
An Efficient Point Location Method for Visualization in Large
Unstructured Grids

Max Langbein, Gerik Scheuermann, Xavier Tricoche

Fachbereich Informatik
Universität Kaiserslautern

Postfach 3049, 67653 Kaiserslautern
Email: {m langbe,scheuer,tricoche}@informatik.uni-kl.de

Abstract

Visualization of data defined over large unstruc-
tured grids requires an efficient solution to the point
location problem, since many visualization methods
need values at arbitrary positions given in global co-
ordinates. This paper presents a memory efficient,
fast in-core solution to the problem using cell ad-
jacency and a complete adaptive kd-tree based on
the vertices. Since cell adjacency information is
stored rather often (for example for fast ray-casting
or streamline integration), the extra memory needed
is very small compared to conventional solutions
like octrees. The method is especially useful for
highly non-uniform point distributions and extreme
edge ratios in the cells. The data structure is tested
on several large unstructured grids from computa-
tional fluid dynamics (CFD) simulations for indus-
trial applications.

1 Introduction

Visualization of large data sets relies on the use
of fast algorithms. This means, besides other re-
quirements, efficient data structures. While struc-
tured data sets, especially rectilinear grids, allow
such data structures, large unstructured grids pro-
vide a real hurdle with respect to queries like point
location. Unfortunately, large unstructured grids are
very common in many important application do-
mains, including finite element analysis in struc-
tural mechanics and computational fluid dynamics
(CFD). The possibility to work on highly adaptive
grid resolutions is crucial for these applications.
Also, for the simulation, point location is not an is-
sue, whereas it is one for visualization: There are
several methods, e.g. probing and starting stream-

lines at arbitrary positions, that require point loca-
tion, so any visualization system could use a strat-
egy for point location in unstructured grids.
A look into the literature in this area is disappoint-
ing. You find comments like “in more than two
dimensions, the point location problem is still es-
sentially open” [2, p.144], “the answer [to 3d point
location in unstructured grids] is don’t [do it]” [3].
The best, one can find, are solutions which have ac-
ceptable space and time complexity under certain
conditions. These conditions are typically

• nearly uniform distribution of the points [6]
• relation of smallest edge to largest edge in a

cell above threshold [8]
• convex cells [5]

Our original implementation was based on an
adaptive octree of the cells [6, 10] but, for data
sets with more than 1-2 million cells with highly
non uniform points, we were not able to keep the
search structure, cell adjacency, cell vertices and
point coordinates in main memory (on standard PC
hardware). We were forced to look for an improved
solution or try an out-of-core approach. In general,
there are two main approaches to the design of a
spatial data structure: One can base it on points or
on cells. We have chosen a point-based approach,
since it is easier to insert points, and each point
belongs to a single bucket, which allows a much
smaller data structure. Of course, one has to pay
for that by a more complicated search procedure
but, it is not necessarily a disadvantage.

2 Related Work

It is common to avoid point location queries if pos-
sible. For a streamline, one searches only the cell

