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Abstract

An application of C* scalar interpolation for 2D vector field topol-
ogy visualization is presented. Powell-Sabin and Nielson inter-
polants are considered which both make use of Nielson’s Minimum
Norm Network for the precomputation of the derivatives in our im-
plementation. A comparison of their results to the commonly used
linear interpolant underlines their significant improvement of sin-
gularities location and topological skeleton depiction. Evalution is
based upon the processing of polynomial vector fields with known
topology containing higher order singularities.

Keywords: vector field visualization, topology, critical point the-
ory, C*-interpolation

1 Introduction

Vector field visualization is an issue of major interest in many sci-
entific and engineering areas. As a matter of fact, vector fields
offer a qualitative and quantitative description of numerous natu-
ral phenomena. In physics, they play a fundamental role in fluid
dynamics, solid mechanics, electricity or magnetics, among others.
They are also impossible to circumvent for engineers that massively
make use of them in disciplines like computational fluid dynamics
(CFD), finite element analysis (FEA) and computer aided design
(CAD). Typically, measurements or numerical simulations provide
analysts with increasingly large vector data sets. This unrefined in-
formation must next be properly conveyed for interpretation. The
aim of vector field visualization is to offer a convenient way to ex-
tract this information. But to be of any interest, the display has to
focus efficiently on the most meaningful aspects of the data to avoid
confusing the results.

Among the existing techniques in this sphere, topology-based
methods have proved to be very successful in enabling a good in-
sight into the qualitative nature of the vector field while reducing
the size of the data. Their basic principle is to locate and classify
the critical points (i.e zeros) of the field and to draw a small number
of remarkable streamlines connecting them.

As a preliminary step of the topology extraction, one has to work
out the interpolation of the given discrete data. The most com-
monly used solution is the computation of a linear interpolant over
each cell of the triangulated (unstructured) point set. One problem-
atic aspect of this method is that the linear interpolant is inaccu-
rate when being confronted with several very close critical points
or with higher order singularities : zeros are moved or split up and
the global topology is thus likely to be altered. Furthermore, one
gets piecewise constant differential fields (e.g. divergence, curl)
that cannot be meaningfully compared to experimental measure-
ments or simulations. Consequently, consistancy is lost between
the vector field and its associated differential fields.

This paper presents two higher order interpolation schemes ap-
plied to vector field topology visualization. It is shown that the

topology is in both cases better reproduced than by piecewise linear
interpolation. Furthermore, unlike the latter, Cl-interpolation suc-
cesfully attacks the problem of additional critical points. At last,
the resulting topological skeletons appear more reliable and easier
to analyze.

The structure of the paper is as follows. One starts with a review
of the literature dealing with vector field topology detection and
higher order methods designed to improve the accuracy of the tra-
ditional linear schemes. C*-scalar interpolation is then discussed:
because the required derivatives information is not present in the
original dataset, we use Nielson’s Minimum Norm Network for
that purpose. This method is introduced in the next section. Then
we present two interpolation schemes, namely Powell-Sabin’s and
Nielson’s ones that achieve a C'*-continuity over the triangulation.
In section 4, one brings back some basic definitions of vector field
topology. Implementation apects are discussed in section 5. Finally,
results are shown in the last part, which consists in a comparison of
the topological skeletons obtained with both C*-interpolants and
the classical linear interpolation.

2 Related Work

Topology-based methods were introduced in vector field visualiza-
tion by Helman and Hesselink about ten years ago (see [Hel89],
[Hel91]). Their basic principle stems from critical point theory: i
consists in focusing on few features of the field, namely its criti-
cal points (where the field is zero) and the streamlines connecting
them (the so-called separatrices) to get a domain decomposition
into subregions that are all topologically equivalent to a uniform
flow. Helman and Hesselink restricted their study to a first order
approximation that is, by only considering the jacobian matrix at
critical points to infer the local aspect of the field around them. This
work gave rise to several extensions: Globus et al. ([Glo91]) devel-
oped a visualization environment called FAST in which they extract
and visualize the topology of 3D vector fields; Bajaj et al. ([Baj98])
applied such a topology-based method to scalar fields visualization;
Nielson et al. (see [Nie97]) applied several explicit methods to the
computation of tangential curves and topological graphs in the case
of 2D vector fields, linearly interpolated over a triangulation.

