
Eurographics/ IEEE-VGTC Symposium on Visualization 2010
G. Melançon, T. Munzner, and D. Weiskopf
(Guest Editors)

Volume 29 (2010), Number 3

Matrix Trees

Nathan Andrysco and Xavier Tricoche

Department of Computer Science, Purdue University

Abstract

We propose a new data representation for octrees and kd-trees that improves upon memory size and algorithm
speed of existing techniques. While pointerless approaches exploit the regular structure of the tree to facilitate ef-
ficient data access, their memory footprint becomes prohibitively large as the height of the tree increases. Pointer-
based trees require memory consumption proportional to the number of tree nodes, thus exploiting the typical
sparsity of large trees. Yet, their traversal is slowed by the need to follow explicit pointers across the different
levels. Our solution is a pointerless approach that represents each tree level with its own matrix, as opposed to
traditional pointerless trees that use only a single vector. This novel data organization allows us to fully exploit the
tree’s regular structure and improve the performance of tree operations. By using a sparse matrix data structure
we obtain a representation that is suited for sparse and dense trees alike. In particular, it uses less total mem-
ory than pointer-based trees even when the data set is extremely sparse. We show how our approach is easily
implemented on the GPU and illustrate its performance in typical visualization scenarios.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.6]: Methodology and
Techniques—Graphics data structures and data types; Computer Graphics [I.3.5]: Object hierarchies—

1. Introduction

Data structures such as octrees and kd-trees are ubiquitous
in scientific fields that involve spatial data and crucial to the
performance of a large number of visualization techniques.
Algorithms that manipulate this spatial data can be accel-
erated when they use these structures. These spatial data
structures are also used for compression by grouping simi-
lar values together. Practically, octrees and kd-trees are built
upon an underlying data structure that is either pointerless or
pointer-based. Since the tree in the pointer-based approach
needs to be traversed like a linked-list, each node requires
some additional memory overhead such as pointers to the
child/parent nodes and possibly position information. The
main advantage of using the pointer data structure is that the
memory required can adapt to the structure of the data.

Pointerless trees are typically implemented using an un-
derlying array and exploit regular structure to derive spatial
information and child/parent array locations. Even though
pointerless trees require less memory overhead per node,
they need to allocate enough space for all possible nodes
despite how sparse the tree may actually be. For this rea-
son, pointerless trees do not adapt well to many data sets

and are rarely used since they can potentially require much
more space than pointer-based trees for the same data set.

In this paper, we present a new underlying representation
for octrees and kd-trees that has the algorithmic speed and
simplicity of traditional pointerless approaches and uses less
memory than pointer based representations. We review these
methods in Section 2. This pointerless representation makes
use of matrices to store the data, as discussed in Section 3.
This allows us to take better advantage of the tree’s regular
structure than previously proposed methods and results in
significant improvements to both algorithm speed and data
structure size. In addition, by making use of a sparse matrix
data structure (Section 4), we achieve a significant reduc-
tion in the memory footprint that outperforms pointerless
and pointer-based trees, even when the tree is sparse. We
explain this property through a detailed complexity analy-
sis in Section 5. In addition, by keeping memory costs low
and avoiding pointers, our method can easily be translated to
the GPU, as shown in Section 6. Typical applications of our
data structure in visualization applications are proposed in
Section 7 to illustrate both its versatility and performance.

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.
Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and
350 Main Street, Malden, MA 02148, USA.

N. Andrysco & X. Tricoche / Matrix Trees

2. Prior Work

Octrees and kd-trees are some of the oldest data structures
used in computer graphics [Mor66, Ben75], and as such, re-
searchers have developed a wide variety of implementations
over the years. Besides being able to classify a tree’s imple-
mentation as pointerless or pointer-based, we can classify
a tree based on its shape and how that shape is recorded.
Full trees require each non-leaf node to have its full comple-
ment of children, 8 for octrees and 2 for kd-trees. This means
that the data stored in the tree cannot be compressed using
the tree’s natural data compression capabilities, and there-
fore, it can require a significant amount of space. Branch-
on-need trees [WVG92] subdivide only where tree refine-
ment is needed, which typically results in much smaller
trees. A third type of tree, linear [Gar82], further minimizes
the space required by storing the leaf nodes contiguously in
memory. More details on previous octree methods can be
found in a survey paper by Knoll [Kno06].

Recent techniques that use octrees and kd-trees to per-
form ray casting/tracing include [KWPH06, BD02, FS05,
WFMS05, HSHH07]. Of note is the recent work done by
Crassin et al. [CNLE09] (Gigavoxels) and Hughes and
Lim [HL09] (KD-Jump). In Gigavoxels, the authors show
impressive performance numbers by converting triangle ge-
ometry to octree voxels. Using our proposed method, both
their memory requirements and speed numbers would be
improved (by removing their use of pointers and using our
more efficient tree traversal algorithm). Though KD-Jump is
memory efficient in the sense that it is a pointerless repre-
sentation like ours, their tree construction requires that the
number of leaves equals the number of grid voxels. Since
our method does not have this restriction, we are able to
trim branches to remove or compress data values, which pro-
vides memory savings. By the authors’ own admission, their
method is best suited for isosurfaces on the GPU and using
it as a general data structure might be limited.

One valuable use of spatial data structures in computer
graphics and visualization is to accelerate point location
queries. These queries in large unstructured meshes, espe-
cially those meshes created by numerical simulations, can
be particularly costly. Langbein et al. [LST03] use kd-trees
to help solve this problem. Many papers try to avoid these
costly queries in unstructured meshes altogether by simpli-
fying the data. Leven et al. [LCCK02] approximate the un-
structured mesh with regular grids to help accelerate volume
rendering. Another level-of-detail approach to accelerate the
mesh’s visualization is done by Callahan et al. [CCSS05].
Song et al. [SCM∗09] use the transfer function to cull cells
that will not contribute to the final rendered image.

