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Abstract

Geometric models of white matter architecture play an increasing role in neuroscientific applications of diffusion tensor imaging, and
the most popular method for building them is fiber tractography. For some analysis tasks, however, a compelling alternative may be
found in the first and second derivatives of diffusion anisotropy. We extend to tensor fields the notion from classical computer vision
of ridges and valleys, and define anisotropy creases as features of locally extremal tensor anisotropy. Mathematically, these are the loci
where the gradient of anisotropy is orthogonal to one or more eigenvectors of its Hessian. We propose that anisotropy creases provide a
basis for extracting a skeleton of the major white matter pathways, in that ridges of anisotropy coincide with interiors of fiber tracts, and
valleys of anisotropy coincide with the interfaces between adjacent but distinctly oriented tracts. The crease extraction algorithm we pres-
ent generates high-quality polygonal models of crease surfaces, which are further simplified by connected-component analysis. We dem-
onstrate anisotropy creases on measured diffusion MRI data, and visualize them in combination with tractography to confirm their
anatomic relevance.
! 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Diffusion tensor magnetic resonance imaging (DTI) has
become a popular means of measuring the structure of
white matter in the central nervous system (Basser et al.,
1994; Pierpaoli et al., 1996; Basser and Jones, 2002). The
coherent organization of axons in nerve bundles contrib-
utes to the magnitude and orientation of diffusion aniso-
tropy (Beaulieu, 2002). To the extent that a single diffusion
tensor model captures the diffusive behavior in the underly-
ing tissue, image processing of tensor-valued data can be
leveraged to analyze the macroscopic architecture of the
white matter in disease and in health. The de facto stan-
dard measure of microstructural tissue organization, calcu-
lated from the diffusion tensor, is fractional anisotropy, or

FA (Basser, 1995). Many applications of DTI are based
on region-of-interest measurements of FA, guided either
by prior knowledge of neuroanatomy, or by measurements
from functional MRI (Klingberg et al., 2000; Kubicki
et al., 2003; Kanaan et al., 2005; Salat et al., 2005; Tuch
et al., 2005).

Fiber tractography is another common DTI analysis
method, in which the course of axons in fiber tracts is
approximated by path integrals along the direction of
greatest diffusivity, the diffusion tensor principal eigenvec-
tor (Basser et al., 2000). Neuroscientific studies can then
be based upon measurements of tract geometry (Dougherty
et al., 2005) or of tensor attributes along tracts (Corouge
et al., 2006). Further post-processing of tractography can
involve clustering coherent groups of similar tracts into
models of major fiber pathways (Zhang et al., 2006;
O’Donnell et al., 2006). The combination of tractography
and clustering algorithms requires a non-trivial number
of parameter settings, which may affect their practical
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application to neuroscientific studies (Moberts et al., 2005).
This has motivated our exploration of modeling techniques
that work more directly with the underlying tensor data
and its attributes.

In two-dimensional images and height fields, ridges and
valleys, collectively referred to as creases, have been an
object of study for many years in different disciplines. In
the context of geomorphology, de Saint-Venant (1852)
defines creases as the loci where the slope is minimal along
the isocontours of the relief, which was later reformulated
in terms of the Hessian of the height function by Haralick
(1983). Maxwell (1870) gives a topological and global def-
inition of ridges and valleys as watersheds and water-
courses: slope lines that connect saddle points to local
maxima or minima. Gauch and Pizer (1993) define ridges
in terms of differential geometry and topography, and track
them through multiple scales of image feature size. More
generally, the localization of ridge and edge features in
both position and intrinsic scale is a focus of extensive
research (see e.g. Lindeberg, 1998 or ter Haar Romeny,
2003 and references therein). Most relevant for our
approach, Eberly et al. (1994) motivate the idea that
creases should be defined locally and be invariant with
respect to a variety of transforms (rigid transforms, uni-
form scaling, and monotonic mappings of intensity), and
they generalize the height-based definition of de Saint-
Venant to d-dimensional manifolds embedded in n-dimen-
sional image space. Other previous work focuses on
extracting polygonal models of crease geometry; this is
reviewed in Section 3.1.

