ — co and ¢ — —oo. Consider the
picture in Fig. 4.20.

AV,)

Figure 4.20: Piecewise linear elliptic sector

The angle coordinates #; and 6, are the tangential direction of the loop
curve L* that bounds the modeled elliptic sector. The vector values at A
and C' are set as in the hyperbolic case. From the former case, one knows
that the linear sector defined by A, B and O is hyperbolic. This means that
an elliptic sector is not linear. To build such a sector, one has to split the
triangle into two subtriangles. By setting the vector value at the corresponding
additional point B as shown, one gets the expected elliptic behavior for all
integral curves through points located inside the loop L*. Finally, Fig. 4.21
illustrates a possible result of this modeling process.
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Figure 4.21: Modeled critical point



Chapter 5

Topology-Based Vector and
Tensor Field Visualization: The
State of the Art

An overview of the existing topology-based vector and tensor visualization
techniques is proposed in this chapter. Note that this is only a (small) part
of the flow visualization which is traditionally a major field of research in
Scientific Visualization. Yet topological methods have received an increasing
interest in the last decade and experienced many improvements and extensions
since their introduction by Helman and Hesselink. Their motivation is the
ability to tremendously reduce the volume of information required to analyze
the data while conveying all important qualitative properties of the considered
vector or tensor field. As we saw in previous chapters, the topology is the
qualitative structure of a field and its depiction thus concentrates on the most
meaningful aspects of the associated flow.

In fact, the origins of this topological approach can be found in numerous
works carried out by fluid dynamicists from the 60’s. Lighthill [Lig63], To-
bak [TP82], Perry [PF74, Per84, PC87], Dallmann [Dal83], Chong [CPC90] and
others applied the theoretical framework initiated by Poincaré [Poi75, P0i99]
at the end of the 19th century to the study of three-dimensional flow fields.
In particular, they showed how the concepts from the critical point theory
apply to the characterization of flow patterns. First restricted to the visual-
ization of two-dimensional vector fields, these ideas were next tested for three-
dimensional flows. The appeal for these schematic depictions motivated their
extension to the tensor case, following original work by Delmarcelle.

89
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5.1 Vector Fields

In this section, we first introduce the basic topological technique for the vi-
sualization of vector fields in the two-dimensional case and then present the
extensions that have been designed to improve the original method in order to
fulfill the requirements of practical applications. We conclude the presentation
by a brief description of additional visualization schemes that are also related
to topology in some way.

5.1.1 Two-Dimensional Basics

The first application of topological techniques for the visualization of vector
fields was proposed by Helman and Hesselink [HH89a, HH89b, HH90, HHI1].
The primary concern of these authors was to design a software method for the
automatic extraction and visualization of two-dimensional vector field topol-
ogy. Their classification of critical points is restricted to a linear precision,
i.e. is based on the eigenvalues of the Jacobian, as detailed previously in 2.2.1
p. 15. The major types are here saddles, nodes and spirals (called foci by
the authors). Hence the edges of the topological graph can be defined in this
context as the set of curves integrated from the saddle points along the di-
rection of the eigenvectors. Additional points are also being considered that
lie on the boundary of possible obstacles for the flow. As a matter of fact,
the velocity of the associated flow is usually constrained to be zero on an ob-
stacle’s body which induces a linear decreasing of the tangential velocity with
respect to the distance to the body. Yet there exist locations where the tan-
gential velocity presents a singularity. This results in streamlines that start
or end (in an asymptotic way) on the body. Consequently these curves along
with their associated attachment or detachment nodes are drawn to complete
the topological skeleton of the flow over the bounded domain. The topology
is associated with a connectivity graph where the links between originators
and terminators (saddles, attachment or detachment nodes) and the sinks or
sources (nodes or spirals) are identified. Illustrations of these definitions are
proposed in Fig. 5.1.

The same authors implemented an application of this basic technique to
unsteady (parameter-dependent) two-dimension vector fields. The idea is to
handle the one-dimensional parameter space as a third dimension and to con-
nect curves lying in adjacent slices along the parameter line. To ensure consis-
tency, this connection is only done between separatrices for which both start
and end points can be connected. In this case, a ribbon is displayed that de-
picts the surface spanned by the motion of the separatrix over the parameter
space. However if a topological transition has occurred between consecutive
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attachment
attracting

focus

detachment

Figure 5.1: Topology Representation in 2D (from [HH89a])

slices, no strip is drawn. An example is shown in Fig. 5.2.

Figure 5.2: Time-dependent topology of a 2D flow (from [HH91])

In their work, Helman and Hesselink neglected the importance of closed
orbits. Yet, from chapter 2 we know that they play a role similar to sinks and
sources in the topology. Furthermore they are very common in two-dimensional
datasets cut off from three-dimensional flows (this is illustrated in chapter 6).
This lapse in the original topology depiction technique of 2D vector fields
has been corrected recently by Wischgoll and Scheuermann [WS01]. Separa-
trix integration is conducted in a way that permits to detect closed regions
where streamlines remain trapped. If no critical point is present in the region,
the Poincaré-Bendixson theorem ensures the existence of a closed orbit (refer
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to [GH83], p. 44). Its precise position is provided by the fixed point of the
Poincaré map (see definition 18, p. 23).

Furthermore, the characterization of the topology of a two-dimensional vec-
tor field defined over a bounded region must take the boundary into account.
This was proven by Scheuermann, Hamann and others in [SHJ00] who pro-
posed a scheme to extract additional separatrices emanating from so-called
boundary saddles. See section 2.4, p. 25 for further details.

5.1.2 Three-Dimensional Vector Field Topology

The early advances of topology-based vector field visualization in 2D have mo-
tivated the extension of the same principle to 3D flows. In their paper [GLL91],
Globus, Levit and Lasinsky presented a software system called TOPO that ex-
tracts and visualize some topological aspects of three-dimensional vector fields.
Here, the critical points are characterized by the three eigenvalues of the Ja-
cobian, resulting in nodes, saddles and spiral saddles. Some examples are
proposed in Fig. 5.3. The numerical issues like singularities’ search or de-
generacies are discussed. As far as the depiction is concerned, critical points
are displayed as glyphs, conveying the properties of the Jacobian, and are con-
nected by streamlines started from the saddles and the spiral saddles along the
direction of the eigenvectors associated to the real eigenvalues. An analogous
technique was also suggested by Helman and Hesselink in [HH91].

W/

[

(a) Repelling spiral (b) Saddle point (c) Spiral saddle

Figure 5.3: Examples of 3D critical points (from [wwwb])

Remark that these implementations do not provide a real depiction of three-
dimensional topology. As a matter of fact, the partition of the domain into
subregions where the flow is qualitatively uniform (as separatrices do in the
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two-dimensional case) requires the computation and display of stream surfaces.
A stream surface is the surface spanned by a streamline as its seed moves along
a curve. Few algorithms exist for the construction of these surfaces [Hul92,
SBHO01] and this remains a challenging issue.

5.1.3 Surface Topology

A major concern in the study of three-dimensional vector fields is the qualita-
tive behavior on (two-dimensional) surfaces of bodies in the flow. For this
purpose, several topological techniques have been designed to extract and
visualize the structure of curves integrated along solid surfaces: Supposing
that the velocity field vanishes smoothly on the surface (noslip boundary),
one considers the two-dimensional vector field obtained by projection of the
three-dimensional velocity on the tangent plane of the body. Computing the
topology of this field gives insight into the behavior of the flow in the vicinity
of the flow. This has been done by Helman and Hesselink in [HH90, HH91]
and by Globus, Levit and Lasinski in [GLL91]. An illustration of this principle
is proposed in Fig. 5.4.

Figure 5.4: Surface topology on a hemisphere cylinder (from FAST [wwwa))

The extracted structure can also serve as basis for the computation of
surfaces of separation [HH90]. They can be seen as the three-dimensional
equivalent of the curves emanating from the attachment or detachment nodes
in the 2D case. These surfaces are connected to the body along attachment or
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separation lines that correspond to the separatrices from the saddle points of
the tangential topology, classified with respect to the sign of the eigenvalues.
However Kenwright has shown that this method misses open attachment and
separation lines (that do not start or terminate at critical points on the surface)
and proposed new schemes to detect them completely [Ken98, KHLIS].

5.1.4 Higher Order Critical Points

source

(a) Piecewise linear (b) Polynomial approximation

Figure 5.5: Extraction and visualization of a monkey saddle (from [SHK97])

The methods introduced so far are limited to linear precision in the char-
acterization of critical points. This means that only hyperbolic singulari-
ties (see definition 11, p. 18) are considered. We saw previously that non-
hyperbolic critical points are unstable (in the sense of structural stability)
but when imposed constraints exist (e.g. symmetry or incompressibility of
the flow), they can be encountered. To attack this deficiency, Scheuermann,
Hagen, Kriiger and others proposed a scheme for the extraction and visualiza-
tion of higher-order critical points over piecewise linear two-dimensional vector
fields [SHKO97]. The basic idea is to identify regions where the absolute value of
the index is bigger than 1 (by Theorem 9). In such regions, the original piece-
wise linear interpolant is replaced by a polynomial approximation function.
The polynomial is designed in Clifford algebra, based on theoretical results
presented by the same authors in [SHK98a, SKM98, SHK98b]. This permits
to infer the actual underlying presence of a critical point with arbitrary index
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that is next modeled and visualized as illustrated in Fig. 5.5. Note that an
alternative technique, based on grid deformations, is proposed in chapter 6.
The impossibility to model higher-order critical points with piecewise linear
interpolation also motivated the use by Scheuermann, Tricoche and Hagen of
Nielson’s C! scattered data interpolation scheme [Nie79, Nie80, Nie83]| for the
extraction of vector field topology [STH99]. Getting back to the original ideas
of Poincaré in his study of dynamical systems, Trotts, Kenwright and Haimes
proposed in [TKHO00] a method to extract and visualize the non-linear topol-
ogy of a “point at infinity” when the considered vector field is defined over an
unbounded domain.

5.1.5 Topology Comparison

Using the topology to characterize the properties of vector fields induces an
equivalence relation between fields that exhibit similar topological features.
However, the corresponding depictions by means of classical visualization meth-
ods can conceal this similarity. This observation has motivated the design of
feature comparison techniques that precisely evaluate the resemblance of vec-
tor fields. Lavin, Batra and Hesselink first introduced in [LBH98| quantities
derived from the eigenvalues of the Jacobian that characterizes the types of
two-dimensional critical points. This serves to define a convenient global met-
ric over the vector field that permits the computation of a distance, used to
measure the topological proximity of two vector fields. An extension to three-
dimensional vector fields was presented by Batra and Hesselink in [BH99].

5.1.6 Topology Simplification

In general, the topology of two-dimensional vector fields provides a simple syn-
thetic depiction that conveys the structural information while being restricted
to an easily understandable graph. Unfortunately, in some cases, the struc-
ture becomes very complex and topology-based visualizations result in visual
clutter. This is typically the case if the considered flow is turbulent (see chap-
ter 6): A large number of close critical points can be observed along with
associated separatrices that confuse the interpretation. In [LL99a], de Leeuw
and van Liere proposed a method to remove critical points from the topological
graph while preserving structural consistency of the simplified topology with
the original one. Interconnected critical points of opposite indices are pruned
pairwise when their distance is under a given threshold (see Fig. 5.6(a)). This
globally preserves the structure of the flow since every pair is characterized by
an index zero that is equivalent to a uniform flow, i.e. without critical point.
This original method was improved by its authors in [LL99b]. Flow regions
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(a) Pair’s pruning ([L199a]) (b) Region collapse ([LL99b])

Figure 5.6: Local simplification

are defined as basins of sources or sinks, handling the boundary inflow (resp.
outflow) parts as generalized sources (resp. sinks). When the global index of
such a region is 1 (meaning a global sink or source nature for the region), the
corresponding local topology is collapsed onto a linear sink or source which
preserves the index and ensures consistency (see Fig. 5.6(b)). The restriction
on the index of the region is made to avoid the creation of higher-order critical
points by collapsing. The simplification is monitored by the area of the region
to collapse. This criterion is namely considered a better metric by the authors
to evaluate the influence of a critical point on the flow structure. Remark that
both methods act directly on the graph without providing a corresponding
vector field description.