Sparse matrices are defined as matrices that contain a high
percentage of zeros compared to non-zero values [GJS76].
This type of matrix often arises in scientific simulations that
involve solving partial differential equations. In many mod-
ern day applications, the matrices produced are very large

and naively representing them with all zero values intact is
prohibitively inefficient. A typical solution to this memory
problem is to only record the non-zero values and their posi-
tions within the array. Bell and Garland [BG08] give a good
survey of the more commonly used variations of these sparse
data structures and discuss their performance on the GPU.

3. Matrix Trees

We propose an octree and kd-tree data structure that is built
upon matrices to handle the underlying data storage. A moti-
vation for this approach is that completely full quad/octrees
and implicit kd-trees look like layered matrices, as can be
seen in Figure 1. As a result, we represent each layer of
the tree by its own individual 3-dimensional matrix. Each of
these matrices are represented as one or more vectors, which
is in contrast to traditional pointerless representations that
only use a single vector to represent the entire tree. Because
we derived data location information from our underlying
matrix representations, we do not need to make use of any
pointers, which results in an efficient translation to the GPU.

The key observation for memory preservation is that
sparse trees can be thought of as having NULL, or zero,
values at non-existent nodes. These data sets can be rep-
resented using sparse matrix data structures to save space,
while maintaining the regular structure of the underlying
matrix. As with most data structures, one trades speed for
size efficiency. In brief, a random data query with our sparse
matrix data structure requires O(log2 m) time, where m is
the average number of non-zero entries per row. A more de-
tailed description of our proposed sparse matrix data struc-
ture is found in section 4. We demonstrate in section 7 that
this lookup time is very efficient in practice.

Figure 1: A quadtree using an underlying sparse matrix
representation to fill in any "holes" (dotted red lines).

3.1. Exploiting Regular Structure

Similar to the pointerless tree approach, using matrices as
the underlying data structure allows us to derive information
at each node instead of explicitly storing it. Each node is
represented by a 4-tuple that includes the height in the tree
of the node and the x, y, z integer indices of the matrix at that
particular height. This information is not stored at the nodes,
but instead is just used for indexing into memory.

Using both the 4-tuple and the regular structure of the ma-
trices, we can derive parent and child index information. Cal-
culating the 4-tuple of the parent involves first subtracting 1

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

N. Andrysco & X. Tricoche / Matrix Trees

from the height of the child (by convention, the root is lo-
cated at height 0). Next, each index where a split was made
between the parent and child level is divided by 2, which can
be efficiently implemented by right-shifting the bits once.
Octrees, where a split occurs along all three dimensions at
every level, will have all three of the indices divided. Kd-
trees are only split along a single dimension per tree level,
so which index is divided depends on the split. For example,
a split along the x-axis requires the x-index be divided by 2.

Ancestors higher up in the tree can similarly be calcu-
lated. For octrees, one simply needs to right-shift the bits the
number of times one wishes to traverse up the tree toward
the root. Since kd-trees split directions are arbitrary, ances-
tor calculations are slightly more complicated. A naive im-
plementation involves iteratively doing a single parent cal-
culation until the ancestor is reached. A faster method pre-
calculates the number of splits along each direction for each
level in the kd-tree, as demonstrated in [HL09]. The differ-
ence in these "sum of split directions" between the child and
ancestor indicates the number of shifts for each index.

A child’s 4-tuple is similarly calculated given the parent’s
4-tuple. The height is incremented and each index along a
split direction is multiplied by 2, which can be implemented
as a left-shift of bits. Additionally, one needs to add 1 to the
indices depending on the location of the child in relation to
its parent. As a convention, we add a 1 if the child’s index
component is in the positive direction.

Like with other previous pointerless tree representations,
the 4-tuple also allows derivation of node spatial information
by storing only the tree’s bounding box information. Just
from this information, we can calculate each node’s position
and size. Similarly, this information can be used to spatially
hash directly to a node given a point in space, which is ex-
ploited in section 3.2.

3.2. Leaf Finding

Leaf finding is a very common operation used when dealing
with octrees and kd-trees. Traditional octrees have time com-
plexity of O(log8 Ntotal), where Ntotal is the total nodes in
the structure. Similarly, kd-trees have a time complexity of
O(log2 Ntotal). Linear trees [Gar82], where only leaf nodes
are stored, can be searched in a binary fashion so that they
achieve a corresponding leaf finding time of O(log2 L) time,
where L is the number of leaf nodes. By representing the
tree with matrices, we can further improve upon this time to
O(log2 h), where h is the height of the tree.

Given a point, we calculate the node that contains it at the
lowest tree level by using a spatial hash, which is made pos-
sible by the regular structure of the matrices. Provided that
this leaf node does not exist, we use the fact the the hash
eliminates all nodes in the tree except those along the path
from the leaf to the root. We can perform a binary search
along this path, providing us with a large performance gain

Figure 2: An example showing child, parent, and neighbor
relationships. Binary indices are shown beneath select nodes
to illustrate common ancestor computation between black
and pink nodes. We first compute black’s ancestor at the
same level as pink - blue. We then examine the bits between
blue and pink to discover that red is the common ancestor.

over previous methods. As noted, the use of a sparse ma-
trix representation requires additional complexity for locat-
ing the node, which is discussed in detail in section 5.2.