VMV 2003 Munich, Germany, November 19–21, 2003

for the first point and then uses cell adjacency in-
formation for the following point locations. For ray
casting, one can use a similar approach. However,
for arbitrary starting positions of a streamline or for
arbitrary probing, point location is necessary or the
system can not offer this kind of visualization tools.
Visual3 [3] uses the strategy of “just say no” to-
wards point location in three dimensional unstruc-
tured grids, so one can interact only from the bound-
ary. Nevertheless, its method to find the correct
neighboring cell by inverting the form function for
the different cell types was valuable for us to com-
pare with our solution. VTK [6] uses two different
approaches for point location. Its first method con-
sists of a rectilinear grid storing the vertices of the
data set in each bucket. Since typical unstructured
grids have highly non uniform point distributions,
this causes problems as the authors mention already
in their book [6, p.341]. As we will show, our ap-
proach adapts the idea of storing vertices instead of
cells in the search structure. Also, it is mentioned
that a search in neighboring buckets may be neces-
sary — a fact that is described in section 5 for our
structure. The second method for point location in
VTK is an uniformly subdivided octree with an ef-
ficient representation as array without pointers. The
problem with this data structure is that for typical
unstructured grids, for example from modern CFD
solvers, the cell lists in the octants are far too large
for main memory. The Open Explorer [9] uses a
similar structure as VTK and therefore suffers from
the same problems when faced with large unstruc-
tured grids.
In computational geometry literature, one can find
several articles on other point location structures
but, as a general statement, it holds that “in more
than two dimensions, the point location problem is
still essentially open.” [2, p.144]. The binary sphere
tree [8] is one data structure from computational ge-
ometry. At each node of the binary tree, space is di-
vided by a sphere in inside and outside and the cells
lists are subdivided accordingly. Here, as before,
well-shaped cells are required which are not typical
for unstructured meshes. A nice two-dimensional
solution are trapezoidal maps [4, 7]. The general
idea is to subdivide the polygonal cells into trape-
zoidal sub-cells with parallel sides aligned with the
y-axis by extending each vertex with an y-parallel
line to the next upper and lower edge. This al-
lows an O(n) storage data structure with O(log n)

P I N

C

V
x y
x
x
x
x

y
y
y
y

2

3

4

1

00

1

2

3

4

0
2

1
2
3
4

3 0
3
7

Quad
Triangle

None

0

0
1
1

1

1
0 0

1
2
4
6
7

Figure 1: cell vertex and neighborhood information

search time and O(n log n) preprocessing time
where n is the number of edges. Unfortunately,
there is no known efficient extension to three di-
mensions.

3 Basic Idea

The idea behind our solution is: a tree-structured
space decomposition based on the points, an
associated cell with every leaf, a search for the
correct cell based on cell adjacency after the tree
traversal and some extra work for searches close
to the boundary. The space decomposition uses an
adaptive point-based kd-tree[1, 11] with the split
dimension chosen to keep the buckets close to a
cube. To obtain a complete binary tree, which can
be efficiently stored in an array, we store some
points twice and split at the median. The point
search traverses the kd-tree to get the cell index
corresponding to the leaf. From the stored vertex
in the leaf, a ray is started towards the searched
point and traced through the cells using adjacency
information. Close to the boundary, it may happen
that the ray from the vertex in the kd-tree towards
the target crosses the boundary. This would result
in a location failure. To overcome this problem,
the search is repeated starting in the neighboring
kd-tree leaves if the ray ends at the boundary.

4 Representation and Construction

4.1 Representation

Our complete representation for unstructured data
sets including the search structure consists of three
main parts and is similar to VTK [6], for example:
There are only arrays of floating point numbers and

666

L:

D:

S:

l l l l l l l

3

s s s s s s s

ddddddd

l

s d

s ds d

s d s d s d

l l l l l l l

0 0

4 41 1

s d2 2 3 5 5 6 6

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6

0 1 2 3 4 5 6

76543210l

Figure 2: kdtree data structure

integers. The first part is a standard representation
of our data set. We have a floating point array P
for the points containing the coordinates. The cells
are represented by two integer arrays. The first ar-
ray V stores all point indices incident to a cell, for
one cell after the other. The second array C contains
cell type and offset into the first array. The values
for the visualization are stored by floating point ar-
rays T with 1,2,3,4,6 or 9 numbers for each point or
cell (scalars, vectors, symmetric or arbitrary tensors
in two or three dimensions). Of course, there may
be more than one value array for a given set of po-
sitions or cells.
The second part of our data structure is point to cell
incidence information. It is represented by two in-
teger arrays. An array N stores for each point the
offset in the cell list in the second array. The second
array I contains all the incident cells for each point
starting at the offset. The first two parts of the data
structure are illustrated in Fig. 1 where the value ar-
rays T are omitted.
The third and last part of the data structure is the
kd-tree. It is represented by three arrays. The inner
nodes consist of two arrays, one floating point array
S for the split values and one character array D stor-
ing the split dimension. The leaves are represented
by an array of point indices L. The kd-tree repre-
sentation is shown in Fig. 2. The role of the dif-
ferent parts will become clearer by studying their
construction in subsections 4.2 and 4.3, as well as
the point location in section 5.