Most methods assume that the initial scattered vector data have
been reconstructed into a continuous field thanks to a piecewise lin-
ear interpolation over the beforehand computed triangulation of the
given sample points. It explains the first order restriction of former
topology-based methods. Nevertheless, the linear interpolation of a
vector field can yield a large number of critical points. In particular,
two neighboring triangles may contain critical points of different
kinds (namely of indices +1 and -1, see section 4). Such effects
are not desirable for they artificially increase the complexity of the
topology. To address this problem, Scheuermann and Hagen (see
[Sch98a]) proposed a data dependent triangulation based upon the
fact that if two neighboring triangles both contain a zero, the two



new triangles obtained by swaping their common edge do not. One
achieves in that way a significant reduction of the number of critical
points which clarifies the resulting depiction of the field.

Futhermore, the linear interpolant which is clearly unable to con-
vey higher-order singularities, introduces topological artefacts such
as splitting into several simple critical points (lying in different tri-
angles) of higher order zeros. To deal with this deficiency, Scheuer-
mann et al. (see [Sch98b]) introduced higher order polynomials to
process the area located around such critical points: starting with a
linear interpolation over a triangulation of the points, they next look
for neighboring triangles containing several zeros and then compute
inside them a polynomial approximation of the data. The choice of
these polynomials is motivated by Clifford analysis, mathematical
background of their study. Problems remain when connecting the
linear interpolated triangles with the “higher order” cells for, in the
latter, the data are not interpolated.

There has been also some work using higher order derivatives:
last year, Roth and Peikert (see [Rot98]) showed the use of higher
order derivatives for finding bent vortices.

3 Cl-Interpolation

C*-interpolation over triangles is an issue that has been widely
studied for about 30 years. As a consequence, there are many ex-
isting interpolants in this field. Nevertheless, in our case, we are
interested in the topology (see 4 ) extraction of the resulting in-
terpolated field. That is, we have to concentrate on schemes that
are computation-efficient as well as able to result in a meaningful
topology. These considerations led us to restrict or implementation
to only two methods: Nielson’s C-interpolant ([Nie83]) and the
Powell-Sabin scheme ([Pow77]).

As a preliminary step, both methods require to be provided with
derivatives information at each vertex of the scattered data. As we
said in introduction, in a first step we have computed an (optimal)
Delaunay triangulation and are thus in a position to treat the data
globally for this goal. We then chose to use Nielson’s Minimum
Norm Network.

3.1 Derivatives Computation:
Nielson’s Minimum Norm Network

Let us introduce some convenient notations: We are given a set
of N points Vi,...,Vn. Ty denotes the triangle with vertices
Vi, Vi, Vi, es represents the edge linking V; to V; and N is a list
of the indices representing the edges of the triangulation. The curve
network is thus defined over E = U;jen. e;;. We also define the
following directional derivative:

the derivative along an edge is given by
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where ||e;;|| is the length of e;;.

Now we consider the problem of finding an interpolating curve
network which minimizes, for F' € C[E] = {F : F is the restric-
tion to E of some C* function defined on D, union of all triangles}:
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where ds;; represents the element of arc length on the curve con-
sisting of the line segment e;;. We have then the following result:
Let S € CJ[F] be the unique piecewise cubic network, with the

properties that S(V;) = 23,4 =1,..., N and
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where N; = {ij : e;; is the edge of the triangulation with the
endpoint V;(z:, y;)}, and

oS
Then, among all functions F € C[E], F(V;) = z;,i =1, ..., N,
the function .S uniquely minimizes o (F’).
Solving this linear system in Sz (V;) and Sy (V;), i = 1, ..., N,
one is next able to build a cubic polynomial curve on each edge e;;
by Hermite interpolation.

3.2 Interpolation

Once the derivatives have been estimated at each vertex of the scat-
tered data, an interpolation must be processed over each triangle
which ensures a C*! continuity throuh the edges of the triangula-
tion. We start with a brief description of the Powell-Sabin method
which does not fulfil the requirements of the Minimum Norm Net-
work (for its restriction on the edges is not a cubic polynomial) but
enables an analytic search of its roots (see 4).

3.2.1 Powell-Sabin Interpolant

This method is based on the following remark: a biquadratric poly-
nomial is unable to fit both values and derivatives at each edge of a
triangle for it offers only 6 degrees of freedom and there are 9 in-
terpolation conditions to fulfil. So we need to increase the degrees
of freedom. This may be achieved thanks to a subdivision of each
triangle into 6 subtriangles (see picture below).