3.3. Finding Common Ancestor Node

Some tree traversal methods make use of ancestor informa-
tion to accelerate our leaf search. In applications where our
search point is moved in small increments (i.e ray casting
or streamline integration), we may save time by saving the
last node used and starting our downward search from the
ancestor that contains both this last node and our search
point, thereby possibly limiting our search to a small sub-
set of the tree instead of starting at the root each time. KD-
Jump [HL09] uses a similar technique whereby the algo-
rithm keeps track of tree depths it needs to revisit as it moves
along a ray. Using this information (stored in a bit vector)
and the implicit structure of their kd-tree, it can "jump" up
the tree to the appropriate ancestor. Our method for comput-
ing ancestors does not require any previous traversal knowl-
edge and is not limited by the size of a bit vector.

Given two separate node 4-tuples, we exploit the regular
structure of the matrices to compute the common ancestor.
We first need to put the two nodes at equal depth, which is
done by computing the ancestor of the lower node so that this
ancestor is at the same height as the other node (see section
3.1). We now examine the difference in bits between the two
nodes’ indices by XOR-ing them. The position of the most
significant bit, calculated using a O(log2 n) algorithm (n is
the number of bits in the index), that differs indicates how

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

N. Andrysco & X. Tricoche / Matrix Trees

many more levels we need to traverse up the tree to find the
first common ancestor. See Figure 2 for a brief example. We
note that the cost of O(log2 n) might be considered high, but
the cost to lookup in the sparse matrix data structure might
be even higher. This penalty can also be lessened using GPU
functionality, such as CUDA’s __clz function.

3.4. Neighbor Finding

Samet [Sam90] shows that the average cost of finding a
neighbor of the same depth for pointer-based octrees is O(1).
Though two nodes may border each other spatially, these
nodes may actually be located far away within the tree’s rep-
resentation. This worst case scenario results in a much more
costly leaf finding operation. In contrast, pointerless octrees
will always take O(1) time by just adding/subtracting to the
node’s indices. Our pointerless representation is analogous.

Doing the basic calculation from the previous paragraph
results in a neighboring node at the same depth in the tree.
However, this node may not be a leaf or may not exist at all.
Using a method similar to the one used in leaf finding (sec-
tion 3.2), we can efficiently search along a path to find the
desired leaf. If the node exists, we search down the tree. Oth-
erwise, we search up towards the root. We limit our binary
search by setting one end point of the search to be the depth
neighbor node from the initial calculation. If the node exists,
we can further limit the search by setting the other end point
to the common ancestor node between the original node and
its neighbor at the same depth (section 3.3).

3.5. Corner Centric Data

Storing data at positions other than the node’s center often
helps simplify the implementation of quadtree, octree, or
kd-tree based algorithms. Storing data at corners is partic-
ularly useful as it simplifies algorithms that require inter-
polation [KT09], with recent applications in animating flu-
ids [BGOS06, LGF04] and ray casting [HL09]. However,
this ease-of-use comes at a cost for previous tree data struc-
tures. Since nodes share common corner values with both
its neighbors and ancestors, one needs to map the corners to
another data structure so that the data is not duplicated. The
mapping incurs additional storage and programming diffi-
culty, which would be desirable to avoid.

Given a leaf level node matrix of size nx ∗ny ∗nz, we con-
struct an additional matrix of size (nx +1)∗(ny +1)∗(nz +1)
to represent our data points at corners. Because the nodes
have a dual relationship with the corner points we can access
corner data from any node without any additional pointer
overhead. To calculate the data index of our corner ma-
trix, one takes the given node’s indices and multiplies by
nlea f /ni, where nlea f and ni are the number of cells along
a particular direction of the leaf level and ith matrix respec-
tively. Analogous to computing a child, we add 1 if the rela-
tive direction to the corner is positive.

An added advantage of this approach is that we can tra-
verse through blocks of data once we reach a leaf with
minimal extra effort. This block traversal approach has be-
come common in recent applications [CNLE09, HL09] due
to relatively poor memory performance on GPUs that re-
sults from traversing the full tree structure [AL09]. These
data blocks introduce extra memory overhead due to the ad-
ditional pointers needed to reference them and may also re-
quire data duplication at the blocks’ borders to help facilitate
interpolation. Our corner data representation eliminates the
need for pointers (since addresses are implicit) and data du-
plication (since all data is contained within a single matrix).

Though the idea is not further explored in this paper, we
note that edge or face data could be recorded in a similar
fashion by exploiting the regular structure of the matrices.

4. Sparse Matrix Implementation

We use the compressed sparse row (CSR) format for data
storage when it is more memory efficient than using a full
matrix (see section 5.1 for further analysis). For complete-
ness, we briefly summarize the basic properties of this for-
mat. Please refer to [BD01] for more details.

Given a 2D sparse matrix with dimensions n2, we con-
struct two for indexing and one to store data. The first index
vector, with length n + 1, stores the row indices and is used
for an O(1) lookup into the next index vector. This second
index vector, which stores column index information, has
length O(nm), where m is the average number of non-zero
values (or nodes) per row. This vector is sorted by row to al-
low a binary search of the m values of interest, O(log2 m).
The result of this search enables a O(1) lookup into the
data vector (of size nm), giving an overall lookup time of
O(log2 m). Random insertions take O(n) time.