4.2 Construction of the kd-Tree

Since our kd-tree is adaptive, the criteria for the
choice of the split dimension are essential. Since
the problem is that the boxes associated with each
node in the tree tend to get thinner and thinner (see
our color page), a split along the largest axis of the
box is a natural choice. An alternative would be to

consider the bounding box of the points contained
in the node and take its largest axis. An additional
condition could be to avoid splits that result in zero
volumes. After several tests, we decided to mix the
two alternatives and allow zero volumes since they
appear deeper in the tree anyway. Our “mixture”
consists of multiplying the length of the associated
box with the length of the bounding box for each
axis and split along the axis with the largest prod-
uct. To shorten the preprocessing time, we calcu-
late only the bounding box of 1000 randomly cho-
sen points for larger point sets in the nodes instead
of the whole set. We assume that we are given the
first part of our data set representation with the point
coordinates, indices of the points in each cell, cell
types and the values at the points or cells. This is the
typical situation after loading the data set in most
formats. Note that the construction of the kd-tree
and the computation of the point to cell incidence
information are completely independent.
For the kd-tree creation, we use an intermediate ar-
ray of objects storing index and point coordinates
for every point. The following recursive procedure
builds the tree:
struct { int index; double x[3]; } points[m];

void buildKDTree(int a,int b,int levels,
axis_aligned_box box)

// creates adaptive kd-tree of points[a..b]
// with associated box
{
axis_aligned_box boundingBox; leftBox,

rightBox;
if (b-a) > 1000 then

boundingBox =
BoundingBoxOf1000RandomPoints(a,b);

else
boundingBox = BoundingBox(a,b);

int splitDim =
ComputeSplitDim(box, boundingBox);

storeAtEndOfSplitDimArray(splitDim);

//if a = b the result is points[a].x[splitDim]
double splitValue =

SplitPointsAtMedian(a,b,splitDim);

storeAtEndOfSplitValueArray(splitValue);

levels = levels - 1;
if levels = 0 then

{
storeAtEndOfLeaves(points[a].index, points[b].index);
}

else
{
leftBox = ComputeLeftBox(box, splitDim, splitValue);
buildKDTree(a, (a+b) div 2, levels, leftBox);
rightBox = ComputeRightBox(box, splitDim, splitValue);
buildKDTree((a+b) div 2 + 1, b, levels, rightBox);
}

}

The starting command is
buildKDTree(0, m-1, ceil(log(m)/log(2)) ,

BoundingBox(0,m-1));

For the splitting, It may be noted that the Proce-
dure SplitPointsAtMedian (Similar to [14]),

666

that sorts the points so that all coordinate values of
the left half are smaller than these of the right one
in the current direction, runs in O(b − a) average
time. Besides this, it is nice to see that all the arrays
are filled in a manner where you always append the
new values at the end.

4.3 Construction of Cell Adjacency Infor-
mation

Since our point to cell adjacency structure is rather
typical, its construction is straight forward. In a first
run through the cells, we count the number of inci-
dent cells for all points and store it in a helper ar-
ray for the number of incident cells. Then we go
through this array, calculate the offsets for the ar-
ray N and set the numbers back to zero. After this,
we pass through all cells again, count the number of
incident cells again and store the cell indices in the
array for them using the calculated offsets and cur-
rent count. In a final step, we sort the cell indices
for each point in increasing order to speed up the
calculation of face neighbors for later topological
queries.