5.1.7 Topology-Related Methods in Scientific
Visualization

Piecewise linear interpolation of two-dimensional vector fields defined over tri-
angulations may inconvenience the use of topology-based methods because it
produces topological artifacts. This problem motivated the design of a data-
dependent triangulation scheme by Scheuermann and Hagen in [SH98| that
avoids artificial topological complexity of the associated vector field. For the
purpose of data compression of planar vector fields Nielson, Jung and Sung
presented a method based on the use of wavelets over curvilinear grids [NJS98].
They compared the consistency of the resulting vector field with the original
one by means of their respective topologies. Yet the method enables no precise
control on the topology deformation. On the contrary, Lodha, Renteria and
Roskin created a topology-preserving compression method for planar vector
fields defined over structured grids [LRRO00]. Topology-preserving smoothing
of vector fields was addressed by Westermann, Johnson and Ertl in [WJEO1].
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5.2 Tensor Fields

Compared to the vector case, the topology-based visualization of tensor fields
has not profited from much research since its introduction by Delmarcelle.
Therefore, the presentation is limited to the basic technique for two-dimensional
tensor fields and the first attempts to extend it to the three-dimensional case.

5.2.1 Planar Topology

Figure 5.7: Topological depiction of a 2D symmetric tensor field (from [DH94))

Following the theoretical framework that he achieved in his PhD the-
sis [Del94], Delmarcelle first proposed a topology-based visualization method
for two-dimensional, symmetric, second-order tensor fields [DH94]. This method
extends to symmetric tensor fields the original scheme of Helman and Hesselink
for planar vector fields. Here, topology extraction is based on the characteri-
zation of the degenerate points with linear precision and on the integration of
the associated separatrices over the domain. Corresponding definitions were
given in section 3, p. 40. Since the resulting graph only focuses on the di-
rectional information of the tensor field, no insight into quantitative informa-
tion is conveyed in that way. Therefore Delmarcelle suggested to add a color
mapping to display e.g. one eigenvalue or the difference between both. An
illustration is proposed in Fig. 5.7. The texture shown in the background is
obtained by Line Integral Convolution, a very popular scheme for flow visual-
ization [CL93, SHI7].
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Figure 5.8: Discrete tensor topology tracking (from [DH94])

An extension to parameter-dependent 2D tensor fields can be obtained by
tracking degenerate points over time in a graphical way. The 1D parameter
space adds a third dimension to the considered 2D domain. The depiction
shows the successive positions of the singularities along the discretized param-
eter line along with the inferred positions of pairwise mergings and creations,
revealed by structural changes. This principle is illustrated in Fig. 5.8.

5.2.2 Three-Dimensional Topology

In the symmetric three-dimensional case, degenerate points correspond to loca-
tions where at least two of the three real eigenvalues are equal. The geometry
of the tensor lines in their vicinity is first addressed by Hesselink, Lavin and
Levy in [HLL97, LLH96]. However a complete characterization of 3D degener-
ate points is not achieved since the precise location of the separating surfaces
(that generalize to 3D the separating curves computed in 2D) cannot be done
analytically. Furthermore many numerical problems must be solved to prop-
erly locate the singularities in this case. Therefore this technique can still be
considered “under construction”.



Chapter 6

Topology Scaling

Turbulent flows are generally associated with vector and tensor topologies
characterized by the presence of many structures of very small scale. Their
proximity and interconnection in the global depiction result in visual clutter
with classical methods. Moreover, this deficiency is emphasized by low-order
interpolation schemes, typically used in practice (like linear or bilinear interpo-
lation), because they lack the local flexibility required to precisely reproduce
close topological features. Consequently, they confuse the results by intro-
ducing artifacts. For these reasons, topology-based methods produce in this
context pictures that inconvenience analysis by engineers or physicists because
meaningful features cannot be distinguished from local details or numerical
noise.

These local structures are in fact groups of first-order singularities (sinks,
sources and saddle points in the vector case, trisector and wedge points in the
tensor case) connected by separatrices, that are part of bigger structures. This
interpretation induces a hierarchical approach of the topology, where the whole
graph may be recursively decomposed into interconnected subgraphs. Closed
orbits play here a special role because they isolate the part of the graph located
in their interior from the rest of the graph, in their exterior. Yet, in all cases,
the locality of a part of the topology can be determined by the proximity of
the involved singular points.

The remarks above imply that a post-processing step is needed to reduce
the complexity of the extracted topology in order to enable the interpretation
of the visualized results. Moreover, they suggest the following strategy for
scaling the resolution of a topology and therefore control the complexity of the
graph:

1. Get the locations of all singularities contained in the domain.

2. Determine groups of “close” singularities according to a given measure.

99
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3. For each group satisfying a prescribed proximity, replace the correspond-
ing local structure by a consistent, simpler one.

A consistent structure, as mentioned in the last step, is in fact a new topo-
logical feature that can be embedded into the original topology instead of
the original structure without modifying the direction and orientation (vector
case) of the integral curves in their vicinity. According to the remarks above,
the new structure will be considered simpler if it contains less singularities and
less associated separatrices that emanate from them. The approach developed
here is actually based on a fundamental property of singular points: Several
close singular points of first-order are, in the large, equivalent to a single one of
higher-order. The signification of this equivalence is better understood in the
light of the notions introduced previously in chapters 2 and 3 about bifurca-
tions: One can interpret this higher-order singularity as the structure obtained
at the bifurcation point during the merging of close first-order singular points.
Note that this generalizes the pairwise annihilations presented previously to
a situation where arbitrary many singular points become closer to another to
result in a single, mostly non stable, singular point at the instant of bifurca-
tion. For this reason, the new, simpler local structure shall correspond to the
local phase portrait of the singularity obtained by merging the previous close
singular points. In fact, this merging process can be seen as the result of a
graphical back zooming applied locally to the original complicated topological
feature: The singularities appear closer as one moves away, until they cannot
be distinguished from the large and look like a single one.

This provides the basic ideas of the two methods presented in this chapter.
The first one is cell-based and handles vector and tensor fields defined over
rectilinear grids with piecewise bilinear interpolation. It can be extended to
general curvilinear grids processed in computational space. The second method
works independently from the underlying cells and associated interpolation
scheme and is thus suited for arbitrary grid structures. Both methods are
detailed next. We conclude the presentation by a discussion that suggests
further applications of this technique and points out possible improvements.

6.1 Scaling on Rectilinear Grids

This section is organized as follows. We first precise what type of input data
can be handled by the method. Next, the clustering strategy is detailed that we
use to determine the groups of close singularities to be merged. This enables
the local deformation of the topology to simulate the fusion of all involved
singular points, as we show. The last step consists in identifying the structure
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of the new feature created in that way. Some examples are shown that illustrate
the results of the method and the scaling effect achieved in the vector and
tensor case.

6.1.1 Input Data

We deal here with two-dimensional vector or tensor fields defined over a planar
rectilinear grid. The choice of this structured grid is motivated by the cell-
based nature of the method. It can also be applied to an arbitrary curvilinear
grid mapped onto its rectilinear equivalent in computational space. The inter-
polation scheme is bilinear, inducing the linearity of the interpolant along the
edges of the grid. A preprocessing step consists in computing the position and
type of the singular points that are provided together with a reference to the
containing cell.

6.1.2 Cell-based Clustering

In this section, we are concerned with the problem of grouping singularities
together, that are distributed over the domain spanned by the grid. The group-
ing criterion is the proximity of the singularities contained in the same group.
This is a typical clustering problem, i.e. the decomposition of a set of data into
homogeneous subsets (or clusters), by minimizing the variance of some char-
acteristic measure in each cluster. Here, one requires the clustering process to
handle the underlying cells, enabling afterward local deformations that best
preserve the original vector or tensor field. The ideas developed here are based
on a clustering scheme designed by T. Schreiber [Sch91] for computational
geometry. The original scheme deals with scattered weighted points without
grid. Thus, it is modified to take the cell structure into account. Practically,
a cluster is a group of connected cells and corresponding singularities.

The whole process works independently from the nature (vector/tensor) of
the underlying field since the clustering part only focuses on (singular) points
located in the cells of the grid. First, we introduce some convenient notations.
We denote by P, ..., P, the positions of the m singularities lying inside a
particular cluster. We want to minimize the approximation error of these m
singularities by a single point, where this point (also called cluster center) @
is chosen to be the best approximation (for a given norm) of the singularities’
mean point by a grid vertex (see Fig. 6.1). The corresponding error is given
by
Yy wil| Py — Q|

S = d
Zj:l w]
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Figure 6.1: Cluster singularities and cluster center

where w; is the weight (set equal to 1 in our case, see discussion about possible
other choices at the end of this chapter) associated with the i-th singularity.
Here, the distance between the P; and () can be evaluated according to any
norm (e.g. euclidean or infinity): The quantity S is used to measure the prox-
imity of all singularities contained in a cluster and thus permits a numerical
evaluation of its quality.

Hence, the aim of the clustering process is to partition the whole domain

spanned by the structured grid into clusters that all have an associated error
value smaller than a prescribed threshold 7 (which is the only parameter of
the method) and that contain all the cells.
We start with the whole grid considered as initial cluster. For the recursive
subdivision, we proceed as follows: If a cluster does not satisfy the given
error criterion, we split it into two subclusters. For this, we first compute the
projected variances associated with a given cluster:

Vi= wi(P - Q")
j=1

where i € 0,1 is the considered coordinate axis (P; = (P}, P})). Now, the
successive steps of the method are as follows.

For each cluster:

1. Take the best vertex approximation of all cluster’s singular
points as cluster center.

2. Compute the approximation error S.
If (S > 7) go to step 3.
Otherwise stop.
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Figure 6.2: Cluster splitting

3. Compute the coordinate axis with largest projected variance
(i.e. max(Vo, V1)).

4. Create 2 subclusters by splitting the cluster along an edge polyline
through Q perpendicular to the selected coordinate axis.
Go to step 1.

The last step justifies the need for a cluster center to be a grid vertex. As
a matter of fact, when splitting a cluster, one keeps processing cell groups in
the form of Fig. 6.2. It also explains why the grid must be rectilinear: The
subsplitting of the cluster must correspond to a minimization of the largest
projected variance which is defined by projection on one of both coordinate
axes. Note that this projection is the simplest and thus the fastest one which
motivates this choice.

To ensure the termination of the algorithm, one requires, at each step, the
existence of a best singularity mean point approximation by a grid vertex that
does not lie on the cluster boundary. Otherwise, the recursive splitting of a
cluster is stopped. An additional - and obvious - criterion is the presence of
at least two singular points in the cluster.

In the end, the grid has been partitioned into cell groups that either contain
singular points which are close to another, in the sense of the approximation
error introduced previously, or that cannot be split further with respect to the
termination criterion. These cell groups are (at least in computational space)
rectangles. In each valid cluster (satisfying the proximity threshold), we can
now process the merging of all contained singular points as described next.
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6.1.3 Local Topology Deformation

Once a cluster has been isolated, its corresponding local topological structure
must be simplified. In our case, this simplification consists in replacing all
the singularities by a single one that presents the same aspect in the large
while preserving consistency. To achieve it, we choose to simply let the field
unchanged on the cluster boundary (piecewise linearly interpolated) and more-
over to preserve continuity of the field across the boundary. In fact this even
ensures the locality of the induced deformation.