We propose that a skeleton of the major white matter
structures can be approximated from creases extracted
directly from the differential properties of scalar-valued
tensor attributes. Given the ubiquity of FA as a quantita-
tive variable in the diffusion tensor literature, we start by
detecting creases in FA, and term these anisotropy creases
(Kindlmann et al., 2006). We propose that the ridge sur-
faces and ridge lines of FA coincide with the interiors of
white matter fiber tracts, and that valley surfaces of anisot-
ropy delineate the interfaces between fiber tracts that are
adjacent but distinctly oriented (such as between the corpus
callosum and the cingulum bundles). Anisotropy creases
may have utility in a variety of contexts, such as non-rigid
registration and shape analysis. The ability to extract white
matter skeletons directly from tensor invariants, without
the algorithmic complexity or parameter tuning of fiber
tracking and clustering, could also increase sensitivity in
shape analysis studies. We emphasize that our algorithm
is fundamentally a local structural analysis of tensor image
features, rather than a global connectivity analysis. That is,
we seek geometric models of major white matter structures
and their interfaces, not a detailed connectivity model over
the entire brain.

Major crease features may also play a role analogous to
that of the cortical surface in functional imaging, that is, a
reference manifold onto which variables of interest are
projected and analyzed. This general strategy is advanced

by the tract-based spatial statistics (TBSS) method of
Smith et al. (2006) (see Rouw and Scholte, 2007 for an
example application). TBSS enables voxel-based mor-
phometry on a white matter skeleton calculated from
ridges in a smooth mean FA image (from a set of regis-
tered scan), although ‘‘ridges’’ are not mentioned per se,
and the ridge representation is a discrete raster image.
By using an established mathematical definition of crease
features, our technique extracts true codimension-one
crease surfaces from continuous tensor fields, from indi-
vidual DTI scans. Other examples of previous work in fea-
ture detection in DTI have also used, as we do, derivatives
in tensor fields rather than tractography. Pajevic et al.
(2002) use B-splines to generate continuous tensor fields
that are differentiated to highlight anisotropy boundaries.
O’Donnell et al. (2004) use structure tensors to detect gen-
eral boundaries in tensor values. In both cases, results are
visually evaluated by confirming a high edge strength near
structural boundaries, but the techniques do not analyze
the familiar FA measure, nor is the feature geometry
explicitly extracted.

2. Theoretical background

2.1. Fractional anisotropy and its derivatives

Our method is based on measuring the differential struc-
ture of fractional anisotropy (FA), so we review here the
definition of FA (which leads to formulae for its spatial
derivatives) and a method of creating a second-order con-
tinuous tensor field from sampled data. We notate the ten-
sor trace and determinant as tr( ) and det( ), respectively,
the identity tensor as I, and the tensor norm as

jDj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðDDTÞ

q
. The eigenvalues ki of tensor D are the

roots of the characteristic polynomial p(k) = detkI $ D,
and the coefficients of p(k) are the principal invariants J1,
J2, J3 (Bourne and Kendall, 1977). An additional invariant
J4 can be defined for convenience:

J 1 ¼ trðDÞ; J 2 ¼
trðDÞ2 $ trðD2Þ

2
;

J 3 ¼ detðDÞ; J 4 ¼ jDj2: ð1Þ

Basser and Pierpaoli (1996) define FA in terms of the devi-
atoric tensor eD ¼ D$ trðDÞI=3 and tensor contraction
A:B = tr(ABT), which with some algebra can be re-
expressed in terms of J2 and J4:

FA ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2

eD : eD
D : D

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1$ J 2=J 4

p
: ð2Þ

J2 and J4 can in turn be expressed in terms of the individual
tensor coefficients:

J 2 ¼ DxxDyy þ DxxDzz þ DyyDzz $ D2
xy $ D2

xz $ D2
yz ð3Þ

J 4 ¼ D2
xx þ D2

yy þ D2
zz þ 2D2

xy þ 2D2
xz þ 2D2

yz ð4Þ
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Applying the chain rule to Eq. (2) generates an expression
for the spatial gradient of FA in terms of the spatial gradi-
ents of the individual tensor components:

rFA ¼ J 2rJ 4 $ J 4rJ 2

2J 2
4FA

ð5Þ

rJ 2 ¼ ðDyy þ DzzÞrDxx þ ðDxx þ DzzÞrDyy

þ ðDxx þ DyyÞrDzz $ 2ðDxyrDxy þ DxzrDxz

þ DyzrDyzÞ ð6Þ

rJ 4 ¼ 2ðDxxrDxx þ DyyrDyy þ DzzrDzzÞ
þ 4ðDxyrDxy þ DxzrDxz þ DyzrDyzÞ ð7Þ

The formula for the second derivative (the Hessian) of FA
is given in Appendix A. Our formulaic decomposition of
the derivatives of FA also translates to an implementation
strategy, in which J2, J4 and their spatial derivatives are
numerically computed (as described in the next section),
and then combined to find the gradient and Hessian of FA.

2.2. Continuous field reconstruction

Our method of crease extraction relies on a second-order
continuous (C2) reconstruction of the tensor field from the
discretely sampled data. Previous work has advanced the
use of cubic B-splines for interpolating the sampled tensor
coefficients to create a C2 tensor field (Aldroubi and Basser,
1999; Pajevic et al., 2002). The geometric structure of the
crease features, however, does not depend on exact interpo-
lation of the tensor values, and for the purposes of robust-

ness with respect to sample noise it is advantageous for
some amount of blurring to be incorporated into the field
reconstruction. More generally, techniques in computer
vision for localizing image features in scale-space typically
use Gaussian blurring to low-pass filter the image data
(Lindeberg, 1998; ter Haar Romeny, 2003).

We have as yet not pursued a full scale-space extraction
of anisotropy creases, but we have used Gaussian blurring
at a fixed scale as a pre-process (details in Section 4), fol-
lowed by separable reconstruction with the uniform cubic
B-spline function b(x) as a (non-interpolating) C2 kernel.

bðxÞ ¼
0 jxj > 2

$ðjxj$ 2Þ3=6 1 < jxj < 2

ðjxj$ 2Þjxj2=2þ 2=3 0 < jxj < 1

8
><

>:
ð8Þ

By linearity of convolution-based reconstruction and dif-
ferentiation, analytic derivatives of the reconstructed field
are measured by convolving the sampled data with deriva-
tives of the reconstruction kernel (Gonzalez and Woods,
2002). The partial derivatives of the separable three-dimen-
sional reconstruction kernel B(x,y,z) = b(x)b(y)b(z) can be
determined by, for example, oB/ox = b 0(x)b(y)b(z). The
uniform cubic B-spline kernel b(x) does not ‘‘ring’’ or
add additional extrema in the reconstructed function,
which in our experience has avoided the creation of false
crease responses around tissue boundaries.

As should be clear from Eq. (2), FA is a non-linear func-
tion of the tensor: FA(A + B) 6¼ FA(A) + FA(B). This has
bearing on how FA and its spatial derivatives are com-

Fig. 1. FA calculation does not commute with convolution-based reconstruction or differentiation. A slice of sampled tensor data D is shown with the
standard RGB color map (a) (Pajevic and Pierpaoli, 1999) or FA map (d). Convolving the discrete tensor data with a continuous reconstruction kernel B
produces a continuous tensor field, in which we measure FA (b) and j$FAj (c). Convolving the discrete FA data FA(D) with B gives a continuous FA field
(e) and j$FAj (f). Note that the shape and boundaries of the finer structures in (b) appear blurred in (e), especially near the center of the image. This is
confirmed by the j$FAj images; interfaces between major tracts visible in (a) remain sharp in (c) but indistinct in (f).
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puted from discretely sampled tensor data. Specifically,
pre-computing FA on a discrete grid and then convolving
or differentiating (an approach taken by, for example,
Goodlett et al., 2006) is not equivalent to analytically cal-
culating the FA and its derivatives (by Eq. (5)) of a contin-
uous tensor field reconstruction. Fig. 1 demonstrates this
with a two-dimensional coronal slice of a human brain
DTI scan (acquisition details given in Section 4). One of
the contributions of our approach is incorporating the ana-
lytic calculation of FA (and its derivatives) directly into the
crease-finding algorithm, rather than the more straight-for-
ward approach of pre-computing a scalar FA field and
then applying an existing crease-finding method.