5 Point Location

The main idea of our point location method is to
first guess a cell near the searched point via our
point-based adaptive kd-tree and then refine our
search via some iterative method using cell adja-
cency, in our case, ray shooting. We could have
used Haimes’ method of calculating the local coor-
dinates for a traversed cell by iterative refinement
but, we expect problems for highly skewed cells
if the initial guess is far away, because many cells
have to be crossed and it is not clear which solution
for the local coordinates to use. These conditions
seem unlikely but, as our statistics in table 1 show,
it happens for some input points in all the data sets.
So, to find the cell C containing an arbitrary point
P in the grid, we proceed as follows:
Since in most cases, the new cell is close to the last
requested cell, we may have already a cell Cold as
initial guess. If the distance from Cold’s center cold

to P is smaller than the radius rold of the bounding
sphere of Cold, we try to shoot a ray from cold to P .
If this fails (no cell Cold, too large distance or the
boundary was hit), we have to use the kd-tree and a
ray leads us to C as shown in subsection 5.1. If we

eb
a

g

d

f

c

k

Figure 3: search ray started at vertex a to find cell
for point b hits the boundary at c, kdtree leaf face
k is cut in elongation of search ray and alternative
search rays can be started from vertices d-g , which
lie in kdtree leaves neighboring to k, and the ray
from d finds the correct answer

have to use the kd-tree, we take the following three
steps:
(1) We search in our kd-tree for the leaf L contain-

ing the given point P and get the index of the
vertex V contained in that leaf.

(2) We get a cell C intersecting the box bL of L
by requesting an incident cell of V from our
cell adjacency information.

(3) We shoot a ray from V to P starting in C and
going through cell neighbors following the ray
from face to face.

Close to the boundary, it can happen that a search
ray for a point P hits the boundary although the
point is inside the grid. To overcome this problem,
we determine the face where the elongated search
ray exits bL (see figure 3).

Then we build a box out of the face by adding
some epsilon distance in all dimensions and get all
kd-tree leaves intersecting the box. For every leaf,
we proceed as for the first leaf until a cell was found.
If no cell was found, the position is outside the grid.

5.1 Ray shooting

In general, we use the standard ray shooting method
to find the face where the ray goes from inside to
outside: Of course, we have to intersect the ray with
all faces and take the closest intersection. We look
for the neighboring cell at this face and follow the
ray through this cell.

666

a b

Figure 4: When the actual point is near a vertex, it
can happen due to numerical problems that the pa-
rameter value for the correct edge to go (a) is nega-
tive and so the ray goes through the wrong face (b)
(all faces are oriented to the outside)

Ray shooting through bilinear faces (quadrilateral
faces whose vertices do no lie in a plane, and every
point on the face is computed by bilinear interpola-
tion) is necessary for pyramids, prisms and hexahe-
dra. Here, we do not approximate the intersection
points but compute them exactly so that

• if the ray goes into the border, we have the
exact intersection (useful for streamlines or
stream surfaces).

• the interpolation is correct (a wrong cell leads
to wrong interpolation).

• the ray shooting works also for very small and
thin cells.

This can be speeded up by only looking at those bi-
linear faces where the ray cuts a range between two
planes, since one can put a non-planar face with 4
vertices in a range between two parallel planes with
minimal distance by calculating the cross product
of the face diagonals. This is taken as plane normal
and the first two points on the face are used as points
lying on different planes. The exact solution gives
us the value of the local parameters in the face, so
we can decide if the ray goes through this face or
not. Here, we widen the range of the local param-
eters in the face by an epsilon which shouldn’t be
chosen too small, e.g. 10−6 (when using double
precision).
Since dealing with numerics can get frustrating
here, you should consider the following:

• You should not go through faces which are al-
most parallel to the ray — this causes large nu-
merical errors and you do not really know if
the ray exits or enters. The epsilon for this cri-
terion should be chosen tight at the numerical
errors, so you do not ignore too many faces.