From chapters 2 and 3, we know that the singular point resulting from
the merging of several singularities typically presents a non-linear structure.
Therefore, the singular point to be artificially created must be non-linear and
the complexity of its structure depends on the number of singularities involved
in the merging. As a consequence, it cannot be a singularity located in the in-
terior of a rectangle cell contained in a final cluster (which is typically of linear
nature). At this stage we make use of the property introduced in chapter 4
concerning the singular points lying on vertices of a piecewise linear triangula-
tion. As shown previously, such a singularity may have arbitrary complexity.
Practically, we process as follows: First, we remove all the rectangular cells
contained in the cluster. Next, the resulting hole in the grid is filled up by a
triangle stencil centered at the cluster center (defined after processing as the
mean point of the contained singular points according to the chosen norm).
The new internal cell structure is illustrated in Fig. 6.3: The triangles connect
the cluster center with the grid vertices lying on the cluster boundary.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 6.3: New cell structure in the cluster

Now, according to the ideas developed previously, we set a singular value
to the internal vertex. In the vector case, it is a zero vector. In the symmetric
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tensor case, it might be any isotropic matrix. Yet, as we choose to restrict our
considerations to deviator tensor fields, the only possible value is a zero matrix.
As far as the interpolation scheme is concerned, we apply a piecewise linear
interpolation in the triangles. Remark that this choice is consistent with the
piecewise linear nature of the restriction of the piecewise bilinear interpolant
(defined elsewhere over the grid) to the edges of the cluster boundary. The
singular point defined at the internal vertex is by construction the only one
present in the cluster after modification. This is easily proven by recalling
that an affine linear vector (resp. tensor) field has, at most, one single singular
point (the degenerate case where the system to solve is singular and therefore
infinitely many singularities are present would mean that a singular point is
present on the cluster boundary, which is rejected by the method).

As a consequence, we have eventually created a singular point with arbi-
trary complex structure (the complexity depends on the number of triangles in
the stencil) while preserving the piecewise linear value of the “exterior” field
on the cluster’s boundary. Moreover this guaranties consistency of the local
structure with the rest of the topology. In particular, the index of the cluster
has been trivially maintained.

6.1.4 Structure Identification

Once this singularity has been created, its structure must be characterized to
enable the drawing of its separatrices and thus depict the new simplified topol-
ogy. The technique used here was presented in chapter 4, p. 81. Recall that
it is based on the search, on each edge of the cluster’s boundary, for positions
where the vector (resp. eigenvector) field is parallel to the vector emanating
from the internal singular point. This corresponds to a quadratic (resp. cubic)
polynomial equation. In the vector case, this search is completed by the loca-
tion of positions where the vector field is orthogonal to the coordinate vector
and the use of the sector discrimination graph shown in Fig. 4.16, p. 84. In
the tensor case, an evaluation of the eigenvector’s angle variation between two
consecutive parallel positions provides the missing nature and position of the
different sectors, see chapter 4.

6.1.5 Results

This section presents the results of this method applied to a vector and a
tensor dataset obtained by numerical simulations from Computational Fluid
Dynamics (CFD). They both correspond to the simulation of a swirling jet with
inflow into a steady medium. This results in a vortex breakdown, the turbulent
nature of which makes these datasets very interesting for our purpose.
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Vector Case

This dataset has been cut off from a three-dimensional vorticity vector field.
The grid is structured and has 251 x 159 cells ranging from 0 to 15 along the
x-coordinate, resp. -1.9 to 1.9 along the y-coordinate. The initial topology has
a very complicated structure and contains 337 singular points and 624 associ-
ated separatrices, see Fig. 6.4. Note the presence of isolated critical points on
the upper and lower left side of the picture: They are located in areas where
the magnitude of the field is tiny and thus no meaningful streamline integra-
tion can be achieved numerically.

Figure 6.4: Original topology

We first apply the method with a threshold of 0.2. We use the euclidean
norm to measure the proximity of the critical points. The resulting topology
presents 140 critical points (88 of which are higher-order ones, i.e. artificially
created by merging) and 359 associated separatrices: It is shown in Fig. 6.5.
If one increases the threshold to a value of 0.4, the topology gets simplified as
follows. There are 88 critical points remaining (6 of which are original ones),
see Fig. 6.6.
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Figure 6.5: Scaled topology: Threshold = 0.2
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Figure 6.6: Scaled topology: Threshold = 0.4
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Figure 6.7: Local topology scaling: initial graph and simplifications with 0.1,
0.2 and 0.4 as thresholds

Note that in both cases, the global symmetry of the original graph has been
well preserved after scaling, which is inherent to the scheme used to cluster the
critical points. To demonstrate the local topological deformation induced by
the method, Fig. 6.7 shows the successive topological aspects of a small part
of the grid corresponding to increasing values of the threshold. Remark that
the scaling effect applied to the critical points also induces the simplification
of small closed orbits.
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Tensor Case

This dataset is a two-dimensional cut of a three-dimensional rate of strain
dataset corresponding to the same swirling jet simulation as for the vector
case. The grid is rectilinear and has 124 x 101 cells ranging from 0 to 9.87
in x, resp. -3.85 to 3.85 in y. The original topology presents 61 degenerate
points and 131 separatrices. It is shown in Fig. 6.8. Remark that this topology
contains no cycle, as usual for tensor fields. One starts scaling with threshold
= 0.2. The resulting topology contains 44 singularities (13 of which being
non-linear) and 101 associated separatrices, see Fig. 6.9. (Non-linear singular-
ities are depicted by big dots.) Increasing the threshold (threshold = 0.4), one
simplifies the topology further. There are now 31 degenerate points (17 being
non-linear) and 76 separatrices in the graph, see Fig. 6.10. The last stage of
the scaling process is obtained with threshold = 0.8. This topology has 15
degenerate points (only 2 of them are original ones) and 42 separatrices. The
result is shown in Fig. 6.11.

To observe the local effect of the method on close singularities, samples of
a close-up corresponding to increasing thresholds are proposed in Fig. 6.12.
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Figure 6.11: Scaled topology (threshold = 0.8)
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) Scaled topology (0.2) ) Scaled topology (0.4)
) Scaled topology (0.45) ) Scaled topology (0.5)

Figure 6.12: Samples of local topology scaling
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6.2 Scaling on Arbitrary Grid Structure

As opposed to the previous method, no assumption is made here about the
grid related to the considered vector or tensor field. In particular, no structure
is expected and the cells can be arbitrarily interpolated. We just require the
field to be continuous over the grid. Consequently, an important difference
resides in the clustering scheme. It works independently from the cells’ geom-
etry which increases the flexibility of the method. This implies that the local
topological deformation must be adapted as well to ensure continuity of the
field through the cluster boundary. This section is structured as follows. The
new, cell-independent, clustering scheme is presented first. The merging of the
singularities contained in a cluster follows the same basic principle as in the
previous method but is based on another interpolation scheme as explained
next. The technique used to identify the simplified topological structure gen-
eralizes the one presented previously and is briefly explained then. At last,
results are shown.

6.2.1 Cell-independent Clustering

The clustering scheme used in the unstructured case is in fact a simplified
version of the scheme designed for rectilinear grids. The whole processing only
focuses on the singularities distributed over the definition domain. The clusters
are in this context, rectangles (or bounding boxes) that contain close singular
points and that are informed about the cells that intersect their interior: See
Fig. 6.13.
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Figure 6.13: Cluster singularities and cluster center

As far as cluster subdivision is concerned, the strategy is the same as
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previously: The approximation error

YL wil [Py — Q|
E;n:ﬂ’j

S =

is computed, according to a particular norm, and if the value found is larger
than the prescribed threshold 7, the projected variances are evaluated for both
coordinate axes:

Vi=Y wi(Pj—Q"),
j=1

The cluster is then split by a straight line through the singularities’ mean
point, orthogonal to the axis with largest projected variance. The original
cluster enclosing the whole grid is recursively subdivided in that way until
every subcluster fulfills the threshold. Compared to the structured case, the
clustering is here processed independently from the underlying cell structure
since we somehow apply a convenient artificial axisparallel grid. Remark that
the splitting strategy used here is not the only possible one: A cluster can be
subdivided in an arbitrary way if the convexity of the sub-clusters is preserved.
Nevertheless, our choice leads to clusters with edges parallel to the coordinate
axes which enables fast processing.

6.2.2 Local Topology Deformation

After the clustering step, we are left with a set of clusters that contain close
singularities and know what cells are contained in them. We compute next,
for each final cluster and for each contained cell, the possible intersections of
the cell’s edges with the cluster boundary. This can be done very efficiently
because the cluster edges are parallel to the coordinate axes. Adding the
4 cluster corner points to the intersection positions found, we get a list of
positions that we sort in a counterclockwise order. Now we isolate the interior
domain of the cluster from the rest of the grid. This is done by removing
all cells entirely contained in the cluster (without intersection with cluster
boundary) and cutting away the part of every cell intersecting the cluster
interior domain: This corresponds to superimposing locally a new small grid
on the initial one (see Fig. 6.14).

The cut cells have now a modified geometry but keep their interpolation
scheme to ensure continuity and consistency with the original field. In particu-
lar, the field value along the cluster boundary remains unchanged. Inside each
cluster, we want to get a continuous piecewise analytic field description after
modification that ensures the presence of a unique singularity located at the
singularities’ mean point. Furthermore, we want this description to preserve
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Figure 6.14: New grid structure around a final cluster

the field value on the cluster boundary. Consequently, we cover the cluster
interior domain as follows: Inserting an additional vertex at the mean point
position, we build a triangle stencil connecting this point with every position
on the cluster boundary. Furthermore, we associate the new vertex with a
singular value: See Fig. 6.15.
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Figure 6.15: Triangle stencil inside a final cluster

In each of these triangles, we need an interpolation scheme that interpolates
the field value on the cluster boundary. This is achieved by using a simple side-
vertex interpolation scheme: The position of every point inside such a triangle
is determined as shown in Fig. 6.16, so we get

Q(t) =(1—t)A+tB and P(t,u) = (1 —u)Q + uQ(?).
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Figure 6.16: Side vertex interpolation

The interpolated value is (with f denoting the considered field)

F(P)(t,u) =u f(Q(t)), since f(2) =0

where f(Q(t)) is the original value on the cluster boundary (this is the same
configuration as in Fig. 4.13, p. 81).

This ensures that the field on the boundary is preserved which guarantees
continuity for the new piecewise analytic description. We can also claim that
the new artificial singularity is the only one contained in the cluster after
modification (otherwise, we would have, for some ¢, Q(¢) = 0, and we would
have a singular value on the boundary which cannot occur because such a case
is rejected during the clustering process).

6.2.3 Structure Identification

As in the structured case, the identification of the structure corresponding to
the deformed topology is based on the identification of the positions on the
cluster boundary where the vector (resp. eigenvector) field is parallel to the
coordinate vector from the cluster center. We saw that it leads to a quadratic
polynomial equation in the vector case and a cubic equation in the tensor case,
when the field is piecewise linear along the boundary. Now, in the general case,
one has the following result: If the field on the boundary is a piecewise poly-
nomial of degree n, then the system to solve for the “parallel” positions is of
degree n + 1 in the vector case and n + 2 in the tensor case. Thus, if the field
is polynomial of degree 3 or greater, an analytic solution of such a system will
be typically impossible and therefore a numerical search is required. Note that
this numerical search can be conducted without precise knowledge of the inter-
polant. A classical scheme for this purpose is Newton-Raphson (see [PTV92]).
Once these positions have been detected, the identification is completed in the
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vector case by the search for positions where the vector field is orthogonal to
the coordinate vector and the use of the sector discrimination graph presented
in Fig. 4.16, and in the tensor case by the (numerical) computation of the angle
rotation of the field between two consecutive “parallel” positions as explained
previously.
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6.2.4 Results

We present here the results of the method applied to two artificial datasets,
both defined over a Delaunay triangulation of scattered points. The vector and
tensor values have been computed at random to result in turbulent topologies
that require to be scaled. The interpolation scheme is in both cases piecewise
linear.

Vector Case

The first dataset is a 2D vector dataset. The grid has 400 vertices, ranging
from -5 to +5 in x and y. The original topology contains 189 critical points
and 380 separatrices (see Fig. 6.17).

