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Abstract

Ridge and valley manifolds are receiving a growing attention in visualization research due to their ability to
reveal the shapes of salient structures in numerical datasets across scientific, engineering, and medical applications.
However, the methods proposed to date for their extraction in the visualization and image analysis literature are
computationally expensive and typically applied in an offline setting. This setup does not properly support a user-
driven exploration, which often requires control over various parameters tuned to filter false positives and spurious
artifacts and highlight the most significant structures. This paper presents a GPU-based adaptive technique for crease
extraction and visualization across scales. Our method combines a scale-space analysis of the data in pre-processing
with a ray casting approach supporting a robust and efficient one-dimensional numerical search, and an image-based
rendering strategy. This general framework achieves high-quality crease surface representations at interactive frame
rates. Results are proposed for analytical, medical, and computational datasets.
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1. Introduction

Ridge and valley manifolds are currently gaining popularity in the scientific visualization literature. While the
study of these lines and surfaces was initiated in the image analysis research community [1, 2], a number of recent
publications has documented their effectiveness for the visual representation of scalar, vector, and tensor fields [3,
4, 5, 6, 7]. Creases correspond to manifolds along which the considered scalar quantity is locally extremal. Yet,
in contrast to the standard notion of local maxima or minima, which typically form isolated points, the definition
of creases allows the corresponding set of points to form lines and surfaces. As a result, creases yield a schematic
geometric portrait of the dataset that captures some of its salient structures.

Despite this conceptual appeal, the extraction of ridges and valleys is a non-trivial endeavor that requires a careful
analysis of the spatial variations of the gradient and Hessian (first and second-order derivative, respectively) of a
scalar field. The techniques proposed for that extraction typically amount to an isosurface extraction implemented
as a specialized form of marching cubes. Unfortunately, the corresponding methods are usually slow because of
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the nonlinear nature of the creases, which requires a high sampling density and heavy computations to properly
resolve the manifold. As a result, the extraction must be carried out in a preprocessing stage. In addition, the
resulting geometry is very complex and contains a large number of spurious small scale structures. Hence, the user
is generally only interested in a small subset of the extracted creases and various criteria and heuristics are necessary
to filter out insignificant features from the resulting depiction. In practice some of these criteria are often built in the
extraction procedure to alleviate its computational cost, facilitate subsequent filtering, and reduce visual clutter. As a
consequence, significant ridges may be missed and their topology improperly determined.

We present in this paper a novel method that addresses these limitations and permits the interactive extraction
and rendering of crease surfaces. By exploiting the computing power of the graphics hardware (GPU) our technique
allows the user to adjust any relevant filtering criteria in the course of the extraction based on the visual feedback.
We use an image-based approach to restrict the computation to the visible portions of the dataset at a resolution that
is commensurate with the camera setting. As such, our algorithm not only offers intuitive and flexible control over
the produced geometry, it also enables a crease-based exploration of the volume through which domain experts can
discover important structures present in the data. Specifically, we employ a ray-casting approach and determine the
existence of one or several intersection with crease surfaces along each ray as the solution of a one-dimensional search.
Note that this search is significantly more complicated than the standard zero crossing test associated with isosurface
ray-casting [8, 9]. This implies that a brute force strategy consisting in uniformly sampling each ray in search for
a crossing is intractable in an interactive setting. To tackle this problem, we propose reliable two-level empty space
skipping strategy combined with a robust numerical search with adaptive step size. This setup allows us to integrate
crease extraction and volume rendering and produce at interactive frame rates enhanced visual representations of the
data in which sharp salient manifolds are revealed in the fuzzy context of the embedding field.

The paper is organized as follows. We briefly review previous work on crease extraction in Section 2. We describe
our fast and robust one-dimensional crease extraction procedure in a ray-casting framework in Section 3. We discuss
our proposed rendering solution for the resulting crease points in Section 4. We report on the application of our
technique to several scientific, engineering and medical imaging datasets in Section 5 before concluding in Section 6.

2. Related Work

Ridges (and valleys), like edges are fundamental image features in image analysis [10, 11]. In essence they can
be interpreted as the generalization of the notion of point-wise extrema (where the gradient vanishes) of smooth
scalar fields to manifolds of higher dimensions (e.g., ”extremal” curves and surfaces). Among the various existing
definitions, the notion of height ridge is arguably the most widely used in practice [10, 2]. In Eberly’s definition in
particular [12], at a point on a ridge surface the gradient g = ∇ f is orthogonal to the minor eigenvector e3 (associated
with the smallest eigenvalue) of the Hessian H = ∇2 f . In addition, the definition imposes that the corresponding
eigenvalue λ3 be negative to ensure the convexity of the function across the ridge. Note that a similar definition
exists for valley surfaces that requires g to be orthogonal to the major eigenvector of H, while the associated major
eigenvalue must be positive. We refer to both ridges and valleys as creases in this paper.

A fundamental consideration in the study of these manifolds is the notion of scale space [13, 14], which embeds
a signal into a continuum of scales for analysis. The rationale for this approach in computer vision is that objects
inherently comprise details of various scales [15, 16] and their appearance changes as a function of the scale (or
aperture) of the observation. Applying this principle allows to study the multi-scale structure of images and volumes.
Practically, a gaussian kernel of varying standard deviation progressively filters out the low frequencies present in the
signal thus producing an additional scale axis. Lindeberg made major contributions to the automatic determination of
the optimal scale [17, 16] and studied its application to ridge extraction. His approach to determine the optimal scale
at each point amounts to maximizing a normalized measure of feature (e.g. ridge) strength across scales.