• If the ray passes the cell near a vertex (or

Figure 5: Cases of bilinear faces with two ray in-
tersections, here illustrated in two dimensions. The
dotted arrows are the bilinear surface normals used
to determine ray exit or ray entry.

edge in 3d), it can happen that one calculates
a lower parameter for a face intersection of the
ray than the parameter for the entry in the cell
but one has still found the correct face where
the ray exits the cell, see fig. 4. A test for the
smallest absolute line parameter value helps in
this case if one considers only faces where the
ray goes from inside to outside.

• You should also keep in mind that two inter-
section points of the ray with a bilinear face
can be on the cell’s boundary (determined as
above with local parameters), see fig.5. You
should always take the one where the ray exits
the cell. (Surface normals at these points can
be computed to determine exit or entry.)

6 Results

6.1 Test Data

Since the whole data structure is motivated by large
unstructured grids with highly skewed cells, it is es-
sential to analyze its performance on such grids. We
have chosen six applications of different size and
level of difficulty to conduct our tests. All data sets
stem from CFD simulations of problems in mechan-
ical engineering, aerospace and automotive indus-
try.
Our first data set “NACA” is a two dimensional sim-
ulation of the flow around a typical wing profile of
airplanes. The grid consists of a large circle con-
taining a tiny wing profile in the center with a strong
increase of point density towards the wing. The far
field is discretized with triangles and the surround-
ing of the profile is modeled by quadrilaterals. Our
second data set “GBK” is a tridimensional simu-
lation of the flow inside a combustion chamber of
a gas heating for standard homes. The grid mod-

666

els the whole combustion chamber and consists of
tetrahedral cells with nice edge ratios above 1 : 7.8.
This kind of data set could be seen as a friendly,
small one that can be handled by most data structure
approaches for unstructured grids. (Our old octree
implementation could handle it quite well.)
The third test set “ICE” simulates the air flow
around the German fast train ICE2 with the wind
coming at an angle of 15 degrees compared to the
movement of the train. This is a first real test for our
structure, since it has enough cells and low enough
edge ratios to cause trouble.
Our fourth test “DELTA” models the flow around a
delta wing. The wing has a profile creating about
60 % of the lift while vortices caused by the delta
shape are responsible for 40 % of the lift. The
flow reaches the wing at 25 degrees angle of at-
tack. The grid consists of a large cylinder with a
tiny delta wing in its center. As typical for adaptive
unstructured grids, the point distribution increases
strongly towards the wing and vortical areas above
the wing. Around the wing there are skewed prisms
with high edge ratios and highly non-planar quadri-
lateral faces.
The fifth data set “F6” is an airplane simulation of
a typical passenger airplane design, where only one
half of the plane is modeled. The grid is a large box
with a small half of the airplane on the right side
and a jet engine adapted to the wing.
Our sixth and largest data set “BMW” simulates the
flow around one half of a car. The half car sits
on one side of a large box, and, once again, the
points become closer and the cells smaller towards
the body of the car.

6.2 Test Results
Our tests analyze the two different important phases
of a search structure: construction and searching.
All timings have been measured on a standard PC
with an AMD XP 1700+ Prozessor (1.466 GHz)
and 1.5 GB of main memory.
The top part of table 1 shows the data set statis-
tics as described in the previous subsection includ-
ing the maximum number of cells sharing a point
and total memory usage by our data structure as de-
scribed in subsection 4.1. The middle part of ta-
ble 1 gives the memory consumption of our kd-tree.
Since this is about 10 % of the overall memory,
it clearly shows that our kd-tree is a really small,
memory efficient structure as claimed in the intro-