Provided a 3D matrix of size n3, we project two of the
dimensions into the first index vector (i.e. row and column),
giving it a length of n2. This maintains the O(log2 m) lookup
time complexity, but increases our first index’s memory to
O(n2). Consequently, the insertion time is O(n2). An alterna-
tive approach would be to introduce a third index vector, but
this incurs another O(log2 m) lookup. We believe the O(n2)
memory requirement is a fair tradeoff since it is not signif-
icant compared to O(n3) for a full matrix. The O(n2) inser-
tion time can be prohibitive when building the tree, but we
suggest using the approach in [Bri08] where a faster inser-
tion/slower data access scheme is first used and then quickly
converted to our desired representation.

To help reduce the cost when interpolating data, we sug-
gest fetching blocks of data instead of doing each fetch indi-
vidually, which requires 8 O(log2 m) operations for trilinear
interpolation. Since indices and data along one of the dimen-
sions are stored in contiguous memory, we can retrieve the
next piece of data by looking at the next element within the
vector, reducing our total cost in half. Neighboring rows in

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

N. Andrysco & X. Tricoche / Matrix Trees

the matrix tend to have a similar construction (i.e. number
of nodes, relative location of nodes). Using this insight, we
can use our initial O(log2 m) result as a guess when perform-
ing additional searches. This has the potential to reduce our
entire block fetch operation to a single O(log2 m) fetch.

4.1. Improved CSR Size and Speed

We observe that if we only wish to know whether a node ex-
ists or not, as might be the case when data is only stored in
the corner matrix, we do not require the CSR’s data vector.
When there are more "non-zero" values (i.e. existing nodes)
in the matrix, we can use a complementary representation
that keeps track of "zeros" (non-existent nodes). Using this
representation when the matrix has more "non-zero" values
then "zeros" results in saved space (since fewer indices will
need to be recorded) and decreased lookup time (since the
time is dependent on the size of the index vector). This for-
mat has most likely not been used in other applications since
these applications’ sparse matrices tend not to come close to
50% sparsity. For our application, we encounter cases when
this complementary format is desirable.

Even with node-centric data, this complementary CSR ap-
proach can still be beneficial. Of course, we would still use
the regular CSR when it is more memory efficient to do so.
When performing a lookup, we will still calculate a posi-
tion within the index vector. If we design our search to re-
turn the position in the vector where it would occur had it
been in the vector (i.e. right before the first value greater
than our search value), is, we can calculate the number of
existing nodes that occur before our search value (remem-
ber the index vector contains non-existing nodes) and use
this to index into the data vector id . Assume that we are pro-
jecting rows and columns to the vector with size O(n2), we
have: id = nz ∗nxy + z− is, where nz is dimension along the
z-axis, nxy is the projected position of a given row/column
tuple into the second (depth) index vector, and z is the depth
value we are searching for. By removing the one-to-one
index/data mapping restriction of the traditional CSR ap-
proach, we can easily facilitate other storage schemes, such
as ones that store separate data types at leaf and non-leaf
nodes (e.g. [KWPH06, VT01]).

5. Complexity

For clarity, let us first introduce some convenient notations.

h = Height of the octree
ni = 2i (Max. nodes along an axis at height i)
mi = Mean nodes along any axis at height i

mi/ni = Sparsity ratio along any axis at height i
Ntotal = ∑h

i=1 n3
i (Total nodes in completely full tree)

M = ∑h
i=1 min2

i (Total nodes in sparse tree)
sd = Bytes needed to store data at a node

sidx = Bytes needed to store an index (e.g. int)
sptr = Number of bytes needed for a pointer

Observe that because n and m are the same along any axis,
the sparsity ratio (m/n) and total number of nodes (M) will
be the same regardless of the axis we examine. For sim-
plicity, we will do our analysis on octrees since each matrix
at a given level has the same dimensions, regardless of the
axis we examine. Since kd-trees split directions are arbitrary,
this property does not apply to them. In general kd-trees are
about 3 times the height of octrees, and because of the in-
creased tree height, kd-trees will benefit even more from our
size and traversal speed improvements.

5.1. Size

The sparse matrix representation (section 4) uses space that
is dependent on the sparsity of the octree. We distinguish
between the integer element size of the two index vectors,
row/column and depth. If our data set can be encompassed
by a 10243 matrix, or an octree of height 10, our depth index
can be represented as a 16-bit integer. The row/column in-
dex projection requires the row and column indices to share
the full 32-bits, limiting the octree height to 16. At each
level i, the row/column index structure requires n2

i sidx1 bytes.
The amount of space required for the data vector is propor-
tional to m (i.e. the number of nodes per dimension). In to-
tal it is min2

i sd bytes. The depth vector is dependent on our
chosen CSR representation (section 4.1), providing us with
min(mi,ni−mi)n2

i sidx2 bytes.

A traditional pointerless octree is analogous to matrix
octrees where each level uses a regular, full matrix as its
underlying representation. Since room is allocated for all
nodes, regardless of their existence, the total space required
is Ntotalsd . Or on a single level of the octree the space re-
quired is n3

i sd . To distinguish between the data on the sparse
matrix side of the equation and the full matrix side, we an-
notate the variables with s and f respectively. This is useful
if we wish to only track where nodes are in the octree, as
we can omit the data vector entirely from the CSR side. Due
to the sparse matrix data structure requiring additional space
to help with indexing its non-zero entries, there will actually
be situations where it requires more size than the full matrix
in certain situations. We can calculate when the two matrix
representations will be equal by comparing their respective
size equations:

n3
i sd f = n2

i sidx1 +min2
i sds +min(mi,ni−mi)n2

i sidx2

mi
ni

=

sd f −
sidx1

sn
sidx2 +sds

for mi
ni
≤ 0.5

sidx1
sn
−sd f +sidx2

sidx2−sds
for mi

ni
> 0.5

Within our program, we can dynamically determine the
matrix type to use to represent the nodes/corners based on
the equation above. A sparsity ratio less than the ratio when
matrix sizes are equal means we will save on space using
CSR. Even if we are only tracking nodes within the octree