2.3. Crease feature definition

Eberly et al. (1994) define crease features of a scalar field
f in terms of the gradient g = $f and Hessian H, in a way
that easily generalizes to three and higher-dimensional
images. Intuitively, creases are loci of constrained extrema,
with the constraint surface defined by tangency to one or
more Hessian eigenvectors. A function is at extrema where
its gradient is orthogonal to the constraint surface (Mars-
den and Tromba, 1996), so in three dimensions ridges
and valleys occur where the gradient g is orthogonal to
one or two of the unit-length eigenvectors {e1,e2,e3} (with
corresponding sorted eigenvalues k1 P k2 P k3) of the
Hessian H:

Surface Line

Ridge g Æ e3 = 0, k3 < 0 g Æ e2 = g Æ e3 = 0, k3, k2 < 0
Valley g Æ e1 = 0, k1 > 0 g Æ e1 = g Æ e2 = 0, k1, k2 > 0

In this definition, the strength of the image feature can
be assessed by the magnitude of the eigenvalues that are
required to be negative or positive for ridges and valleys,
respectively, which can be used to filter out insignificant
features. Specifically, crease surface strength is measured
by $k3 (for ridges) and k1 (for valleys), and crease line
strength is measured by $k2 (for ridges) and k2 (for
valleys).

3. Methods

3.1. Crease surface extraction

In our work to date we have implemented geometric
extraction of crease surfaces, but not crease lines, because
surfaces constitute the majority of the fiber tract geometry
that we seek to capture. We extract crease surfaces by per-
voxel triangulation of the zero-isocontour of g Æ ei (g Æ e3 for
ridges, g Æ e1 for valleys) using marching cubes (MC)
(Lorensen and Cline, 1987). Straight-forward application
of MC, however, would not produce useful results, because
the inherent sign ambiguity of eigenvectors leads to arbi-

trary signs in g Æ ei, which must be consistent for the MC
case tables to apply. The literature offers ways to overcome
this. Morse (1994) suggests determining correspondences
between sets of eigenvectors rather than individual ones,
to handle eigenvector permutations associated with eigen-
value equality. Furst et al. (1996) use similar ideas in
marching cores to extract crease manifolds in image scale-
space. In their marching ridges method, Furst and Pizer
(2001) compute the principal eigenvector of the average
of outer products of the eigenvectors at voxel corners,
and use its (arbitrary) sign to impose a consistent sign to
eigenvectors at voxel corners.

We have taken a more cautious approach, based on
observations suggesting that eigenvectors of the Hessian
of non-linear scalar attributes of tensors (such as FA) can
vary more rapidly than Hessian eigenvectors of a similarly
sampled scalar field, which may confound the heuristics
(described above) developed for scalar fields. Thus, we
determine the correspondence between eigenvector signs
at the voxel corners by continuously tracking the eigenvec-
tor orientation along each voxel edge. Point samples are
adaptively generated along all voxel edges until the angle
between eigenvectors at adjacent samples are reduced
below a threshold (20" in our current work). This process,
which is currently the most time-consuming component of
our approach, determines whether the smooth transport of
ei(v0) from vertex v0 to vertex v1 agrees in sign with eigen-
vector ei(v1) or $ei(v1) computed at v1. The per-edge eigen-
vector sign information is propagated along all voxel edges
to determine a per-voxel sign consistency prior to evaluat-
ing the MC case. This process ensures intra-voxel eigenvec-
tor sign consistency, but not inter-voxel sign consistency,
which creates triangulations with inconsistent vertex wind-
ings (the clockwise versus counter-clockwise order in which
the triangle’s vertices are listed). Thus, as a final pass, we
traverse the crease surface mesh to make the vertex wind-
ings consistent, while splitting the surface with vertex
duplication in the case of non-orientable surfaces. This
allows graphics hardware to appropriately render the
crease surfaces with two-sided lighting (Shreiner et al.,
2004).