duction. Regarding the construction time, an analy-
sis of the algorithm in subsection 4.2 gives an aver-
age and worst case O(n log n) time which matches
pretty much the results in our tests. Since there is no
serious dependency on the distribution of the points
in the algorithm, this comes with no surprise. It can
also be seen that searching the kd-tree alone, takes
O(log n) time.
The more serious test is the analysis of the point lo-
cation algorithm since the structure has to show its
real potential here. Since we wanted to test all parts
of the grid, we chose a random point in each cell
and asked the point location algorithm to find the
right cell. In the bottom part of the results table 1,
we present the average time per search as well as the
average and maximum number of cells crossed by
our implementation of ray shooting. This includes
several rays close to the boundary as described in
subsection 5.1. The results show a rather low num-
ber of average cells crossed by the ray to its final
destination, typically around 5 for all data sets. It is
interesting to compare this with the performance of
a cell-based octree or a similar cell-based structure.
The number of cells per vertex and the maximum
number of cells sharing a point in table 1 indicate
a meaningful maximum number of cells that one
would typically allow in each leaf or bucket. Since
this is substantially higher than our average num-
ber of crossed cells and inside tests are not cheaper
than ray shooting (we could use Haimes’ method
of calculating local parameters to find the next cell
which is a typical inside test), it can be shown that
our structure has a substantially better search time
in the average case. Our worst cases happen at the
boundary which can not be a surprise after looking
at the grids and the description of the necessary ad-
ditional rays in this area.
All together, the results show that our data struc-
ture is small and allows fast point location, even in
partly bad shaped but typical grids for modern adap-
tive simulations.

7 Conclusion

We have presented a new memory and time efficient
point location method for large unstructured grids.
The structure can be constructed in O(n log n)
time using O(n) memory as can be shown in the-
ory and has been verified under realistic practical
tests where n is the number of points. This number

666

is typically a factor of 3 − 4 lower than the number
m of cells. The point location can be performed in
O(log n) average time using point to cell incidence
information which is typically stored for efficient
ray casting or streamline integration by most visu-
alization systems. We have shown that the struc-
ture allows fast requests for “well shaped” areas of
a mesh and that it supports extremely non-uniform
point distributions as well as highly skewed cells
with edge ratios lower than 1 : 1.000. Therefore,
this new structure is an excellent tool for point loca-
tion in large, highly adaptive unstructured grids in
CFD or other application domains.
The structure may exhibit bad behavior for ragged
borders with a low cell resolution around the bor-
der. Here, the structure may suffer problems with
finding the correct cell. Currently, this can only be
eliminated by a time-consuming preprocessing test
for cells not found by the cell locator in a test sim-
ilar to section 6.2 and adding these cells to the kd-
tree leaf where the search failed. This has not been
necessary for our test data, but it might be a starting
point for further research.

8 Acknowledgment

We like to thank all members of the visualization
group in Kaiserslautern, especially Tom Bobach for
ideas, Christoph Garth for leading the FAnToM vi-
sualization system development which we used as
environment, Kai Hergenröther for the graphical
user interface used for tests and screen shots, and
Martin Öhler for creating the planar cuts through
the grids of our test data sets. Further thanks go
to all members of the computer graphics institute
at the University of Kaiserslautern for providing us
with a nice working environment. We greatly ac-
knowledge the helpful discussions with our part-
ners at DLR Göttingen, especially Markus Rütten,
Siemens Adtrans, and BMW. We thank them very
much for the demanding data sets that inspired this
work and were used in the tests.
This work has been partly supported by the
Deutsche Forschungsgemeinschaft (DFG) under
contract HA 1491/15-4.

References

[1] J. L. Bentley. Multidimensional Binary Search
Trees Used for Associative Searching. Com-

mun. ACM, 18:509 – 517, 1975.
[2] M. de Berg, M. van Kreveld, M. Over-

mars, and O. C. Schwarzkopf. Computa-
tional Geometry — Algorithms and Applica-
tions. Springer, Berlin, 2000.

[3] R. Haimes, M. Giles, and D. Darmofal. Vi-
sual3 — A Software Environment for Flow
Visualization. In Computer Graphics and
Flow Visualization in Computational Fluid
Dynamics, VKI Lecture Series #10. VKI,
Brussels, Belgium, 1991.