Figure 6.17: 1st example: Vector case

We first simplify this complicated topology with a clustering threshold of
0.5. The graph has now 114 critical points and 286 separatrices (see Fig. 6.18).
To ease the interpretation, higher order singularities are depicted as big dots.
Using a threshold of 1.5, there are 81 critical points and 188 separatrices
remaining (Fig. 6.19).
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Note that the simplification process does not affect the topology close to the
grid boundary (which explains the presence of many singularities) to preserve
consistency to the original data.

Tensor Case

The second dataset is a planar symmetric, second-order tensor field. The grid
has 300 vertices, ranging from -3 to +3 in x and from -2 to +2 in y. The original
topology contains 114 degenerate points and 242 associated separatrices: See
Fig. 6.20.

Figure 6.20: 2nd example: Tensor case

The first scaled topology is obtained with a threshold of 0.5. We use the
infinite norm to determine the proximity of the singularities. The final clusters
are depicted as rectangles. The higher-order singularities created artificially
are shown as bigger points. The topology presents 69 degenerate points and
162 separatrices (see Fig. 6.21). With a threshold equal to 0.75, one obtains
the topology shown in Fig. 6.22: There are 59 degenerate points remaining
and 134 separatrices. Here again, the merging of the singular points take only
place in the interior of the domain, preserving the features located close to the
grid’s border. The last result shown corresponds to a threshold of 1.5: See
Fig. 6.23. The topology is now characterized by 49 degenerate points and 110
separatrices.
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Figure 6.22: 2nd example: threshold = 0.75

6.3 Discussion

The two methods presented above are designed to attack the problem of visual
clutter encountered with turbulent vector or tensor fields by topology-based
schemes. The technique used here is based on a scaling approach of the struc-
tural complexity: Singularities that lie sufficiently close together should be
merged because they cannot be properly distinguished in the global depic-
tion on one hand, and because they are likely to correspond to interpolation
artifacts on the other hand. As shown previously, the fusion of close singular-
ities can be achieved on structured and unstructured grids. In both cases, the



CHAPTER 6. TOPOLOGY SCALING 122

Figure 6.23: 2nd example: threshold = 1.5

scaling is obtained by local deformations of the grid. The resulting topology
appears clarified since the number of singularities has been reduced along with
that of associated separatrices. Remark that this technique can be applied as
well when the objective is to recover higher-order singularities, inferred to be
present in the underlying field. This constitutes an alternative to the scheme
proposed in [SHKO97]: Singular points of arbitrary indices can be obtained
in that way while preserving a low-order interpolation scheme and ensuring
continuity over the whole grid.

Now this approach is somehow purely geometrical. As a matter of fact
the clustering scheme used to put singularities together only considers their
relative position. In fact this property permitted to handle vector and tensor
fields in a very similar way. Consequently qualitative aspects, like e.g. the
types of the singularities, their interconnectivity or their structural influence,
were ignored. In some cases, this might be insufficient. For instance, if one
aims at filtering numerical noise, one expects to get undesirable singularities
in regions where the norm of the field (euclidean norm for vectors, L? for
deviators) is very small. The norm should therefore be taken into account
when the merging of a given singular point with others is considered. Fur-
ther, the interpretation of topology depictions in the context of fluid dynamics
evaluates the relevancy of the singularities with respect to some additional
quantities like e.g. vorticity or enstrophy (depending on the case, they can
be either derived from the considered field or must be provided by another
one). Here again, such criteria should then be evaluated and tested before
modifying the topology. Actually these considerations are the motivation of
an alternative simplification approach presented in chapter 8. However there
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is a possibility to involve qualitative insight in the present method. As said in
the presentation of the clustering scheme in section 6.1.2, our first strategy for
weighting the singularities was a uniform law. This is a simple (and efficient)
choice but it ignores any particular property of singular points. Now, we can
replace these values by weights that reflect the importance of every singular
points with respect to some relevancy function that depends on the considered
interpretation. Note that we are able in that way to enforce the merging of
several singular points to take place close to those with largest values and, by
definition, with greatest importance.



Chapter 7

Topology Tracking

Topological methods, as defined and presented previously, offer an efficient
and appealing way to visualize steady or instantaneous planar vector or tensor
fields. Their structure is characterized by the fixed positions of the singulari-
ties, that constitute the nodes of a graph, the edges of which are special curves
computed over the two-dimensional domain. But typical applications involve
time as an additional parameter. Therefore, the topologies visualized with
classical methods must be interpreted as instantaneous samples of a structure
that evolves over time. Consequently, the visualization of the actual topology
requires to reconnect these discrete samples to propose a continuous depiction
of the evolution. A straightforward approach consists in doing this graphi-
cally: The successive topologies are considered as graphs that must be joined
together (in an animation or a three-dimensional depiction where time is vi-
sualized as third dimension) in a consistent way. The major problem of this
technique is the lack of qualitative continuity: There is no underlying continu-
ous model and thus no ability to locate and identify the structural evolutions
that may occur and thus lead to dramatic changes between two consecutive
discrete time steps. These evolutions are known as bifurcations and are pre-
sented in chapters 2 and 3. They correspond to the transition from a stable
state of the topology to another stable one, through an unstable, instantaneous
intermediate state called bifurcation point. Practically, these stable states are
all we can observe on discrete samples of a time-dependent topology. This
prevents a proper visualization of bifurcations whereas they are key events in
the temporal evolution of vector and tensor fields.

In the present chapter, a new method is proposed to track the topology of
time-dependent vector and tensor fields. According to the remarks above, its
basic principle is to build a three-dimensional space/time continuum thanks
to a convenient interpolation scheme that enables an accurate detection of

124
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topological changes. More precisely, keeping the same approach as original
topological visualization methods, our focus is on singularities and on the lo-
cal bifurcations affecting them (position, nature and existence). This means
that global bifurcations, the study of which is essentially more complicated,
are first let apart by the method to be possibly found after processing. The
result can then be visualized as a three-dimensional picture where the bifur-
cations are easily identified as particular positions in the space/time domain.
The singularities move along paths that are represented by curves and the
separatrix curves span surfaces that partition the domain over time.

The chapter is structured as follows. The first section is devoted to a de-
scription of the grid structure designed to offer the required three-dimensional
space/time continuum: A three-dimensional grid is used to reconnect the two-
dimensional discrete samples over time. The input data is discussed too. The
interpolation scheme used in the grid is presented next. The properties of the
interpolant reduce the possible local bifurcations in the vector and tensor case
to a few ones, as we show. Then, we explain the tracking of a singularity over
a single cell: Trajectory, type and bifurcations on the way are considered. As
next step, a global tracking is processed, based on the local information col-
lected in each cell, that reconstitutes the path of a given singularity over the
whole grid. Here again, attention is paid to possible additional bifurcations.
The last task consists in integrating and displaying the surfaces spanned by
the separatrix curves during their motion over time. This results in pictures
similar to those proposed by Abraham and Shaw in [AS82]. We show the
application of the method to a vector and a tensor dataset. We conclude the
presentation with a discussion that points out further developments of this new
visualization framework. In particular, the processing a CFD dataset permits

us to comment the application of our technique to turbulent vector or tensor
fields.

7.1 Grid Structure

The visualization of time dependent vector (or tensor) data has to deal with a
higher dimensional mathematical space where time constitutes an additional
dimension. This space must be handled continuously to enable the detection
and depiction of bifurcations. In our two-dimensional case, time is handled
as third coordinate axis and the whole data embedded in a three-dimensional
scene.

Practically, we process a two-dimensional vector (resp. tensor) field lying
on a triangulation with constant vertices over time: We dispose the several
instantaneous states of the field parallel to another (each of them is called
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time plane in the following), corresponding to their successive positions along
the time line. A 3D grid evolves by connecting these planar grids together
with 3D cells as shown in Fig. 7.1. There are several possible cell structures
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Figure 7.1: Grid structure
for connecting the successive time planes. Yet, a natural choice consists in

joining together the corresponding triangles over time (they are obtained by
translation along the time axis). This leads to prism cells, as in Fig. 7.2. Note

prism cell

Figure 7.2: Prism cell

that this cell structure is preferred to a simple tetrahedrization of the point
set because it preserves the topological continuity over time in each triangle.
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7.2 Interpolation

The input data are two-dimensional vectors (resp. tensors). In each time plane,
the field is originally piecewise linearly interpolated over the triangulation.
The task consists in interpolating these successive planar fields over the three-
dimensional grid presented previously. More precisely, in each prism cell one
needs to interpolate between two linearly interpolated triangular faces. For
simplicity in further processing, this temporal interpolation is linear too. Let
f be the multivariate (vector or tensor) interpolating function for a given prism
cell and G be the closed interior domain of the cell, we get

f:R*>G — T (n-dimensional tensor space)
(z,y,8) = at)+ Btz +yt)y = (filz,y,1), -, fulz,9,1)),

(affine linear in = and y) with f;(z,y,t),i € {0,n — 1} linearly interpolated in
t € [ty tjnl:

filz,y,1) = ai(t) + Bi(t)z + 7(t)y,
and

tig—t +  t—t;
ailt) = 2ol + Lol

idem for f; and ;) .
tiv1 — 1 tiv1 — 1 ( Z !
That means that the coefficients of the linear spatial interpolation in each
triangular face are linearly interpolated over time between ¢t = ¢; and ¢ = ¢;44
and induce a linear spatial interpolation for the field in every plane orthogonal

to the time axis (i.e. where time is constant).

7.3 Local Singularity Tracking

Tracking a singularity through a prism cell consists of two tasks: The first
one is to compute the trajectory of a singular point through the cell and to
determine its entry and exit positions. The second one is to identify the type
of the singularity and to detect possible local bifurcations affecting it. Both
aspects are described next, for the vector and the tensor case.

7.3.1 Vector Case
Path Equation

The affine linear nature of the restriction of the vector field to any time plane
leads to the following singularity coordinates (z(¢),y(t)) as function of the time
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parameter t.
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If ¢t moves from ¢; to ¢;,1, the singularity position describes a 3D curve. Yet, we
are only interested in the curve sections that intersect the interior domain of the
considered prism cell (where the considered interpolant is defined). A simple
way to determine them is to consider the singularities lying on the side faces of
the prism: Two triangular faces lying in ¢ = ¢; and ¢ = ¢, and 3 quadrilaterals
connecting them. We already showed that the interpolant is affine linear in
both triangles (for they lie in time planes). As far as the quadrilateral faces are
concerned, one can easily show that the restriction of the interpolant to these
faces is bilinear. (This is because the vector normal to a quadrilateral face is
always orthogonal to the time axis, by construction). Consequently, finding
the position of a singularity in each prism face requires the solution of a simple
linear /quadratic system: We sort the found (3D) positions in ascending time
order (i.e. with respect to their third coordinate) and associate them pairwise.
As a matter of fact, since at most one critical point can be present in a prism
cell at a given time ¢ (every instantaneous planar vector fields is affine linearly
interpolated according to what precedes), we know that a critical point must
first leave the cell before a singularity reenters it later. So, for each pair, we
identify an entry and an exit position (see Fig. 7.3).

exit

T exito\ entry

exit entry

entry

y entr T
® 4 ®

X X

Figure 7.3: Entry and exit points of a path through a prism
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Remark that the rational functions that describe the trajectory of a critical
point through a prism are not defined at the instants ¢ where the quantity
|B(t) ¥(t)| is zero. Now, this is precisely the determinant of the Jacobian
matrix of the vector field. This means that the trajectory diverges (the critical
point leaves any bounded domain and the cell interior in particular) when ¢
approaches a value where the Jacobian matrix is singular. These “singular”
values of ¢ correspond in fact to the roots of the quadratic equation above
(B and ~ being linear vector functions of ¢). Yet, these time values do not
intervene in our computation because they always correspond to positions that
lie outside the considered cell and are thus automatically neglected.