The remaining details of our method can decrease the
computation time and increase the utility of the results.
We refer to the grid on which the crease surface is triangu-
lated one voxel at a time (by our modified MC) as the trian-
gulation grid. The continuous tensor field measurements
(Section 2.2) allow the resolution of the triangulation grid
to be independent of the sampling of underlying tensor
data. A triangulation grid with finer sampling (higher reso-
lution) than the underlying data improves the quality of the
crease surface triangulation, yet no up-sampling to the tri-
angulation grid is required as a pre-process. By sampling
the crease surface strength (FA Hessian eigenvalue $k3
for ridges, k1 for valleys) at the vertices of triangulation
grid, we can skip the voxels that are unlikely to contribute
to the crease surface. Even with these pre-cautions, the
extracted crease surfaces are often made of many disjoint
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pieces. We use connected-component analysis on the polyg-
onal crease surfaces to filter out all but the largest few of the
crease surface components. We believe that removing the
smallest components increases the anatomic significance
of the crease surface results by removing the pieces that
are most apt to vary as a function of image noise and scale
selection. This geometric post-processing is a significant
improvement over the method presented in our previous
work (Kindlmann et al., 2006).

We demonstrate the method on a synthetic dataset prior
to giving results on DTI scans. Fig. 2 shows results on a
synthetic dataset containing two adjacent bands of orthog-
onally oriented linear anisotropy. The ridge surfaces of FA
represent the interiors of the two bands, and the valley sur-
face of FA marks the interface between them. It is in this
sense that we claim that crease surfaces model the skeleton
of the white matter fiber geometry.

4. Results

The results in this section used tensor data acquired on a
1.5 T Philips scanner with SENSE parallel imaging (reduc-
tion factor 2.5), using single-shot spin echo EPI diffusion-
weighted images along 30 non-collinear gradient directions
(b = 700 s/mm2), with five non-diffusion-weighted T2
images. The field of view, the size of the acquisition matrix,
and the slice thickness were 240 · 240 mm, 96 · 96, and
2.5 mm, respectively, leading to an image resolution of
2.5 mm2. Fifty-five axial slices were acquired to cover the
entire brain. Unless otherwise noted, the standard devia-
tion r of the Gaussian smoothing kernel (prior to B-
spline-based reconstruction and differentiation) was
1.25 mm, and the resolution of the triangulation grid is five
times that of the underlying tensor dataset. The computa-
tion timings are with a 1.67 GHz PowerPC G4 with 2 GB
of memory.

4.1. Slice inspection

Prior to their geometric extraction, the numerical ingre-
dients of anisotropy crease features can be visualized on
densely sampled slices. Fig. 3 shows the numerical constit-
uents of crease features on the same dataset slice used in

Fig. 1. The strength measures described in Section 2.3 are
visualized in the top half of the figure. These are used to
modulate the display in the bottom half of the figure of
the scalar function whose zero level-set defines the crease
feature, with some additional contrast enhancement for
clarity. Crease surfaces intersect with the cutting plane in
curves, and crease lines intersect with the plane in points.
Note that the ridge surfaces (Fig. 3d) closely follow the
shape of the major white matter tracts (annotated in
Fig. 4a), and the valley surfaces (Fig. 3e) delineate the
interface between tracts that are adjacent but distinctly ori-
ented. The anatomic utility of the ridge lines (Fig. 3f) is lim-
ited to tracts with a more cylindrical shape, that is, features
for which the two smallest eigenvalues k2 and k3 of the
Hessian are approximately equal. This includes the cingu-
lum bundles and fornix (Mori et al., 2005), although the
non-zero response of srl through-out the slice complicates
visual confirmation.