Division of ABC into 6 triangles

Starting with a biquadratic polynomial defined over triangle OAQ,
say qo(z,y), one then adds a correction term each time one crosses
an intern edge, moving in a clockwise direction about O. The only
quadratic solutions for this correction term, that ensure the required
C* continuity through the edge have the form:

Ai(lix + miy + m’)2

where (I;z + m;y +n;) is the cartesian equation of the i-th crossed
edge and \; is the parameter to adjust.



Ensuring the interpolation conditions for values and derivatives and

forcing
5
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one gets a non singular linear system in 12 (non independant) vari-

ables. By solving it, one obtains the desired piecewise biquadratic
C* interpolant. (see [Pow77]).

3.2.2 Nielson’s Blending Method

The second C!-continuous method we have tested is Nielson’s
C' Side-Vertex blending method (see [Nie83]). This scheme
profits more from the Minimum Norm Network we introduced
previously for it respects the cubic curves built on the edges on the
triangulation. However, since it consists in a rational function, its
zeros may not be found analytically (see 5.2.1).

So to extend the scalar values defined on the edges to the whole
domain, Nielson proposes the following formula:

For any point (z,y) with barycentric coordinates b;, b;,bx in a
triangle with vertices V;, Vj, V4, one sets:

Ca[F(z,y) =
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One gets in this way a 9-parameter, C'* interpolant.

4 Vector Field Topology

As said previously, what we mean with vector field topology con-
sists in fact in the association of critical points and some particular
streamlines. In this work, we adopted the concept of topological
skeleton proposed by Helman and Hesselink (see [Hel91]).

Let us recall that we consider the eigenvalues of the jacobian matrix
(restricting our analysis to a linear approximation):
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Depending on their sign and on their imaginary part, one gets 6
possible configurations for the vector field around a singular point

(see illustration). To describe the qualitative nature of a critical
point, one can also use its index:

0(vz, Uy)
o(z,y)

(z0,y0)

Let z be an isolated zero of the vector field v : D — RZ.
Then there is a neighborhood U of z containing only one critical
point. Let U" = U — {2} and D.(z) C U be a closed disc around
zof radius e. Lety. : S' — S. C U’ be the boundary curve of

D.(z). We define the index of the critical point z of the vector field
v as:

. . 1
ind,v = Eh_r)r}) %f de¢
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where ¢ is the angle cordinate of the vector field, namely

v vy v, — v dv
d¢ =darctan* = X2————+
Vg vz + vy

that is, the index measures the number of rotations of the flow
around a critical point and thus characterizes its nature.

Notice that for the special case of singularities of first order, the
possible values of the index are +1 and -1.

P N
N

Attracting Node Saddle Point Attracting Focus
R1,R2<0 R1<0,R2>0 R1,R2<0
11,12=0 11=12=0 11=-12<>0

i (]
Repelling Node Center Repelling focus
R1,R2>0 R1=R2=0 R1,R2>0
11,12=0 11=-12<>0 11=-12<>0

possible configurations of 1st-order singular points
R1, R denote the real parts of the eigenvalues
and Iy, I» their imaginary parts

5 Locating Critical Points

As we sais previously, the topology extraction of a vector field starts
with the location of its singular points. In this section we explain
how we have achieved it with both interpolants we have considered.

5.1 Powell-Sabin Case

In the presentation of this method, we underlined the fact that it is
possible to determine algebraically the zeros of a biquadratic poly-
nomial. The method is as follows.

Let

P(z,y) = ao+aiz+axy+aszy +asx” + asy’
Qz,y) = bo +b1x+bzy+bsmy+b4x2 +b5y2
be two quadratic polynomials which roots have to found. We may

consider each bivariate polynomial as a polynomial in the y variable
(i.e. = becomes a parameter):

P.(y) = (ao+aix+asx’) + (az + azz)y + asy’
= ao(z) + ar(x)y + ay’

Q=(y) = (bo+ b1z +baz?) + (b + bsz)y + b5y’

Bo(@) + Bu(x)y + Boy’



We next introduce the so-called resultant of the system, defined by:

ao(z) ai(z) a2 0
0 ao(z) ai(xr) a2
Bo(z) PBi(xz) B 0
0 Bolz) Bu(z) Po

R(P-'B:QE) =

with the property that R(P,, @) = 0 if and only if P, and Q,
have a root in common. Now R(P;, Q) is a 4th-order polyno-
mial in the z variable which roots may be found thanks to classical
methods. The found z values must next be replaced in either the
equation of P, (y) or @ (y) to get a quadratic polynomial which
roots are the zeros of the system.