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

N. Andrysco & X. Tricoche / Matrix Trees

Figure 3: Graphs of the equation in section 5.1 (sidx1 = 4). The left table shows when the nodes contain data, the right table
is when they do not. If our matrix dimensions, n, and sparsity ratio, m/n, fall into the area below the line that matches the size
parameters from the tables, we will save space using the sparse matrix representation.

and do not care about storing data at the actual nodes, the
full matrix representation still needs to store some form of
data to indicate whether a node exists or not. In Figure 3
we show the result when the nodes are represented using
char (1 byte per node) and as a more space efficient, but
slightly more computationally expensive bit-vector (1/8 byte
per node). This graph also shows that with low values of n
(those levels near the root), it is typically more beneficial to
use the full matrix.

5.1.1. Pointer Octrees

Pointer octrees can be implemented in a variety of ways. For
our analysis we will assume a very space-efficient one. Node
spatial information can be derived from the octree’s bound-
ing box and its path from the root. To help facilitate this
process, each node will have a pointer to its parent so that a
random node can derive its position without any additional
information. This parent is also useful for other tasks such as
finding common ancestor nodes or neighbor finding. Knoll
et al. [KWPH06] demonstrated that one can use data spa-
tial locality to represent children using a 32-bit pointer and
offsets. This is further simplified to a single pointer for our
analysis with a NULL child pointer indicating a leaf. In to-
tal, each node requires 2sptr + sd bytes, or 8+ sd on a 32-bit
architecture. If there are m nodes per 2D slice (n2), the to-
tal memory requirement for one octree level is min2

i (8+ sd).
Comparing to full matrices:

min2
i (8+ sd) > n3

i sd
mi
ni

> sd
8+sd

Letting sd = 4 shows that the pointer octree is more mem-
ory efficient only when mi

ni
< 1

3 . The cost of the pointers at
each node quickly adds up, something that is free with our
representation. When the pointer-based tree is more mem-
ory efficient than the full matrix, we propose a sparse matrix
data structure as the underlying data representation (Figure
3). Assume the largest memory configuration for the sparse
matrix representation (sidx1 = sidx2 = 4):

min2
i (8+ sd) > 4n2

i +min2
i (4+ sd)

Solving for m, we find that the sparse matrix representa-

tion is more memory efficient when m > 1 (i.e. there is on
average 1 node per 2D slice of the octree), which is typical
of most data sets. Memory requirements comparisons for ac-
tual data sets can be found in section 7.

5.2. Time

The new leaf finding algorithm presented in section 3.2 as-
sumes O(1) time to access a node within a matrix represen-
tation. This assumption holds true when using the basic, full
matrix representation. Here we will analyze the time com-
plexity of leaf finding when CSR is used. For reference, the
time for a CSR node lookup is log2 mi at level i (section
4). Assume that each level has the same average sparsity. If
there is an average of m nodes along each matrix dimension
at the leaf level h, then there are m/8 nodes at h− 1, m/64
nodes at h−2, etc.

Assume the worst case binary search scenario for the leaf
finding algorithm, i.e. we encounter the levels where there
are the most number of nodes. The search begins with a hash
to a node at the leaf level. In the worst case the node does
not exist so we perform a binary search, first looking at the
matrix located at level h

2 . This is followed by searching at
3h
4 , then 7h

8 , etc. (i.e. the matrices with the most number of
nodes along the binary search path) and continues until h−1
is reached. The number of nodes along an axis at level i is
equal to m

2
3h
2i

, where 1≤ i≤ h.

log2 m+∑log2 h
x=1 log2

m
2

3h
2x

= log2 m+∑log2 h
x=1 (log2 m− 3h

2x)

≥ log2 h log2 m−3h
⇒ O(log2 h log2 m)

Given the same worst case scenario as above, the time
taken to find a leaf by linearly searching from the root will
be h−1. The most costly lookup time we can incur for CSR
happens when m = n/2 since if the octree was completely
full (i.e. m = n) we would use the complementary CSR rep-
resentation, which results in a O(1) lookup. From this we can
simplify log2 m to h−1 since n = 2h.

(h−1) log2 h−3h < h−1, for h≤ 18

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

N. Andrysco & X. Tricoche / Matrix Trees

When h ≤ 18 the matrix octree is faster than the pointer
octree even with the assumptions made. In practice an octree
of height 18 is sufficient to encompass most data sets, having
a leaf level matrix of size (218)3. If this example octree had
sparsity of 50% and each node was represented as 1 byte,
it would require 8 TB to encode only the leaf nodes. Data
sets are usually very sparse at this level of refinement so the
assumption of m = n/2 is not a realistic approximation. For
best case scenarios where the leaf is found near the root,
the pointer octree will have better performance due to our
method being a bottom-up approach combined with a binary
search. But for real-world data sets, the matrix octree will
outperform pointer octrees as shown in the results section 7.

6. GPU Implementation

Implementing the matrix trees on the GPU is straightfor-
ward. Both the data and the indices are stored as vectors
on the CPU, so the GPU implementation just requires us to
copy the vectors to a texture. We stack all vectors of simi-
lar function together so that only one texture is needed per
vector functionality. For nodes, there are three vectors that
need to be copied to the GPU - data, row/column indices, and
depth indices. To distinguish between different levels of the
tree and different matrix representations, we also pass index
offset and matrix type identifiers. These vectors are small -
they have length that is the same size as the height of the
tree. We also need to pass a small amount of positional in-
formation, namely the tree’s bounding box. Additional data
such as node size or number of nodes per level is inherited
from our matrix representation. It may be wise to precalcu-
late these values to speedup various computations. The exact
same steps should be taken to copy corner data to the GPU.
It is advised that the corner values are stored as a single ma-
trix to better exploit the texture’s memory cache and so that
blocks of data can be retrieved in a quicker fashion.