Path Type

In the following, only the generic types of linear critical points are distinguished
since no finer characterization will be useful for our purpose. The possible types
are source, sink or saddle (letting apart the center case, that corresponds to a
transition between source and sink).

The possible transition from one type to another constitutes a local bi-
furcation as defined in chapter 2, section 2.7. We are interested here in the
qualitative behavior of a critical point during its motion through the interior
domain of a prism cell. Now, with our choice of the interpolation scheme, there
is at a given time at most one single critical point present. So according to the
presentation of the major types of local bifurcations, it comes out that only
Hopf bifurcations are relevant to us. As a matter of fact, any other transition
(e.g. fold or pitchfork bifurcation) would involve simultaneously two or more
critical points present in the cell, either before or after the bifurcation point,
which is impossible. Practically, such bifurcations can only be encountered on
the common boundary of two neighboring cells, as detailed in the following.
Actually, the kind of bifurcations we are interested in correspond here to the
transition of a critical point from a type to another: The spontaneous disap-
pearance (or creation) of a critical point inside a cell is also impossible, since
one would move from a situation where the local index is +1 (a singularity
is present) to a situation where this index equals 0 (no critical point in the
cell), which would locally break consistency. Hence, with the generic types
introduced previously the possible bifurcations concern the transition from a
sink to a source and from a saddle to a sink or source (and vice versa). The
first one is called Hopf bifurcation and was described in p. 34. The second
one supposes again the local modification of the index (from -1 to +1) which
is structurally inconsistent. Nevertheless, the following special case must be
considered to understand what occurs in degenerate cases.

When the Jacobian has determinant zero, this matriz has one zero eigen-
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value (and the other one is real and generally non zero). In this case, the varia-
tion of the time parameter implies a crossing of one eigenvalue from a negative
value to a positive one through zero (or vice versa). So, one should observe
the transition from a saddle point (one positive and one negative eigenvalue)
to a source (the negative eigenvalue becomes positive) or a sink (the positive
eigenvalue becomes negative) through an intermediate step where the Jacobian
1s singular. Nevertheless, the affine linear vector field defined in the prism has
in general no critical point at this intermediate singular stage. As a matter of
fact, the singular system describing the position of a singularity

(G 2o ) (5)=- (o)

1s very unlikely to have solutions. This is due to the affine component
(@°(to), o' (o))"

that varies independently from the Jacobian matriz. In fact, this system will
have solutions if and only if this affine component is collinear to the eigen-
vector of the Jacobian matriz associated with its non-zero eigenvalue. In this
(very) special case, the singular system has a whole line of zeros. Finally, in
most cases, the singularity with index +1 will diverge (in the 2D space) until
the critical time value is reached: There is no singularity at this time. After
this, the singularity “returns” but its index is now +1! Remark that the local
persistence of the index (see p. 28) has not been violated throughout this evo-
lution: This s the global index of the vector field that has changed from -1 to
+1.

Consequently, we only have to detect a possible Hopf bifurcation occurring
between two consecutive entry and exit points of a critical point, and we
assume otherwise that the singularity type remains constant along this section.
Practically, the determination of a singularity type is based on the computation
of the eigenvalues of the Jacobian matrix. In our case, decomposing the vectors
B and ~ in the canonical basis (8 = 8%eo + B'es, idem for ), this matrix is

_ (20 B
0= %0 50 )

Thus, we compute the Jacobian matrix and its associated eigenvalues at each
entry and exit point and check if the types are the same. If this is the case, we
can assert that no Hopf bifurcation has occurred since otherwise, at least two
bifurcations would have taken place, which is impossible with our interpolant
that varies linearly over time. If the type has changed, a Hopf bifurcation must
be found on the way. Since a Hopf bifurcation corresponds to a transition
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from a repelling to an attracting nature, the associated instantaneous nature
of the singularity is a center, characterized by two conjugate pure imaginary
eigenvalues. In particular, the trace of the Jacobian matrix is zero at this point,
which is our criterion to determine the exact time location of the bifurcation.
With the expression above, we obtain:

tr(J(t") = B°(t") + ' (") = 0.
After straightforward calculus, we finally get

ti(Boy1 + vig1) =t (B + )

tr =
zo—l—l - 510 + ’Yz'1+1 - %’1

The corresponding position (z(t*), y(t*), t*) is the location of a Hopf bifurcation
in the prism cell.

7.3.2 Tensor Case
Path Equation

By definition, locating a degenerate point is equivalent to finding a position in
the plane where the tensor field is isotropic, i.e. of the form Al;. Now, we are
dealing for simplicity with the deviator part of the symmetric tensor field: In
this case, we seek a zero matrix (A = 0).

a(t) b(t) \ _ : ) —
( bt —a(t) ) = O, that is a(t) = b(t) = 0.
As we deal, for each (fixed) value of ¢, with a piecewise linear tensor field, this
equation system is equivalent to the following linear system in z and y (with
analogous notations).

{ aa(t) + Btz +7.(t)y = 0
ap(t) + Bp(t)z +w(t)y = 0

Solving this system for 2 and y yields biquadratic rational functions in %, like
the vector case.

‘ —aagt)) %Et; ‘ gaétg aaétg ‘

. —(l/bt ’)/bt . bt abt

*® = T30 w)‘ v = 5. mt)‘
Bo(t) s(t) By(t)  (2)

These equations are only valid inside the cell so we are interested in the curve
sections that intersect the interior domain of the cell. Like in the vector case,
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we only consider the singularities lying on the side faces of the prism cell for
at most one single degenerate point can be encountered in a planar, affine
linear symmetric tensor field. The positions found on the cell boundary are
then associated pairwise to describe successive entry and exit positions of
the path through the prism.

Path Type

We now consider the corresponding successive natures of this degenerate point
to get a complete picture of its evolution through the cell. From section 3.4, we
know that the degenerate points are of two major types (trisector and wedge).
An additional distinction is required in the following between the wedge points
with two separatrices and the wedge points with a single separatrix. The major
difference resides in the lack of a parabolic sector in the vicinity of the latter.
Furthermore, we know that trisectors and wedges have opposite indices. Now,
the tensor index of a closed curve is a local invariant in continuous tensor
fields, as is the Poincaré index for vector fields. This means that if one takes
the cell boundary (triangular in the two-dimensional physical space) as closed
curve to compute the tensor index of the (single) contained degenerate point,
the value will be constant as long as no degenerate point crosses the boundary,
i.e. as long as no degenerate point enters or leaves the prism cell. In our case,
it entails that a wedge point remains a wedge point (index +3) and that a
trisector point remains a trisector point (index —%) That is the reason why,
no type swap can occur in the context of our method inside a cell (the special
case introduced in the vector case to give insight into the qualitative behavior
of singularities through a degenerate Jacobian matrix can be extended here
in a straightforward manner). The same result holds if the singularity leaves
the cell to enter one of its neighbors by taking the boundary curve of both
cells to compute the (constant) index. Furthermore, as a linear tensor field
can have at most one degenerate point, several singularities can not meet
or split in the interior of a cell but only at the common boundary of two
cells. Like in the vector case, this restricts the possible location of a pairwise
creation/annihilation to the boundary of a prism cell.

Consequently, the only bifurcation that can be observed in the interior of
a prism cell is the wedge bifurcation (see section 3.6.2). The exact location of
such a bifurcation is a difficult algebraic problem: According to section 3.4.1,
the angular positions of the separatrices of a degenerate point are solutions of
a cubic polynomial equation. Such an equation has 0, 1 or 3 real solutions.
Here we deal with wedge points: A wedge point with a parabolic sector and
two separatrices implies a polynomial equation with three roots (one of them
corresponds to an angle located within the parabolic sector) and a wedge point
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with no parabolic sector and a single separatrix is always associated with an
equation with a single solution (there is no parabolic sector in this case, hence
a single curve converges toward the degenerate point and its angle is the only
root, of the polynomial). Thus, we must find a parameter value ¢y such that the
cubic polynomial equation has exactly one real root for ¢t > t3 and 3 real roots
for t < ty (or vice versa), which is in our case a polynomial equation of degree
6. Practically, this is solved numerically: We compute successive positions of
the degenerate point along the curve described by the formula in section 7.3.2
and check, in the case of a wedge point, if the number of its separatrices has
changed. At this point, we start a binary search to approximate the exact
bifurcation position with prescribed precision.

7.4 Global Singularity Tracking

At this stage, every cell knows the successive entry and exit positions of the
paths of singular points that cross its interior domain, as well as the possible
presence of bifurcations (Hopf in the vector case, wedge in the tensor case) on
the way. Yet, this information is scattered and must be put together to offer
a global view of the topology evolution over time. A fundamental aspect of
this task is to detect and identify the bifurcations that may take place on the
faces and involve several singularities: As mentioned previously, bifurcations
that involve several (typically two) singularities must take place on the cells’
boundary. They are detected during the reconnection of path sections lying in
neighbor cells as we show next. The scheme is similar in both the vector and the
tensor case. Solely the nature of the related bifurcations will be distinguished.

The current tracking scheme processes only two consecutive time planes at
once, i.e. a single “time slice” made of prism cells joining two discrete time
steps. This avoids the whole three-dimensional grid (and thus all the discrete
time steps) to be present in memory for computation, which is of great interest
in the context of this method. The tracking consists of two steps: First, we
track every singularity located in the first time step until it leaves the slice.
Second, we track backwards every singularity located in the next time step
and that has not been treated so far until it leaves the slice. For this purpose,
we dispose of a boolean array that indicates, for each prism cell, if it should
be investigated or not: A cell should be investigated if a singularity’s path was
found in this cell during the local tracking step. At the beginning, every cell
is marked. An additional information required for the efficient identification
of bifurcations concerns the current temporal orientation of the tracking (i.e.
either forward or backward), as explained in the following. We start in time
plane {t = t;}. The tracking direction is forward. For each cell marked in the
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boolean array, we check the information collected during the cell analysis step:
We seek a path section starting at an entry point located on the considered
front triangular face. This provides us with the corresponding exit point at
which the tracking will be proceeded. The exit point can either lie on a side
face (quadrilateral) of the prism, that is the singularity has left the cell within
the current time slice, or on the triangular face lying in {¢t = t;,,1} (back face),
which signifies that the singularity stays in the cell (triangular, in the two-
dimensional physical space) between the instants ¢; and ¢;,;. In the latter
case, we indicate in the boolean array of the next time plane {t = ¢;;,} that
this triangle must be further inspected. If the path left the cell at t* < ?;44
(side face), then it entered a neighboring cell at the same time. Back to a
two-dimensional representation, we get in time plane {¢ = t*} a singular point
lying on the common edge of both neighboring triangle cells. The piecewise
linear nature of the interpolant over this time plane is responsible for the
discontinuity of the Jacobian matrix through this common edge. Therefore,
this singularity may have another type when considered from the other side.
This simple argument explains the possible existence of a bifurcation in such
cases. Two situations may actually occur.

e There is a simple crossing of a singular point from one cell to another
cell where no singularity was present so far. In this case, the type may
change but the index computed along a curve enclosing both neighbor
cells remains constant. Hence, in the vector case, a saddle remains a sad-
dle (index -1) whereas a sink can become a source and vice versa (both
index +1). The latter case is a Hopf bifurcation. In the tensor case, a
trisector remains a trisector (index —3%) while a transition from a wedge
point with one separatrix to a wedge point with two separatrices can be
observed (both index —I—%)z This transition is then a wedge bifurcation.
When tracking a sink/source (resp. a wedge), we easily detect the pres-
ence of a bifurcation by checking if the type is the same on the other side
of the common face.

e The second situation corresponds to a merging of two singular points,
coexisting in neighboring cells, on their common face (common edge in
2D). Now, an important property of the piecewise affine linear interpolant
over a triangulation is that two neighboring triangles cannot contain two
singularities with same index: In the vector case, an index + 2 cannot
be obtained on a closed polyline made of four linear interpolated edges,
see reasoning in section 4.3.1. In the tensor case, a similar property
exits (section 4.3.1) which prevents the existence of two degeneracies
of same index in two neighbor cells. Consequently, only 2 singularities
with opposite indices can merge in that way: A saddle and a source
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(or a saddle and a sink) in the vector case and a trisector and a wedge
point in the tensor case. This type of bifurcation has been considered in
chapters 2 and 3: It is a pairwise annihilation or its inverse a pairwise
creation.