In our special case, we obviously have to check if the roots lie inside
the subtriangle over which the considered biquadratic polynomial is
relevant.

5.2 Nielson Case

To compute the position of the zeros for Nielson bi-rational inter-
polant, one has to solve a system of two equations of fifth order.
As we are not able to achieve it analytically ion this case, we have
to use numerical algorithms. Unfortunately, the existing algorithms
need to be provided with a “good” initial guess to start their search
and we can not infer, a priori, the approximate location of the sin-
gular points in the interpolated field. These remarks led us to adopt
the following heuristic: as a first step, we find out which triangles
may potentially contain one or more zero (actually, one could find
up to 25 zeros for such a polynomial system, even if this is practi-
cally very unlikely to occur); then we divide each so-called “can-
didate triangle” in 25 subtriangles, in which we process the same
detection; the last step consist then in taking the barycenter of each
interesting subtriangle as first guess for a numerical search, assum-
ing that only one zero, at the most, is to be found in it. Let us detail
these topics.

5.2.1 Finding Candidate Triangles

The aim of this procedure is to avoid numerical searchs in vain. To
keep efficiency in our processing, we have to take away the trian-
gles that can not contain any critical point. But to be of any practical
use, this dichotomy has to be fast. We thus came to the idea of only
focusing on the control polygons of the cubic polynomial defined
along the edges of each triangle. The reason is the following: when
we build the Nielson’s interpolant over each triangle, we compute
a blending of the splines on the edges so as that a kind of energy
criterion is minimized (see 3.2.2). Consequently, if no spline on the
border crosses the X-Y plane, we assume that also the interpolant
over the triangle does not which has been confirmed by our numer-
ical tests. So we have to check for each dimension, if a spline has
a root. To speed up that process, we approximate the behaviour of
the spline by its control polygon, easily defined by both value and
derivative of the field at both vertices of the edge. Five® generic
configurations may occur (see figure below), from which four may
lead to a zero (namely, in case 1 one gets no zero whereas in cases
2 and 3 one exactly gets a zero and in cases 4 and 5 one has either 2
or no zeros). If we get such “zero”-configurations for both dimen-
sions then the triangle is marked as “candidate” and will be further
processed.

La sixth configuration is theoretically possible which has 3 roots but this
situation does not occur in our case for the splines on the edges minimize
the pseudonorm introduced in 3.1

A
0 Case3\/

OA/O\ /

0o Case 4 1 0\@ 1

generic configurations of the Bézier control polygon
for a cubic polynomial

This kind of sign test is similar to the scheme proposed by Asi-
mov et al. to find candidate cells in the case of a bilinear interpolant
([Tut92]).

5.2.2 Processing of Subtriangles

As we said, we cut each candidate triangle into 25 subtriangles,
so as to avoid finding several zeros in the same cell. This may be
justified by the fact that our birational interpolant may have at the
most 25 zeros on the one hand and that 2 zeros should not be too
close together on the other hand, for this would mean an oscillation
of the interpolant, quite incompatible with its pseudo-energy mini-
mization property. Then we compute the value of the index (see 4)
of each subtriangle: a value +1 or -1 shows the presence of a criti-
cal point. (Notice that even if higher order singularities - e.g. with
index +2, -3, ... - may theoretically occur, they do not in practical
cases).

Saddle:
index -1

no singularity:
index O

\
W7
index of subtriangles

Remark that the index method was not used for the “big” trian-
gles because one may get several critical points in the same triangle,
which can lead to a 0 index computed on its border, while it actu-
ally contains singularities (for example, the problem occurs when a
saddle and an attracting focus lie in the same triangle: the sum of
their indices is —1 + 1 = 0 and one misses two critical points).



Saddle:
index -1

Attracting
Node:
index +1

triangle with index 0
containing a saddle and an attracting focus

5.2.3 Numerical Search

The former steps intended to provide a “good” first guess for a nu-
merical search. By eliminating all the triangles that do not contain a
critical point and finding out (small) subtriangles that actually con-
tain a single zero, we have achieved it. Now we take the barycenter
of each selected subtriangle as first guess. For the numerical search,
the Newton-Raphson algorithm is applied, which works satisfacto-
rily for our needs.

6 Results

6.1 Test Datasets

The test of our interpolation schemes requires that we are able to
give an analytic description of a vector field, the topology of which
is known exactly. Furthermore, to prove the accuracy of our al-
gorithm, we must be able to design the global topological aspect
of the field, for examples by introducing many different features,
putting two critical points close together, inserting higher order crit-
ical points,...