The renderings in Fig. 4 (from a posterior viewpoint)
show a cropped region around the same coronal slice of
previous figures. In Fig. 4a fibers are seeded from the
RGB-encoded plane, and some of the major pathways
are indicated. Fig. 4b shows how the ridge surfaces (using
the same RGB encoding) follow major fiber paths, espe-
cially the corpus callosum (CC), internal capsule (IC), cor-
ona radiata (CR), and fornix (FX) (Mori et al., 2005). The
(white) anisotropy valley surfaces in Fig. 4c delineate inter-
faces between the CC and cingulum bundles (CB), superior
fronto-occipital fasciculus (SFO) and IC, and IC and supe-
rior longitudinal fasciculus (SLF). Fig. 4d also illustrates
how anisotropy valleys lie between adjacent paths of differ-
ing orientation. The ridge and valley surface extractions
each took 10 min.

Fig. 5 illustrates anisotropy crease analysis in the brain-
stem (lateral anterior superior viewpoint), a region with a
closely contained complex of fiber pathways along distinct
directions (Salamon et al., 2005). For anatomical context,
Fig. 5a shows fiber tractography results, including the
(from ventral to dorsal) middle cerebellar peduncle
(MCP), corticospinal tract (CST), transverse pontine tract
(TPT), medial lemniscus (ML), superior cerebellar pedun-
cle (SCP), and inferior cerebellar peduncle (ICP). These
pathways appear as anisotropy ridge surfaces in Fig. 5b.

Fig. 2. Demonstration of FA ridge and valley surfaces in a synthetic dataset. The tractography of the two arcs in (a) is color-coded by the usual RGB(e1).
The lower FA between the arcs is highlighted in (b). In (c), the red and green ridge surfaces correctly model the shape of bands, and the white valley surface
captures the interface between them. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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The tract interfaces are delineated by the valley surfaces in
Fig. 5c, which also includes for reference a translucent cut-
ting plane with RGB coloring of the principal diffusivity

direction, as well as a view-aligned clipping plane to reveal
the RGB color differences among the MCP, CST, and
TPT. Fig. 5d illustrates how valley surfaces delineate major

Fig. 3. Functional components of crease feature definition. The ridge surface strength srs (a), valley surface strength svs (b), and ridge line strength srl (c)
are all defined in terms of the eigenvalues of the FA Hessian. These are used to modulate the display of the ridge surface (d), valley surface (e), and ridge
line (f) functions defined in terms of the FA gradient g and Hessian eigenvectors ei. The crease features are visible as dark lines (in the case of crease
surfaces) or dark dots (in the case of ridge lines) in the bright areas.

Fig. 4. Anisotropy creases near the corpus callosum. CC, corpus callosum; IC, internal capsule; CR, corona radiata; FX, fornix; CB, cingulum bundles;
SFO, superior fronto-occipital fasciculus; SLF, superior longitudinal fasciculus.
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fiber bundles, faintly visible as tractography results. In par-
ticular, valley surface patches are visible between MCP and
CST, CST and TPT, TPT and ML, MCP and ICP, and
ICP and SCP, all of which are locations where distinctly
oriented fiber pathways pass near each other. The ridge
and valley surface extractions each took 9 min.

Fig. 6 demonstrates the connected-component analysis
mentioned in Section 3.1, which allows the main crease sur-
face components to be extracted from the much larger col-
lection of disjoint pieces. For these results and those in
Fig. 7, the tensor datasets were down-sampled by a factor
of two, to simplify the field to only its largest features.
Ridge surface extraction on this dataset produced 742 sur-
face connected-components (CCs), but Fig. 6 shows that
the largest nine CCs capture nearly all the large fiber tracts
visible in all CCs.

To demonstrate the repeatability of our method, Fig. 7
expands the results from Fig. 6 to include five other scans
from the same database, all processed identically. The com-
putation of these ridge surfaces took 6 min per dataset. In
every case, the single largest connected-component con-
tains a single surface representing the corpus callosum, as
well as parts of other pathways, such as the corona radiata,
and often the internal capsules. We are currently investigat-
ing why ridge surface patches corresponding to distinct
fiber pathways can appear joined in our ridge surface anal-
ysis, which is likely related to the problem of kissing or
crossing fiber tracts.