When we leave the current cell through a side face, and a possible bifurcation
has been detected, we identify this position (in particular we save its time
coordinate). We proceed with tracking the path by asking the neighbor cell
for the next “exit” position: Actually, we get a position corresponding to the
other extremity of the path section starting on the current side face. This
position can either be “earlier” (toxi: < t*, in this case we have found an entry
position at texir and an exit one at t*) or “later” (feyir > t* and the position
found at ¢* is indeed an entry one). We get three possible values for the time
coordinate tori; of the “exit” position.

1. The exit position lies in the time plane {¢t = ¢;;1}: We have reached
the next time plane. The corresponding triangle face is marked true in
the boolean array corresponding to the next time plane. If the tracking
direction was backward so far, then one has encountered a pairwise cre-
ation on the side face. In this case, the tracking direction is switched to
forward.

2. The “exit” position lies in the time plane {t = ¢;}: If we were tracking
the current path forward so far, we have found a pairwise annihilation
and the tracking direction is switched to backward. In this case, the
corresponding triangle is set to false in the boolean array of {t = t;},
indicating that this cell has been processed now.

3. The exit position lies on a side face at ¢t = tegir. If fexic < t* and we
were tracking the current path forward so far, we have found a pairwise
annihilation and we switch the tracking direction to backward. If toy;y >
t* and we were tracking the current path backward so far, we have found
a pairuise creation and we switch the tracking direction to forward. In
this case, we are back to the current situation: we enter the next cell
through a side face.

The possible cases at an edge crossing are illustrated in Fig. 7.4. A sketch of
the complete tracking scheme is proposed in Fig. 7.5.

Once the tracking has been conducted from the front side of the time slice,
an analogous tracking is started from the back side, in backward direction.
The cells that will be investigated are those that have not been marked in the
next time step during forward tracking, which means that their back face has
not been reached by a singularity coming from the front side of the slice. If a
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Figure 7.4: Possible cases when leaving a prism cell through a rectangular face

singularity is found at this stage in the back face, the cell is marked for further
forward tracking in the next slice.
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7.5 Topology Depiction

Now, as singularities are only part of the topology in the two-dimensional
steady case, the paths tracked over time must be associated with the corre-
sponding separatrices to depict the whole topology of the field and visualize
the structural evolution in the unsteady case. Practically, the separatrix curves
change over time and thus span separatrix surfaces that bound volumes of the
time-dependent topology. Recall that theses separatrices are integrated from
the saddle points in the vector case and from both the trisectors and wedge
points in the tensor case.

7.5.1 Structures Tracking

Drawing these surfaces requires the previous determination of each singular
path and, for each discrete position along the piecewise linear approximation
of the path, the computation of the start directions of the separatrices. In
the vector case, we consider only the saddle paths and compute at each posi-
tion the eigenvalues and corresponding eigenvectors. This provides four start
vectors (the associated directions are determined according to the sign of the
eigenvalues). In the tensor case, we determine at each position along each path
the angle of the separatrices. A start direction, necessary for the further cor-
relation of the integration steps, is obtained by choosing always the direction
moving away from the singular path. The depiction of the separatrix surfaces
is then based on the integration of separatrix curves along these directions on
one hand, and on the correlation of each separatrix curve with its predecessor,
starting at the previous position along the path on the other hand. To ensure
consistency, two aspects must be considered when joining separatrix curves to-
gether: First, they must start along eigenvectors that have approximately the
same angle and the same start direction. In the vector case for instance, for
a saddle path, there are at each position four starting curves. If one denotes
u;(t),7 € 0, .., 3 their starting (normal) vectors as a function of time, and with
no assumption on the indices, we connect w;(t) and u;(t + €;) if and only if

u;(t) . w;(t+e) > 0 (scalar product, same direction) and
lu;(t) X uj(t+e€1)] < e (cross product, small angle between the two).

The same principle applies to trisectors or wedges with two separatrices in the
tensor case (for wedges with a single separatrix, this is trivial). Second, we
must ensure that two related separatrices behave similarly in an asymptotic
sense: we check if both corresponding separatrices reach the same singular
path, the same cycle or close positions on the grid boundary. In this case, we
add the new separatrix to the surface spanned by the old one (we add a new
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“ribbon” to this surface). Otherwise, we check if the path reached previously
has ended at a bifurcation point. In this case, we end the previous surface
at the bifurcation by integrating a separatrix at the exact time position of
the bifurcation and start a new one at the current separatrix. If no found
bifurcation has occurred but the connectivity has changed, then we face a
bifurcation that was not (and could not be) detected so far, as explained
previously. As a matter of fact, when determining the topological correlation,
we are finally able to detect unexpected changes that break local structural
consistency and thus correspond to global bifurcations. In this case, we simply
end the surface at the previous separatrix and start a new surface at the current
separatrix. Doing this for each discrete position along the concerned paths, we
are eventually able to depict all separating surfaces in the domain.

7.5.2 Surface Drawing

Once separatrices have been associated over time, one gets a set of curves that
span a surface. The construction of this surface is done in two steps. Orig-
inally, the curves that result from numerical integration are piecewise linear.
Therefore, they are first replaced by interpolating NURBS curves of degree
2 to increase smoothness. In the second step, these NURBS curves are em-
bedded in a NURBS surface, after uniformization of their parametrizations.
The algorithms used are taken from [PT97]. It results in smooth surfaces that
better picture the continuous evolution and transformation of the structure.

7.6 Results

In the following, the topology tracking method is applied to a vector and a
tensor dataset. The successive processing steps are illustrated. Examples of
bifurcations are proposed to explicit their role in the qualitative evolution of
the topology.

7.6.1 Vector Case

To test the method in the vector case, we first create an analytic vector field
containing four critical points. The positions are functions of time, describing
closed curves in the plane. Note that the mathematical description of such a
vector field is done in Clifford algebra, according to the results presented in
[SHK98a]. This field is sampled on a rectilinear point set for several values of
the time parameter. The rotation of the critical points entails many structural
changes for the topology, which is very interesting since many bifurcations are
present and can be visualized. We show first the results of the singularity



CHAPTER 7. TOPOLOGY TRACKING 140

tracking step: The path of each critical point through time has been tracked
as well as all the local bifurcations that occur (indicated by small balls). The
coordinate directions are displayed to give an impression (see Fig. 7.6). Color
coding is as follows: Saddle paths are depicted in red, sinks in blue and sources
in green; Hopf bifurcations are shown in yellow, annihilations in pink and
creations in light blue. If one focuses on a particular bifurcation, one observes

Figure 7.6: Singularities’ path through time and associated bifurcations

how the separatrices evolve through the bifurcation point. In the case of a
Hopf bifurcation for instance, we consider the picture without surfaces (see
Fig. 7.7) and with separatrix surfaces (see Fig. 7.8). The creation of a closed

orbit can be easily seen. As far as the global topology and its evolution are
concerned we first get the picture shown in Fig. 7.9: This corresponds to the
depiction obtained after the integration of the separatrices from the saddle
paths and before the computation of the separatrix surfaces that embed them
(c.f. section 7.5). Note that the perspective used here is the same as in
Fig. 7.6. When the separatrix surfaces are added to the structure, we get
finally the picture presented in Fig. 7.10. The breaks that can be observed
on the surfaces correspond to structural transitions associated with (global)
bifurcations. The two colors used for surface depiction refer to the stable and
unstable eigenspaces of the saddle points, respectively.
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Figure 7.7: Hopf bifurcation: Separatrices

Figure 7.8: Hopf bifurcation: Separating surface
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Figure 7.9: Overview of the topology evolution (curves)

Figure 7.10: Overview of the topology evolution (surfaces)
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7.6.2 Tensor Case

We present here the results of the method applied to an artificial symmetric
tensor dataset. It is generated on a small rectilinear point set of 25 vertices
that we triangulate to get a grid with 32 cells. We start with a topology
containing 3 trisector points and 4 wedge points (3 with a single separatrix
and 1 with two separatrices) as shown in Fig. 7.11. We process 11 consecutive
time steps. Tracking the degeneracies over time, we get the picture shown in
Fig. 7.12. Color coding is as follows: Trisectors are depicted in red, wedge
points with two separatrices in dark blue and wedges with a single separatrix
are shown in light blue. Bifurcations are marked as small balls: green ones
indicate pairwise creation, red ones illustrate pairwise annihilation and yellow
balls designate wedge swap bifurcations. Five bifurcations have been detected:
two pairwise creations, two pairwise annihilations and one wedge swap.

Adding the separatrix surfaces to the degeneracies’ paths, we complete the
topology depiction and obtain the structures presented in Fig. 7.13 (separatrix
surfaces emanating from a trisector point are colored in red while those coming
from a wedge point are displayed in blue).
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Figure 7.11: Start Topology

Figure 7.12: Degeneracies’ paths with grid boundary
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Figure 7.13: Picture of the complete topology evolution

Figure 7.14: Complete topology in another perspective than Fig. 7.13
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7.7 Discussion

Both examples considered in the previous section showed the ability of the
method to accurately detect and identify the bifurcations that occur within a
parameter-dependent vector or tensor field. This permits for the first time to
visualize the continuous evolution of the topology since bifurcations are the key
features that determine structural transformations. The choice of convenient
space and time interpolation schemes restricts the range of possible bifurca-
tions which enables both a precise and efficient tracking of critical points and
associated separatrices. Yet, the datasets considered so far are artificial and
their topologies are not too complex. Therefore, we now turn to a CFD tensor
dataset to discuss possible improvements in the application of the method to
turbulent, practical datasets.

This dataset is the rate of deformation tensor field of a swirling jet CFD
simulation. The complete structured grid has 250 x 244 cells. We consider the
symmetric part of the original data. For convenience, we process only a cell
group containing 45 x 60 cells as shown on Fig. 7.15. Processing this set of

Figure 7.15: Start topology and considered part

cells over 25 time steps (see Fig. 7.16 to get an impression of the 3D structure),
we obtain the degeneracies’ paths shown in Fig. 7.17. The size of the balls in-
dicating bifurcations has been reduced here to avoid a confused depiction. As
a matter of fact, as one can see on this picture, tracking the topology of this
turbulent tensor field results in a large number of encountered bifurcations.
This effect is related in some extent to the linear scheme used for time inter-
polation along with the fact that the discretization steps along the time line
are too big to track the topology very reliably: Many modifications affect the



CHAPTER 7. TOPOLOGY TRACKING 147

Figure 7.16: Degeneracies’ paths and 3D grid

singularities between consecutive time planes and our linear time interpolant is
limited to convey this evolution. Therefore, it would be convenient to increase
the time interpolation continuity (like C' or C? for instance) to better reflect
the nature of the underlying flow in such cases. Furthermore the linear spatial
interpolation (in every time plane) induces the discontinuity of the Jacobian
matrix (piecewise constant over the “instanteous” triangulation in this case),
which causes the occurence of many local bifurcations at the locations where
singularities leave a prism cell through a side face. If we zoom into the data
to look at small topological features, we observe structures like those shown
in Fig. 7.18. To attack this problem, one could think at increasing the space
interpolation continuity too, like e.g. in [STH99]. However, this might cause
trouble since the singularities’ locations become far more complicated in this
case, which inconveniences the tracking step. Moreover, the nice property
of the linear interpolant that exhibits at most one singularity would be lost
and many additional bifurcation types should be taken into account. In fact,
an appealing and efficient approach to overcome these problems seems to be
a post-processing step that prunes features of small time or space scale out
of the topology (inspired by the technique proposed in the next chapter for
instance) to retain features of larger space scale and temporal persistence.
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Figure 7.17: Degeneracies’ paths

Figure 7.18: Local topological structures



Chapter 8

Continuous Topology
Simplification

In chapter 6, a scaling approach was introduced to attack the problem of vi-
sual clutter encountered by topological methods in the processing of turbulent
flows. The idea was to replace close singularities by an equivalent one of non-
linear nature that locally approximates the phase portrait of the original field
to clarify the depiction. Practically, the fusion of close singularities was sim-
ulated to result in a single one, with consistent structure in the large. With
this technique close singularities are concentrated at a single point but their
complete disappearance from the graph cannot be achieved since an artifi-
cial singularity is always created afterward. Moreover, scaling several critical
points can lead to the removal of meaningful flow features because only spatial
criteria are taken into account. The method presented in this chapter has been
designed to overcome these drawbacks and to offer a continuous way to sim-
plify the visualized topology in the context of vector fields. It is based on the
following properties: Turbulent vector fields present a large number of inter-
connected pairs of first-order critical points with opposite indices, i.e. saddle
points linked to sources or sinks. Furthermore we saw in chapter 2 that such
pairs of singularities can annihilate: In a parameter-dependent evolution both
critical points come closer together to merge and disappear which lets place
to a uniform flow without remaining singularity in the considered neighbor-
hood. One can thus remove pairs of critical points from the dataset by forcing
pairwise annihilations locally that successively withdraw two singularities from
the topology and let the others unchanged. This clearly induces a progressive
simplification of the topological graph. In contrast to the scaling technique,
no grid changes are necessary since the whole scheme uses small local changes
of the vector values defining the vector field.