7. Applications

The work presented in this paper is not application specific,
but rather a versatile building block that a broad range of
areas can benefit. We have chosen two applications that re-
quire both a space efficient and quick data structure to ac-
celerate their applications on large data sets. Specifically,
we show that our method is efficient when performing ray
and point location queries, two basic operations used in a
broad range of volume rendering applications. All examples
are performed on Windows Vista (32-bit) with an Intel Xeon
X5460 (3.16 GHz) processor and NVIDIA GeForce GTX
280 GPU. Our GPU code is implemented using CUDA.

7.1. Ray Caster

We require the dimensions of the tree’s underlying matrices
to be a power of 2, but space is not wasted due to our un-
derlying sparse matrix representation. Values are stored at

Figure 4: a) A quadtree with its underlying matrix types and
vectors. b) When translating to the GPU, we concatenate the
vectors from the CPU and create auxiliary helper vectors.

the node corners to simplify the interpolation process. Com-
paratively, a kd-tree will have a height of about 3 times that
of its octree counterpart. To further accelerate isosurface ex-
traction, we calculate min/max values for each node. The
leaf nodes’ min/max values are calculated from the corner
data, while non-leaves use their children’s min/max. Table
5 shows the memory requirements for different tree repre-
sentations. Pointer-based trees’ size numbers are calculated
using the space efficient representation described in section
5.1.1. We conservatively estimate that each leaf node can
map each of its corners to the data using only 1 byte / corner.

7.1.1. Traversing a Tree along a Ray

Traversing a spatial tree falls into one of two categories,
stack-based and stackless. Unfortunately, stack-based ap-
proaches are not appropriate for GPUs due to high mem-
ory demand. The authors of [FS05] realized this bottleneck
and devised two stackless approaches, KD-Restart and KD-
Backtrack. Though they were developed for kd-trees, they
have been applied to octrees such as in [CNLE09] (KD-
Restart). In [HL09], a new scheme named KD-Jump is pro-
posed. Though it claims impressive numbers, their method
manipulates bits in a manner that poses restrictions to octree
height and adds additional computation complications.

We demonstrate improvements to state-of-the-art methods
by using our improved tree operations in section 3. We be-

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

N. Andrysco & X. Tricoche / Matrix Trees

Grid Properties for Both Trees Octree KD-Tree
Data Set Data Dim Corners Data Leaves NLN MAT PTR NLN MAT PTR

Head 27.25 256x256x109 20.43 7.73 19.20 2.96 16.70 31.55 20.22 23.733 44.72
Aneurism 64.0 256x256x256 4.35 1.65 2.31 0.76 3.39 4.12 3.94 5.09 6.54

Teapot 44.5 256x256x178 13.30 5.04 11.54 2.01 10.75 19.15 12.97 15.39 27.50
Bonsai 64.0 256x256x256 36.28 13.73 27.85 5.55 26.95 46.74 33.79 38.12 68.28
Engine 32.0 256x256x128 16.67 6.31 14.93 2.43 13.46 24.63 16.23 19.18 35.16

Figure 5: The data elements are 4-byte floats to facilitate interpolation on the GPU. Size information for min/max values is
not included. Tree properties are expressed in 100,000s of elements, data in MBs. Abbreviations: Non-leaf nodes (NLN), matrix
based tree data structure overhead (MAT), pointer-based overhead (PTR).

!"#$%&'()#$** !"#$%&'+,-.$** +,'- /012 ()#$**'- 3*4#"$# +,'- 3*4#"$#

5

65

75

85

95

5

:

;5

;:

5

6

7

8

9

;5

5

;

6

<

5

8

;6

;9

5

:

;5

;:

!"#$"%&'()%"%*+,-.(

=*">

?@*0$%41

.*"2A#

BA@4"%

C@D%@* =*">

?@*0$%41

.*"2A#

BA@4"%

C@D%@*

/
"
0
(
%1
2
*
(
+&
(
0
1

3
(
+1
)#

-
4
(
1

56
7
7
87
7
7
87
7
7
%9

!
3
:
1;
(
<
0
(
+1

=
&#

(
%1
5%
9

>
3
:
1;
(
<
0
(
+1

=
&#

(
%1
5?
3
@
9

Figure 6: Graphs showing ray cast render times.

gin the search with our leaf finding operation (section 3.2).
If a node is found that is not located at the leaf level, we
keep traversing the tree to skip the empty space until a valid
leaf node is found. Empty space skipping involves moving
the ray over portions of the tree that do not contain any val-
ues that are of interest to our ray caster. When a node of
non-interest is encountered, we traverse to the next neigh-
bor along the ray by using the ray’s intersection point with
the node and the method described in 3.4. We keep perform-
ing iterations of this empty space skipping algorithm until
a valid leaf node is found. When performing isosurface ex-
traction, we use the min/max values to guide the leaf and
neighbor searches by treating nodes as non-existent if the
isovalue is outside the range of the node’s min/max value.