The only vector fields that are usually known topologically are
linear fields or some special cases that restrict the generality of
our purpose. However in a previous paper, we proved a theorem
that enables the design of polynomial vector fields with higher
order singularities. We just bring back here the main results (see
[Scha7]).

Let (e1, e2) be the canonical basis of R? and let
v(r) = Re(az+ bz +c)er + Im(az + bz + c)ex
(where r = ze1 +ye2 and z = x +4y) be a linear vector field. For
la] # |b] it has a unique zero at Re(zo)e1 + Im(zo)e2 € R”. For
|a] > |b| has v one saddle with index -1. For |a| < |b] it has one

critical point with index 1. The special types in this case can be got
from the following list:

1. Re(b) = 0 < circle at zo.
2. Re(b) # 0, |a] > [Im(b)| < node at 2.
3. Re(b) # 0, |a| < |[Im(b)| < spiral at zo.
4. Re(b) # 0, |a| = |[Im(b)| < focus at zo.

In cases 2)-4) one has a sink for Re(b) < 0 and a source for
Re(b) > 0. For |a| = |b] one gets a whole line of zeros.

For our needs, we use the following theorem:

Letv : R? — R? be the vector field
v(r) = Re(E(z,%))e1r + Im(E(2,Z))e

with

B(27) = [[(arz + bz + c),  lax] # [bl,
k=1

and let zx be the unique zero of axz + bxz + cx. Then v has
zeros at zj, j = 1,...,m, and the index of v at z; is the sum of
the indices of Re(arz+brz+ck)er+Im(arz+brz+ck)es at z;.

(That is, we only make use of linear factors).

Remember that a critical point with index -1 is a saddle point,
whereas a critical point with index +1 may be a circle, a node, a
spiral or a focus. Practically, it means that when we design our
vector fields we are able to locate the saddle points and the critical
points of index +1 (the precise nature of which is unknown) as well
as to define critical points of higher order by giving axz + bxZ + cx
a multiplicity higher than 1 in the expression of E(z, Z).

6.2 Examples

As said previously, the presentation of our results is based upon the
comparison to a piecewise linear interpolation of the same data. For
each case, the exact topology is proposed as reference.

6.2.1 First Example

In this first example, one introduces several critical points, one of
which is of higher order. The definition of this field is:

Let D = [—1,1] x [-1,1]

v:D — R’
r = (z—(0.74 4 0.35i))(z — (0.68 — 0.594))
(z— (—0.11 — 0.72i)(z — (—0.58 — 0.64i))
(z — (0.51 + 0.273))(z — (—0.12 — 0.847)) e,




attracting spiral
N\

repelling spiral index +2 saddles
ex.1: topology of the original vector field

We start with a sample of 500 vectors:

ex.1: linear interpolated vector field (500 vectors)

The linear interpolation results here in a erroneous topological
skeleton: singularities are missed which entails the deformation and
disappearence of separatrices. Globally, this depiction of the field
should be considered as totally unsatisfying.

Nielson C*-interpolant produces the following result.

ex.1: Nielson Cl-interpolated vector field (500 vectors)

This time, the global aspect of the topology has been respected.
The only topology deformation occurs at the expected location of
the higher order singularity: it has been split up in attracting and
repelling foci.

With the same points sample one gets the following topology, when
applying Powell-Sabin’s method.

ex.1: Powell-Sabin Cl-interpolated vector field (500 vectors)

No significant difference appears in this case, compared to
Nielson’s method.

By doubling the number of sample points, one gets for all the
interpolants a globally satisfying depiction of the topological skele-
ton. Nevertheless, the area locating around the higher order singu-



larity remains problematic as shown in the following enlargements.

ex.1: linear interpolated vector field
around the higher order singularity (1000 vectors)

Although one could expect an improvement of the topology approx-
imation with more points, as far as the higher order singularity is
concerned the results are worse: the whole aspect of the field in this
area has been deformed and the presence of an higher order singu-
larity is impossible to guess.

Nielson’s method offers in this case the same kind of result as with
500 points.

ex.1: Nielson Cl-interpolated vector field
around the higher order singularity (1000 vectors)

One can notice that the two foci have become closer which
represents an improvement of the higher order singularity approxi-
mation.

ex.1: Powell-Sabin Cl-interpolated vector field
around the higher order singularity (1000 vectors)

In this case Powell-Sabin interpolant confuses the topology depic-
tion by introducing two additional singularities that have no mean-
ingful impact on the global aspect of the topological skeleton.
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