Practically, we first compute the topological graph and associate every edge

149
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with numerical measures that evaluate its relevancy in the global structure.
This is to enable a hierarchical simplification of the graph according to qual-
itative criteria that fit the considered application. Next, we sort the pairs of
critical points according to these criteria and retain those with values over
prespecified thresholds. Then we process all pairs sequentially: For each of
them, we first determine a cell pad enclosing both critical points. In this pad,
we slightly modify the vector values such that both critical points disappear.
This deformation is controlled by angular constraints on the new vector values
imposed by those kept constant on the frame of the pad. When every pair has
been processed, we redraw the simplified topology. These successive steps are
described next. We end with an application of the method to a CFD dataset.

8.1 Topology Computation

As a preprocessing step, the method requires the computation of the topolog-
ical graph. This computation must be conducted in a way that provides all
the information needed for pairing critical points as explained in the following.
In the present method, we deal with a triangulation of vertices lying in the
plane associated with 2D vector values. The interpolation scheme is piece-
wise linear. Therefore, we only consider topological features of first order: In
this case, topology is defined as the graph built up of all saddle points, sinks,
sources, closed orbits and the separatrices emanating from saddle points, see
chapter 2.

Consequently, we process as follows: We start with the computation of all crit-
ical points in the grid. From each saddle point, we integrate the four related
separatrices. For each separatrix, we check if it leaves the grid or if it reaches
a critical point or a closed orbit. An accurate and effective detection of closed
orbits can be achieved thanks to a scheme described in [WS01]. If a critical
point is reached (sink or source, depending on the integration direction from
the saddle point), we identify it among the set of all critical points and save
this information for the current separatrix. Furthermore, we mark this sink or
source as connected. If a closed orbit is reached, we must await the end of the
complete topology computation to process this separatrix further. As a matter
of fact, once all separatrices have been integrated, we look over all singularities
for sinks or sources that are not connected and associate them with the sep-
aratrix surrounding the cycle that contains them, if any. This supposes that
a single critical point (with index +1, c.f. index of a closed orbit) is present
inside each limit cycle. Actually, any topological structure of index +1 may be
encountered inside a closed orbit even if a single sink or source is most likely to
occur in practice. At last, the separatrix gets as length the euclidean distance
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between saddle point and isolated critical point. The reason for this choice is
explained in the next section. Possible cases are illustrated in Fig. 8.1. This
completes the topological information required for further processing.

source

connect ed

sink
connect ed

boundary

Figure 8.1: Topological connections of a saddle point

8.2 Pairing Strategy

The basic idea behind our simplification technique is to use the topological
equivalence (in the sense of the index invariant) of a region containing several
critical points with index sum 0 with the same region without critical point
(see theorem 8, p. 28). More precisely, we aim at removing pairs of first or-
der critical points of opposite indices (that is a saddle point, index -1, and
a source or sink, index +1) to reduce the number of singularities present in
the field and thus simplify the topology while keeping consistency with the
original structure. As said previously, a local deformation of the vector field
associated with the removal of a pair corresponds to a pairwise annihilation
of two critical points with opposite indices. This type of bifurcation has been
presented in chapter 2, p. 32. As shown previously in the topology tracking
method (see chapter 7), the continuity of this transition can be illustrated by
linearly interpolating, for each modified vertex, its value between the original
vector value and the one obtained after modification. Depicting each interme-
diate aspect of the topology in the vicinity of both critical points shows how
they become closer to merge and finally disappear. Considering time as third
dimension, one gets the picture proposed in Fig. 8.2.
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Figure 8.2: Continuous topological transition

Before starting the simplification we first need to determine which pairs of
critical points may be removed in that way and to classify them according to
the significance of the singularities in the field structure.

8.2.1 Connectivity

We require the singular points of a pair to be linked by a separatrix in the
topological graph. This ensures that the topological transition associated with
the disappearance of both singularities corresponds to a pairwise annihilation
(see section 2.7.1). Yet, this criterion must be relaxed to handle isolated sin-
gularities lying in the interior domain of a closed orbit. This explains why
we decided previously to connect a saddle point with an isolated critical point
across the limit cycles enclosing it.

8.2.2 Additional Criteria

The importance of critical points mainly depends on the interpretation of the
visualized vector field. For this reason one can make use of different measures
to classify the relevancy of critical points and possibly consider a weighted
combination of several of them to fit the domain of application.

Relevancy measures are for instance the euclidean distance between critical
points, or the length of the edge (separatrix) connecting them (both measures
apply to a pair of critical points of opposite indices), or the degree of a critical
point of index +1 (sink or source), that is the number of saddle points it is
connected to. Furthermore, in [LLI9b], the authors suggest to use the area of
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a source or sink’s basin to evaluate the importance of critical points of index
+1. Yet this basin-based method implies a computational effort that makes it
unsuited for our method. Another interesting quantity based on fluid dynamics
considerations is the absolute value of the vorticity of a sink or source. Spatial
variation of vorticity in the vicinity of a critical point of index +1 also gives
insight into the action of a source or sink on the field structure. Nevertheless,
an accurate computation of such quantities is a tricky task, especially in the
quite common case of planar vector fields cut off from 3D datasets: Higher
order terms are involved and, when dealing with simulations, the underlying
numerical schemes must be taken into account, and not only the given discrete
values. Eventually, a simple numerical measure we are concerned with in the
present method is the maximal magnitude of the vector field in a cell containing
a critical point of index +1. This permits to remove singularities that are due
to numerical noise and lead to misinterpretation.

Practically, we have adopted two complementary criteria: On one hand we
apply a threshold on the euclidean distance of both points of a pair and preserve
the pairs with sufficient lengths. On the other hand, we choose to maintain
every source or sink lying in a cell with minimum magnitude above a second
threshold. With this definition, critical points belonging to several valid pairs
will be simplified concurrently: We process the pairs in increasing length’s
order and skip those that contain singularities that have been removed already.

8.3 Local Deformation

Once a pair of critical points has been identified that fulfills our criteria, it
must be removed. To do this, we start a local deformation of the vector field
in a small area around the considered singular points. To preserve both the
interpolation scheme and the grid structure, we only modify vector values at
grid vertices. In the following, we detail how we determine which vertices have
to get a new vector value and how we set the new values in order to ensure
the absence of a singularity in the incident cells after processing. At last, we
illustrate the continuity of this deformation.

8.3.1 Cell-wise Connection

Consider the situation shown in Fig. 8.3. We first compute the intersections of
the straight line connecting the first critical point to the second with the edges
of the triangulation. For each intersection point, we insert the grid vertex
closest to the second critical point (see vertices surrounded by a circle) in a
list. After this, we compute the bounding box of all vertices in the list and
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include all grid vertices contained in this box. This obviously includes every
vertex marked in the former step.

Figure 8.3: Cell-wise connection

The use of a bounding box is intended to ensure a well shaped deformation
domain, especially useful if many cells separate both singular points. This
configuration occurs if the threshold has been assigned a large value to obtain
a high simplification rate. The vertices concerned with modification are sur-
rounded by squares. We call them internal vertices in the following. Since the
modification of a vertex vector value has repercussions on the indices of all
incident triangles, we include every cell incident to one of the selected vertices
in the cell pad. These cells are colored in gray. Further processing will have to
associate the internal vertices with vector values that ensure the absence of any
singular point in the cell group with respect to the vector values defined at the
boundary vertices (marked by big dots in Fig. 8.3) that will not be changed.
Note that the connection may fail if one of the included cells contains a critical
point that does not belong to the current pair: In this case, the global index
of the cell group is no longer zero. If it occurs, we interrupt the processing of
this pair. Nevertheless, such cases can be mostly avoided by simplifying pairs
of increasing distance. Moreover, if a pair cannot be further simplified because
of its cell-wise connection, it can be reinserted at the end of the pairs’ list to
be retried after processing of all remaining pairs (with lower priorities).
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8.3.2 Angular Constraints

To give insight into our deformation strategy, we first consider a single internal
vertex and its incident cells as shown in Fig. 8.4. Suppose that every position
marked in black is associated with a constant vector value and that the corre-
sponding global index of all triangles (in the sense of theorem 11, p. 28) is zero.
The problem consists then in determining a new vector value at the internal
vertex (in white) such that no incident cell contains a critical point. According
to property 9 p. 72, this is equivalent to the fact that every incident triangle
has index 0.

index =0

Figure 8.4: Configuration with single intern vertex and incident cells

Now, recall the expression for the computation of the Poincaré index in the
special case of a linear vector field along the edges of a triangular cell (see also
chapter 4, p. 70): Let ¢g, ¢1 and ¢ be the angle coordinates (€ [0, 27[) of the
vectors vy, v and vy defined at the vertices of the triangle. The index of this
triangle T is given by

index(T) = % (A(¢o, d1) + A(01, B2) + A2, Do) (8.1)

¢j—¢z’+2ﬂ' if¢j—¢i<—ﬂ',
where  A(ey, ;) = ¢ — i if [¢; — ¢ <,
¢ — ¢y — 21 it ¢; — ¢ >+,

Consequently, in each triangle the angle coordinates of the vectors defined
at the black vertices entail an angular constraint for the new vector. (The
index definition implies that the index does not depend on the magnitude of
the vectors defined at the vertices.) If A(dg, ¢1) is already assigned a value
strictly smaller than 7, the two missing terms must induce a global angle
change smaller than 27 (for an index is an integer). It will be the case if
and only if the new vector value has angle coordinate in |¢; + 7, ¢ + 7|, with
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[0, 1] being an interval with width smaller than 7, i.e. the angle change along
a linear edge occurs from ¢y to ¢; (see Fig. 8.5). This provides a constraint
on the new value for a single triangle. Intersecting the intervals induced by all
incident triangles, one is eventually able to determine an interval that fulfills
all the constraints. Note that this interval may be empty. In this case, the
simplification is (at least temporarily) impossible. As far as the magnitude
of the new vector is concerned, one simply takes the mean value of the field
magnitude on the exterior edges. Once again, the linear interpolant defined
on these edges facilitates the computation of this quantity.

possible angle

0]

Q
@ +m

R+
wrong angle

Figure 8.5: Angular constraint in a triangle cell

8.3.3 Iterative Solution

When considering all internal vertices as shown in Fig. 8.3, one must find for
each of them a new vector value that fulfills all the constraints induced by
the edges connecting their incident vertices. These incident vertices are of
two types: internal or boundary vertices. Edges linking boundary vertices are
considered constant and induce therefore fixed constraints. Internal vertices on
the contrary, must be provided a final vector value and consequently provide
the flexibility required by the simplification scheme (see Fig. 8.6).
Our method is then as follows.