[4] K. Mulmuley. A Fast Planar Partition Algo-
rithm, i. Journal of Symbolic Computation,
10:253 – 280, 1990.

[5] F. P. Preparata and R. Tamassia. Efficient
Point Location in a Convex Spatial Cell-
Complex. SIAM Journal Comput., 21:267 –
280, 1992.

[6] W. Schroeder, K. W. Martin, and B. Lorensen.
The Visualization Toolkit. Prentice-Hall, Up-
per Saddle River, NJ, 2nd edition, 1998.

[7] R. Seidel. A Simple and Fast Incremental
Randomized Algorithm for Computing Trape-
zoidal Decompositions and for Triangulating
Polygons. Computational Geometry Theory
Applications, 1:51 – 64, 1991.

[8] S.-H. Teng. Fast Nested Dissection for Finite
Element Meshes. SIAM Journal Matrix Anal.
Appl., 18(4):552 – 565, 1997.

[9] D. Thompson, J. Braun, and R. Ford.
OpenDX: Paths to Visualization. VIS Inc.,
Missoula, MT, 2001.

[10] J. Wilhelms and A. van Gelder. Octrees for
Faster Isosurface Generation. ACM Transac-
tions on Graphics, 11(3):201 – 227, 1992.

[11] H. Samet The Design and Analysis of Spacial
Data Structures Addison-Wesley, Reading,
MA, 1990

[12] Krause, Strecker, Fichtner. Boundary Sen-
sitive Mesh Generation Using an Offsetting
Technique International Journal for Numer-
ical Methods in Engineering, 49(1-2):10 – 20,
2000

[13] M. Bern, D. Eppstein, S.-H. Teng Parallel
Construction of Quadtrees and Quality Trian-
gulations International Journal of Cumputa-
tional Geometry and Applications, 9(6):517 –
532, 1999

[14] C.A.R Hoare FIND Algorithm Communica-
tions of the ACM 4(7):321 – 322, 1961

666

Dataset NACA GBK ICE DELTA F6 BMW

Number of points 24K 32K 1.0M 1.9M 3.6M 4.3M
Number of cells 38K 174K 2.6M 6.3M 8.4M 13.5M

Tetrahedrons - 174K 0.9M 3.9M 2.2M 7.8M
Prisms - - 1.7M 2.4M 6.2M 5.6M

Pyramids - - 15k - 15k 130k
max edge ratio 10000 7.8 45355 2797 38298 20779

max cells per point 7 50 88 88 308 77
total used memory 6MB 22MB 191MB 464MB 783MB 1085MB

kdtree statistics
memory for kdtree 0.4MB 0.4MB 26MB 26MB 52MB 104MB

building time for kdtree(s) 0.63 0.8 31.8 63.5 128 152
divided by n"log2(n)# 1.75 1.67 1.59 1.59 1.61 1.53

search in kdtree(µs) 3.33 3.13 6.05 6.73 7.28 7.28
divided by "log2(n)# 0.222 0.208 0.303 0.321 0.331 0.317

point location statistics
mean µs per search 93 147 180 181 219 163

mean cells gone 2.89 4.42 4.68 4.78 5.76 4.36
max cells gone 33 16 6127 414 10032 50856

re-search after boundary hit 53 0 69413 36129 361878 222348
mean # rays per re-search 1.47 - 4.60 1.90 2.35 2.74

maximum # rays per re-search 6 - 730 43 150 658

Table 1: Test statistics for the six chosen data sets NACA, GBK, ICE, F6 and BMW.

666

NACA example with different zoom factors

kdtree of NACA example with alternating (left) and adaptive (right) splitting

pictures of GBK,ICE,DELTA,F6 and BMW datasets with pressure distribution on the surface and planar
cuts through the grid

666