5. Discussion and future work

The preliminary results in this work suggest that anisot-
ropy creases delineate the major white matter structure in
DTI, and that analytically measured anisotropy derivatives
(and an adaptation of marching cubes) can lead to high-
quality triangulated models of crease surface geometry.
In contrast to the combination of tractography and cluster-
ing algorithms, the invariance properties in the mathemat-
ical definition of anisotropy creases give them the attractive
property of having very few parameters in their extraction.
The main parameter is the scale of the Gaussian smoothing
pre-process, since this puts a lower bound on the scale of
the extracted features. Secondary parameters include the
feature strength threshold (Section 2.3), the resolution of
the crease triangulation grid, and the manner of selecting
connected-components from the triangulation output
(Section 3).

As mentioned in Section 1, our method is a structural
analysis of features in DTI, and not the connectivity analy-
sis that is a popular research focus. This has implications
for the type of studies for which anisotropy creases may
be applied in future work (described below), as our focus
is on the over-all shape of the white matter pathways,
rather than on their course. In particular, for the task of
extracting a geometric model of the major white matter
pathways, we accept the simplicity of the single tensor
model, despite its well-known inability to represent fiber-

Fig. 5. Anisotropy creases in the brainstem.
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crossings and multiple fiber orientations (Alexander et al.,
2002; Tuch et al., 2002), because it gives rise to a tractable
analysis of the differential properties of anisotropy as
parameterized by FA (Eq. (5)), and because for large por-
tions of the major pathways (e.g., visualized in Fig. 4b), the
single tensor model appears sufficient. Indeed, for the
extraction of fiber pathway interfaces (Fig. 4c), we embrace
the fact that the partial voluming of distinctly oriented
pathways gives rise to artifactual planar anisotropy by
component-wise interpolation (Alexander et al., 2001),
which leads to lower FA values (Fig. 2b), which in turn
enables FA valley surfaces to geometrically isolate the
interfaces (Figs. 2c and 4c). On the other hand, for future
work one could also consider measuring the differential
properties of continuous maps of non-tensor or higher-
order anisotropy measures (Özarslan et al., 2005; Desco-
teaux et al., 2006), which could possibly generate geometric
models of areas of fiber-crossings in particular, or highlight

where our current FA-based analysis could be most
misleading.

The continuous tensor field reconstruction method we
use (Aldroubi and Basser, 1999; Pajevic et al., 2002) is
‘‘Euclidean’’ in that it implicitly considers diffusion tensors
as elements of a vector space, even though this neglects the
strictly positive-definite nature of diffusion. The DTI liter-
ature provides a precedent for this simplifying assumption
in other contexts as well (Basser et al., 2000; Basser and
Pajavic, 2003; Basser and Pajevic, 2007). In a different line
of recent work, however, tensors are located on a Rie-
mannian manifold that effectively creates an infinite dis-
tance between valid tensors and those with zero
determinant (Pennec, 2004; Fletcher and Joshi, 2004;
Batchelor et al., 2005; Lenglet et al., 2006), and the Log-
Euclidean methods provide computationally efficient
approximations (Arsigny et al., 2006; Fillard et al., 2006).
The relative strengths of these two approaches (Euclidean

Fig. 6. Ridge surface extraction results from a single scan, showing different numbers of connected-components: all 742 (left), nine largest (middle), and
single largest (right).
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versus Riemannian) is an ongoing issue that we do not
intend to resolve here, although some basic points bear
consideration. First, it is possible to define tensor field
derivatives on a Riemannian manifold (Lenglet et al.,
2006), from which anisotropy derivatives could also be
computed. Thus, in principal anisotropy creases could be
extracted entirely within a Riemannian framework, though
at an increased computation cost. On the other hand, the
distinction between the Euclidean and Riemannian
approaches may be viewed more simply as a difference in
choosing whether to enforce positive-definiteness solely at
the data acquisition stage (Euclidean), or also at the anal-
ysis stage (Riemannian). We view the enforcement of this
constraint as orthogonal to the task of analyzing the differ-
ential structure of anisotropy, especially since FA is defined
without regard to positive-definiteness (which has appar-
ently not hindered its scientific utility).