// initialisation
foreach (intern vertex)
if (no fixed constraints)
interval = [0,2PI[
else
interval = fixed constraints
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Figure 8.6: Different types of constraints for an intern vertex

endif
if (interval is empty)
interrupt
endif
end foreach

// iterations
nb_iterations = 0
repeat
succeeded = true
nb_iterations++
foreach intern vertex
compute mean vector of defined incident vertices
if (interval is not empty)
if (mean vector in interval)
current_value = mean vector
else
current_value =
best approximation of mean vector in interval
end if
else
succeeded = false
if (mean vector in fixed constraints)
current_value = mean vector
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else
current_value = best approximation of mean vector
in interval
end if
end foreach
until (succeeded or nb_iterations > MAX_NB_ITERATIONS)

That is, we iteratively modify the vector values at all internal vertices by
selecting angles that fulfill the current requirement induced by the neighbor
vertices and by taking the mean value of these neighbors as predictor. This
predictor permits to overcome provisory impossibilities due to flexible con-
straints.

If one of the internal vertices has incompatible fixed constraints, our scheme
cannot succeed. Therefore we interrupt the process during initialization and
move to the next pair. If the iterative process failed at determining compatible
angular constraints for every internal vertex, we maintain the current pair and
move to the next as well.

8.4 Results

We show next the results of our method applied to a swirling jet simulation.
The grid is rectilinear and has 124 x 101 vertices ranging from 0 to 9.84 in
x and from -3.864 to 3.864 in y. The triangulation has 24600 linearly inter-
polated cells. The original topology is shown in Fig. 8.7 together with the
underlying grid structure. (Fig. 8.4 offers a depiction of the topology over a
LIC representation.) There are 94 critical points and 134 corresponding pairs.
We first simplify without magnitude control. The only threshold is therefore
the graphical distance between critical points. We apply increasing thresholds
ranging from 1% to 50% of the grid width to select the pairs to simplify. The
table proposed next puts the corresponding results together.

threshold | satisfying pairs | connected pairs | removed pairs | removed sing.
1% 13 (10%) 10 (7%) 10 (7%) 20 (21%)
5% 24 (18%) 19 (14%) 19 (14%) 38 (40%)
10% 40 (30%) 27 (20%) 27 (20%) 54 (57%)
20% 65 (49%) 36 (27%) 34 (25%) 68 (72%)
50% 90 (67%) 40 (43%) 38 (40%) 76 (81%)

Remark that the number of connected pairs is typically far smaller than
the number of pairs satisfying the numerical criteria. The reason for it is
double: First, the critical points involved in the satisfying pairs are redundant
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Figure 8.7: Original topology

(a critical point will often belong to several satisfying pairs) which prohibits
the connection of a pair once one of its singularity has already been processed
and removed. Second, the cell-wise connection of two linked critical point may
fail, even if this is rarely the case (since the pairs are processed in proximity
order). The pictures associated with the thresholds 5% and 50% are shown
in Fig. 8.8 and Fig. 8.9 respectively. The first topology contains 56 critical
points whereas there are only 18 singularities remaining in the second one. If
we focus on a small part of the topology, we observe how features of small
scale are removed: Compare Fig. 8.10(a) and Fig. 8.10(b).
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Figure 8.8: Simplified topology: Small graphic threshold (5%)
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Figure 8.9: Simplified topology: Large graphic threshold (50%)
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If we choose, on the contrary, to restrict the simplification to a filtering of
computational noise by the use of a threshold on the field magnitude, we get
the results presented in the following table (the threshold is expressed with
respect to the largest norm of the vector field).

threshold | satisfying pairs | connected pairs | removed pairs | removed sing.
0.5% 25 (19%) 8 (6%) 8 (6%) 16 (17%)
1% 30 (22%) 11 (8%) 11 (8%) 22 (23%)
5% 47 (35%) 15 (11%) 15 (11%) 30 (32%)
10% 77 (57%) 21 (16%) 21 (16%) 42 (45%)
20% 95 (71%) 28 (21%) 26 (19%) 52 (55%)
50% 115 (86%) 36 (27%) 33 (25%) 66 (70%)

The picture shown in Fig. 8.11 illustrates the topology obtained after sim-
plification with a very low threshold (0.5%) on the magnitude. The graph
presents then 78 critical points.

At last, we propose in Fig. 8.12 the topology obtained when the simplifi-
cation is applied without distance nor norm threshold. This obviously leads
to the highest simplification rate that can be reached by our method for this
particular dataset. The 14 critical points remaining correspond to configura-
tions that cannot be resolved by the method. Nevertheless, in this depiction,
no visual clutter is present and the original structural complexity has been
greatly simplified. A LIC texture is proposed in the background to show the
effect on the flow.
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=% M

(a) Original topology (b) Simplified topology

Figure 8.10: Enlargements

Figure 8.11: Simplified topology: Low noise filter (0.5% of maximal magni-
tude)
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Figure 8.12: Original and simplified topology with LIC



Appendix A

Remarks on Numerical
Integration in Vector and
Tensor Fields

All methods presented previously rely on the integration of tangential curves
in either vector or line fields. The computation of such curves is thus an
essential task for visualization purposes. More precisely, two aspects must be
taken into account when considering this numerical problem. On one hand the
integration must be carried out efficiently to ensure satisfying speed for the
results. This is particularly important if interactivity is required. On the other
hand, to be of any use the computation must guaranty a prescribed accuracy.
Clearly, a trade off is necessary between these requirements. We present next
the choices made in this context and make few comments on these numerical
issues.

A.1 Vector Fields

The integration of ordinary differential equations in the study of dynamical
systems has been a large field of research for numerics. For this reason, a large
number of numerical schemes exist. They offer different precision orders and
the choice of a particular scheme must be made according to the considered
application. For our purpose we chose the famous Runge-Kutta method and
more precisely the scheme of fourth-order with adaptive step size. Correspond-
ing definitions are given next. An overview of Runge-Kutta as well as various
other integration methods can be found in [PTV92].

Let @ € IR? be the initial condition of the Cauchy problem and v the vector
field to integrate. The formulation of the Runge-Kutta method of fourth-order
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is as follows.

stepsize.

The n;s are the successive steps of the method and A is the

M = a

ki = ho(tin)

ky = hv(t--l—lh -+1k)

2 - 7 2 » T 2 1

1 1

kg = h'v(ti + Eh’ ; + §/€2)

k‘4 = hv(ti + h, i + k‘g)

ST T I ST I + O(h*)
771+1-—77z61 32 33 64

It is thus of precision order 4 in h. Note that this is a single-step method
i.e. of the form ;41 := n; + h;®(h;, n;, v) for some function P.

The above formula is parametrized by the stepsize h. A simple but ineffi-
cient choice is to use a constant value. This might be too inaccurate in some
regions and too expansive in some others. This argument motivated the de-
sign of methods that adaptivily evaluate the stepsize. In our implementation,
this evaluation is based on an embedded Runge-Kutta scheme invented by
Fehlberg [Feh69]. The method starts with a general fifth-order Runge-Kutta

formula

o
ki
ko
ks
k4
ks
ke

Ni+1

S

>

v (i, 7:)
hv(t; + agh, n; + bo1ky)
hv(t; + ash,n; + b1 k1 + baoks)
h’u(t + agh, n; + by k1 + baoks + bysks)
hv(t; + ash,n; + bs1 k1 + bsaks + bszks + bsaks)
hv(t; + agh,n; + b1 k1 + beaks + besks + beaks + besks)

n; + ciky + coky + csks + caky + csks + cgke + O(h°).

Fehlberg found an alternative combination of these intermediate steps that
results in an embedded fourth-order formula:

* [yp—
Nig1 =

ni + Ctky + Chko + ks + Ciky + ciks + cike + O(h?).

The error estimate is therefore obtained from the comparison of the two

results

6
A =ni — 77;+1 = Z(Cz - C:)kz

=1
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The parameters used in our implementation are those from Cash and Karp
(refer to [PTV92, p. 717]). Remark that they are preferred to the original

values proposed by Fehlberg. They are shown below.

; %
1| G4 b1 bio bis bia bis C; G
1 37 | 2825
378 | 27648
1 1
2 5 B 0 0
3|3 3 9 250 | 18575
10 40 40 621 | 48384
41 2 3 _9 6 125 | 13525
5 10 10 5 594 | 55296
_ 11 5 _ 10 35 277
511 54 2 27 27 0 14336
6| 7 | 1631 175 575 44275 253 | 512 1
8 | 55296 512 13824 110592 4096 | 1771 4

Stepsize adaptivity is then obtained by the following algorithm
rent stepsize at the i-th step).

(1) h,1 = hz

(2) Compute 7}, Mit1, A

(3) ho = hy|£|5

(estimated optimal stepsize)

(4) if A > € then h; := hg; goto (2)

(5) take miy15 hiy1 == ho

Implementation details are given in [PTV92, pp. 719-722].

A.2 Tensor Fields

(h; is the cur-

As underlined previously, symmetric second-order tensor fields are by defini-
tion numerically more complicated to handle than vector fields. As a matter
of fact, the actual analysis deals with eigenvector fields that provide a tan-
gency information reduced to a line direction. This was detailed in section 3.2.
Unfortunately the existing schemes for numerical integration are designed to
handle vector fields, i.e. with additional norm and orientation information.
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Practically, the challenging aspect of the integration in this case is the cor-
relation of the integration orientation as one moves along the curve. This is
better understood if one recalls that, except at possible degenerate points, the
tensor lines can always be locally computed as the integral curves of a vec-
tor field that is tangent to the line field there, see section 3.3. Hence, when
proceeding the computation of a tensor line, the task consists in determining
a unit vector at each step that is equal to the unit vector obtained by local,
smooth transformation of the last unit vector obtained so far along the path.
This difficulty is illustrated in Fig. A.1.

next position reach

two possible dir
to proceed

Figure A.1: Correlation of the orientation along a tensor line

A configuration as in the situation depicted above actually occurs in the
vicinity of a singular point. There, the line field rotates around the singularity
which inconveniences the correlation of successive directions. For instance, no
reliable choice can be made if the new direction reached is orthogonal to the
previous one (or close to orthogonality). In fact this problem is not specific
to the tensor fields: The integration of streamlines in the neighborhood of
a critical point also has to deal with rapidly rotating tangency directions.
Nevertheless, this problem is properly handled by standard numerical schemes
like fourth-order Runge-Kutta. The explanation is provided by the norm of
the vector field in the vicinity of a singularity: By continuity of the field in this
region and by definition of a critical point the norm of the vectors becomes
arbitrarily small if one gets close to the singularity. So, if one remembers the
iterative scheme of our Runge-Kutta method in the light of this remark, it is
clear that the integration will move on very slow (i.e. the integration steps are
very small) when approaching a critical point. This obviously ensures better
accuracy for the integration. Consequently, one needs to define some norm for
an eigenvector field that is consistent with the topology (which means that
it is continuous and zero at the singular points). This norm must be seen
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as a computational artifact that is not inherent to the data but conveys its
structural properties. This reflexion is in fact an additional argument for the
use of deviator fields in practice. As a matter of fact, the properties described
in section 3.1 imply that any norm of the deviator field itself can serve as
norm for both eigenvector fields (it is zero if and only if the considered point
is singular). For our purpose we identify this norm with the scalar function
(z,y) = o*(z,y) + B%(z,y) (keeping the same notations as in section 3.1) and
apply it to each unit vector returned by our eigensystem solver. This gives very
good results and used in combination with the fourth-order Runge-Kutta, it
improves the efficiency of stepsize adaptivity.
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