Table 6 shows performance numbers for various tree

traversal methods on a 800x800 pixel image. Our method
requires fewer node queries, and as such, is faster than pre-
vious traversal schemes. We show speedups of over 3x than
the next closest method in some examples, with everyone
of our tests outperforming the previous methods on both the
CPU and GPU. Our binary search along the tree’s height
does a very good job of negating the undesirable property of
the kd-tree having 3 times the depth of the octree, with the
end result of having similar render times for both tree types
(unlike with octree/kd-restart). Our results were obtained
using a more general approach than those used in [HL09]
or [CNLE09], which use application specific optimizations
to get speed gains on the GPU. We note that these optimiza-
tions can be applied to our method as well, but our focus is
on our general applicability of the data structure.

7.2. Unstructured Mesh Visualization

High Speed Train Delta Wing
Tetrahedra 931,230 3,853,502

Prisms 1,738,863 2,419,140
Pyramids 14,737 0
Vertices 1,068,701 1,889,283

Size in Memory (MB) 66.520 135.791

Figure 7: The geometry for the high speed train (left) and
delta wing (right). A cut plane of the 3D cells is shown along
with surface triangle sizes mapped to a logarithmic BGR
color scheme (blue indicates smaller, red larger).

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

N. Andrysco & X. Tricoche / Matrix Trees

Octree KD-Tree
Queries CPU GPU Querries CPU GPU

Cells Nodes Leaf Total Leaf Total Cells Nodes Leaf Total Leaf Total
Train 4.884 1.031 0.561 1.591 0.031 0.952 4.730 1.180 0.827 1.903 0.047 0.858
Wing 366.609 1.149 0.546 10.688 0.168 7.82 17.291 1.341 0.782 6.558 0.157 4.682

Figure 8: Data is the average of 1,000,000 random point queries. Tree traversal times and total overall times (in µs) are shown.

On the CPU, we represent the unstructured mesh as a se-
ries of vectors. The first vector represents the locations of
the mesh’s vertices. Another vector is used to store each
cell. The only data needed to represent each cell are index
pointers to each of the cell’s vertices. Additional data such as
bounding box/sphere information is not stored to keep mem-
ory costs low. Though by pre-computing this information,
we can achieve a decent speed up when searching for cells
within the mesh. We make the different cell types polymor-
phic so that all of them can be stored in a single vector. The
cell types used in our examples are tetrahedra, pyramids, and
three-sided prisms. There is no guarantee that the pyramid or
prism is convex. Any additional vertex data, such as veloci-
ties, is stored in its own vector.

The transformation of the data to the GPU is straightfor-
ward for the vertex data. For cells, we concatenate all the
index pointers and store them as a single vector. We assure
that all cell types are grouped together, so that we only need
a very small vector that stores the offsets for each cell type.

Many visualization approaches require some kind of point
location. This is easily done in structured grids, but can be a
major performance bottleneck in unstructured ones. To help
accelerate point location, we use our matrix trees where we
store at each node a vector containing the cells that intersect
the node. We need to make a decision when constructing
the tree. The numbers provided are for the high speed train
data set using an octree. One method is to always duplicate
cells that overlap more than one leaf, i.e. the cell intersects
or encompasses the leaf. We perform this intersection test
by testing each cell face with each node face. Though this
method performs best for random point queries (about 5.3
cells tested per query), the duplicate data balloons up the oc-
tree size to over 475 MB, which prevents us from transfer-
ring it to the GPU. The other extreme is to never duplicate
cells that overlap multiple nodes and instead push the cell to
the parent. This results in a small tree (11.5 MB), but gives
terrible performance (7,718 cells tested per query). Taking a
hybrid approach keeps both memory and time costs low. We
allow cells to be duplicated, but only at the lower levels of
the tree. For this example, our resulting octree is only about
40 MB and requires 8.8 cells to be examined per query.

The tree’s translation to the GPU becomes a little more
complicated with the addition of a cell index vector at each
node. Our translation is done by creating two vectors of in-
tegers in texture memory. The first vector is a concatenation

of all the cell index vectors located at each node. The other
vector stores the node offsets into the first vector.

8. Conclusions and Future Work

We have shown that the matrix representation uses less space
than traditional pointer or pointerless trees, allows for faster
algorithms, and makes it easier to implement certain tree op-
erations. The only added complexity of our approach is the
possible difficulty in implementing the sparse matrix repre-
sentation. Though our method is currently limited to static
trees and split planes down the center of nodes, we believe
our method can be extended to allow for general, dynamic
implicit trees on the GPU with arbitrary split planes.

We demonstrated that previous state-of-the-art ray cast-
ing methods can benefit from our data structure. Combining
our representation with the optimizations from these meth-
ods will allow for incredible performance in visualization
and general graphics applications. Further performance im-
provements can be obtained by exploring sparse matrix rep-
resentations that are optimized for computer graphics appli-
cations, such as the work done in [LH06].

Using our trees, we were able to represent entire unstruc-
tured mesh data sets on the GPU with little memory over-
head. We plan to further enhance the representations of these
data sets to improve mesh access times on the GPU. Addi-
tionally, there are very large unstructured meshes that are too
big to fit into most modern day desktop’s main memory us-
ing current mesh representations. We would like to explore
new data structures that will allow us to stream the mesh in-
formation onto the GPU for interactive analysis.

Acknowledgements

The datasets used in the ray casting examples are courtesy of
volvis.org. The CFD datasets were provided by Markus
Rütten, DLR Göttigen, Germany. This work was supported
in part by a gift by Intel Corportation.

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

N. Andrysco & X. Tricoche / Matrix Trees

References
[AL09] AILA T., LAINE S.: Understanding the efficiency of ray

traversal on gpus. In Proc. High-Performance Graphics 2009
(2009).

[BD01] BANK R. E., DOUGLAS C. C.: Sparse matrix multipli-
cation package (smmp), 2001.