Our ongoing algorithmic work is focused on geometric
extraction of FA ridge lines (for example through the cin-
gulum bundles), and then comparing the FA ridge lines
to individual fiber tracts. There are also theoretical ques-
tions remaining about the differential structure of FA.
Given the scale of the Gaussian smoothing pre-process,
and the properties of the cubic reconstruction kernel,
we would like to determine an upper bound on the reso-
lution of the surface triangulation grid (relative to the
original tensor samples) that is guaranteed to find all
anisotropy creases. In the case of valleys in FA, we
would like to quantify the relationship between strength

and location of the valley surface, and the linear anisot-
ropy levels and orientation of the two neighboring
regions.

Developing applications of anisotropy crease features is
the main focus of future work. Following the example of
TBSS (Smith et al., 2006; Rouw and Scholte, 2007), we are
interested in using anisotropy crease features as manifolds
onto which neuroanatomic variables can be projected for
the purposes of comparison and study. While TBSS gener-
ates a discretized FA ridge surface map, we are curious
whether having true codimension-one surfaces, for both
ridges and valleys, extracted from individual cases instead
of a group registration result, can increase the statistical
power of analysis based on anisotropy creases. The second
main application area for future work is in providing fidu-
cial markers to drive non-rigid registration of DTI.
Related work is described in Goodlett et al. (2006),
although here too the results are in the form of discrete
images rather than continuous surfaces. Using valley sur-
faces of FA to explicitly model the interfaces between
adjacent but orthogonal fiber tracts may usefully guide
non-rigid registration of tensor fields for group studies.
Slight mis-registration of these configurations could lead
to comparison of tensor values within entirely separate
pathways. In addition, just as shape analysis of segmented
structures from scalar MRI is an active area of medical
image research (e.g., Styner et al. (2004)), anisotropy
creases from DTI may also support informative shape
analysis.

Fig. 7. Ridge surface extraction results from six scans, viewed from an anterior (and slightly right) viewpoint, showing largest connected-component
(solid) and next eight largest CCs (translucent).
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Finally, to extract true image cores, crease detection
must work simultaneously across image scales (Furst
et al., 1996; Lindeberg, 1998). This will incur greater com-
putational cost, and perhaps algorithmic complexity, but
we are investigating methods to limit the computation to
regions around crease features (generalizing the existing
strategy of skipping voxels with low feature strength). We
believe that incorporating scale-space analysis into our
crease feature extraction may give the method better noise
robustness, because feature strength would be stronger at
the larger scales where noise is smoothed out.
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Appendix A. Hessian of Fractional Anisotropy

The Hessian of fractional anisotropy (FA) is determined
by differentiating Eqs. (5)–(7). The differential operator $
produces a column vector, and H = $$T produces the Hes-
sian matrix of second partial derivatives.

HðFAÞ ¼ rJ 2rTJ 4 $rJ 4rTJ 2 þ J 2HðJ 4Þ $ J 4HðJ 2Þ
2J 2

4FA

$ ð2J 4rJ 4FAþ J 2
4rFAÞðJ 2rTJ 4 $ J 4rTJ 2Þ
2ðJ 2

4FAÞ2

ðA:1Þ

HðJ 2Þ ¼ ðrDyy þrDzzÞrTDxx þ ðDyy þ DzzÞHðDxxÞ

þ ðrDxx þrDzzÞrTDyy þ ðDxx

þ DzzÞHðDyyÞ þ ðrDxx þrDyyÞrTDzz

þ ðDxx þ DyyÞHðDzzÞ $ 2ðrDxyrTDxy

þ DxyHðDxyÞ þrDxzrTDxz þ DxzHðDxzÞ

þrDyzrTDyz þ DyzHðDyzÞÞ ðA:2Þ

HðJ 4Þ ¼ 2ðrDxxrTDxx þ DxxHðDxxÞ þrDyyrTDyy

þ DyyHðDyyÞ þrDzzrTDzz þ DzzHðDzzÞÞ

þ 4ðrDxyrTDxy þ DxyHðDxyÞ

þrDxzrTDxz þ DxzHðDxzÞ þrDyzrTDyz

þ DyzHðDyzÞÞ ðA:3Þ
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