[BD02] BENSON D., DAVIS J.: Octree textures. ACM Trans.
Graph. 21, 3 (2002), 785–790.

[Ben75] BENTLEY J. L.: Multidimensional binary search trees
used for associative searching. Commun. ACM 18, 9 (1975), 509–
517.

[BG08] BELL N., GARLAND M.: Efficient Sparse Matrix-Vector
Multiplication on CUDA. NVIDIA Technical Report NVR-2008-
004, NVIDIA Corporation, Dec. 2008.

[BGOS06] BARGTEIL A. W., GOKTEKIN T. G., O’BRIEN J. F.,
STRAIN J. A.: A semi-lagrangian contouring method for fluid
simulation. ACM Transactions on Graphics 25, 1 (2006).

[Bri08] BRIDSON R.: Fluid Simulation for Computer Graphics.
A K Peters, Ltd., Wellesley, MA, USA, 2008.

[CCSS05] CALLAHAN S., COMBA J., SHIRLEY P., SILVA C.:
Interactive rendering of large unstructured grids using dynamic
level-of-detail. In Visualization, 2005. VIS 05. IEEE (Oct. 2005),
pp. 199–206.

[CNLE09] CRASSIN C., NEYRET F., LEFEBVRE S., EISEMANN
E.: Gigavoxels: ray-guided streaming for efficient and detailed
voxel rendering. In I3D ’09: Proceedings of the 2009 symposium
on Interactive 3D graphics and games (New York, NY, USA,
2009), ACM, pp. 15–22.

[FS05] FOLEY T., SUGERMAN J.: Kd-tree acceleration structures
for a gpu raytracer. In HWWS ’05: Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hardware
(New York, NY, USA, 2005), ACM, pp. 15–22.

[Gar82] GARGANTINI I.: An effective way to represent
quadtrees. Commun. ACM 25, 12 (1982), 905–910.

[GJS76] GIBBS N., JR. W. P., STOCKMEYER P.: An algorithm
for reducing the bandwidth and profile of a sparse matrix. SIAM
Journal of Numerical Analysis 13, 2 (1976), 236–250.

[HL09] HUGHES D. M., LIM I. S.: Kd-jump: a path-preserving
stackless traversal for faster isosurface raytracing on gpus. IEEE
Transactions on Visualization and Computer Graphics 15, 6
(2009), 1555–1562.

[HSHH07] HORN D. R., SUGERMAN J., HOUSTON M., HAN-
RAHAN P.: Interactive k-d tree gpu raytracing. In I3D ’07: Pro-
ceedings of the 2007 symposium on Interactive 3D graphics and
games (New York, NY, USA, 2007), ACM, pp. 167–174.

[Kno06] KNOLL A.: A survey of octree volume rendering tech-
niques. In GI Lecture Notes in Informatics: Proceedings of 1st
IRTG Workshop (June 2006).

[KT09] KIM B., TSIOTRAS P.: Image segmentation on cell-
center sampled quadtree and octree grids. In SPIE Electronic
Imaging / Wavelet Applications in Industrial Processing VI
(2009).

[KWPH06] KNOLL A., WALD I., PARKER S., HANSEN C.: In-
teractive isosurface ray tracing of large octree volumes. In In-
teractive Ray Tracing 2006, IEEE Symposium on (Sept. 2006),
pp. 115–124.

[LCCK02] LEVEN J., CORSO J., COHEN J., KUMAR S.: Interac-
tive visualization of unstructured grids using hierarchical 3d tex-
tures. In VVS ’02: Proceedings of the 2002 IEEE symposium on
Volume visualization and graphics (Piscataway, NJ, USA, 2002),
IEEE Press, pp. 37–44.

[LGF04] LOSASSO F., GIBOU F., FEDKIW R.: Simulating water
and smoke with an octree data structure. In SIGGRAPH ’04:
ACM SIGGRAPH 2004 Papers (New York, NY, USA, 2004),
ACM, pp. 457–462.

[LH06] LEFEBVRE S., HOPPE H.: Perfect spatial hashing. In
SIGGRAPH ’06: ACM SIGGRAPH 2006 Papers (New York, NY,
USA, 2006), ACM, pp. 579–588.

[LST03] LANGBEIN M., SCHEUERMANN G., TRICOCHE X.:
An efficient point location method for visualization in large un-
structured grids. In VMV (2003), pp. 27–35.

[Mor66] MORTON G.: A Computer Oriented Geodetic Data Base
and a New Technique in File Sequencing. Tech. rep., IBM Ltd.,
1966.

[Sam90] SAMET H.: The design and analysis of spatial data
structures. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1990.

[SCM∗09] SONG Y., CHEN W., MACIEJEWSKI R., GAITHER
K. P., EBERT D. S.: Bivariate transfer functions on unstructured
grids. In Computer Graphics Forum (June 2009), IEEE Press.

[VT01] VELASCO F., TORRES J. C.: Cell octrees: A new data
structure for volume modeling and visualization. In VMV ’01:
Proceedings of the Vision Modeling and Visualization Confer-
ence 2001 (2001), Aka GmbH, pp. 151–158.

[WFMS05] WALD I., FRIEDRICH H., MARMITT G., SEIDEL
H.-P.: Faster isosurface ray tracing using implicit kd-trees.
IEEE Transactions on Visualization and Computer Graphics 11,
5 (2005), 562–572. Member-Slusallek, Philipp.

[WVG92] WILHELMS J., VAN GELDER A.: Octrees for faster
isosurface generation. ACM Trans. Graph. 11, 3 (1992), 201–
227.

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