From an algorithmic standpoint, ridge surfaces are typically extracted as a generalized isosurface of the scalar
product between the gradient ∇ f and the minor eigenvector e3 of the Hessian [18]. The detection of the zero crossings
of this scalar product requires careful inspection of the edges of the voxel grid since the considered eigenvector field
has neither norm nor intrinsic orientation [19, 3]. Alternatively, a signed scalar quantity can be defined whose zero
crossings equivalently characterize ridges [5]. In either case the surface extraction then amounts to an application of
the marching cubes algorithm [20]. Note that a significantly improved method was recently presented by Schultz et
al. [6] who derived a topologically correct extraction strategy.
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From a visualization standpoint, the algorithmic strategies used in practice are typically directly inspired by meth-
ods introduced in medical image analysis [1, 21, 22]. In addition, Peikert and Roth proposed the Parallel Vector
Operator [23] for the extraction of line and surface manifolds that constitute a superset of ridges and valleys. In
particular, this technique was recently applied to vector [24] and tensor visualization [4] problems. Finally, following
a fundamentally different approach, Kindlmann et al. [7] presented a particle-based method in which individual par-
ticles are moving in a scale-space continuum according to forces that induce their convergence to optimal sampling
locations. While the method does not explicitly produce manifolds in output, it is able to achieve a uniform discrete
sampling of the underlying lines and surfaces.

3. Algorithm

To turn the the visualization of crease surfaces into an interactive technique, we adopt a ray-casting approach that
shares similarities with solutions proposed in the last few years for the view-dependent extraction and rendering of
isosurfaces on the GPU [8, 25]. Their basic idea consists namely in substituting to the standard per-voxel isosurface
extraction [20] a one-dimensional search for zero crossings along individual rays. This latter approach is intrinsically
parallel and its complexity is primarily controlled by the camera setting and the output resolution. However, the
computation needed to reliably extract crease surfaces is fundamentally more involved than in the case of isosurfaces.
In particular, the nonlinear nature of the considered quantities requires a more sophisticated solution, as we describe
next.

3.1. One-Dimensional Crease Extraction Along a Ray

The algorithmic building block of our method is the extraction of crease surface points along individual view rays
cast through the image plane. This extraction is carried out concurrently across rays to leverage the massively parallel
nature of the graphics hardware.

3.1.1. Function evaluation
As the search progresses along the ray, both the Hessian’s relevant eigenvalue and its corresponding eigenvector

must be computed at the sampled locations. However, the nonlinear relationship that exist between a matrix and its
eigenvectors and eigenvalues requires us to first determine the Hessian before solving the associated eigensystem.
In that regard, we follow the general approach advocated by Kindlmann and his coauthors [3, 4, 7]. However, the
constraints imposed by the GPU do not allow us to use the high-quality reconstruction kernels that were previously
used in CPU-based implementations. Instead, we exploit the optimized trilinear interpolation available for texture
memory to interpolate pre-computed gradient and Hessian fields at subvoxel resolution.

3.1.2. The need for adaptive sampling
A straightforward method to find crease points along a ray would be to compute the gradient and Hessian’s

eigenvector at regular intervals and search for zero crossings of their dot product. This is in fact the one-dimensional
equivalent of the marching cubes approach and its crease-based variants. Yet, this simple strategy is inappropriate for
several reasons. First, the associated computational cost (which scales with the screen resolution) would be prohibitive
in an interactive setting unless the sampling density along each ray is very coarse. Decreasing the sampling density of
a nonlinear quantity such as g · ei, however increases the risk of missing a crease point. This problem has led recently
proposed algorithms to process upsampled versions of the data. Moreover, in the context of our method, an accurate
spatial localization of the crease points is crucial to compute artifact-free surface normals in image space as explained
in Section 4.

To overcome this limitation, we apply an adaptive sampling strategy along the ray. A technique using irregular
steps based on gradient descent has been discussed by Kindlmann et al. [7]. Unfortunately their method is not readily
applicable to our setting since it is built on a model of free particle movements in 4D scale-space while our search is
confined to a 1D domain. We therefore propose a different adaptive stepping scheme that is reliable and allows us to
find crease points with an accuracy that can be tuned by the user interactively.
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3.1.3. Two-level empty space skipping
Finding the crease eigenvalue and its corresponding eigenvector is computationally expensive. To reduce the

computational cost of the search along the rays we perform several checks that allow us to skip regions that do not
contain a crease.

At a coarse level, our empty space skipping strategy relies on a map that conservatively estimates the distance
between any voxel in the grid and the boundary of the closest region in which the relevant Hessian’s eigenvalue λi

has valid sign (λ3 < 0 for ridges and λ1 > 0 for valleys, refer to Section 2). This map is computed in pre-processing
using a region growing approach. At run time, the rays fetch values from this map in order to find the longest safe
jump that can be performed without missing a potential crease point. The main advantage of this method is that it
makes more complex data structures (e.g. octree) unnecessary, which would introduce construction overhead and
the need to locate each point in a hierarchical structure. Furthermore, it can be efficiently referenced using a texture
implementation on GPU.

When the value obtained from this empty space skipping map is zero the search switches back to regular steps
along the ray. At that finer level, our method leverages a second pre-computed map that stores the considered eigen-
value λi at the resolution of the input grid. Hence, during the extraction we numerically derive the eigenvalue and
associated eigenvector from the Hessian only if the sign of λi has the correct sign and satisfies |λi| > ελ, whereby ελ is
a user-defined threshold. In addition we avoid performing computations when the interpolated scalar field value at the
sampled location is below a second threshold ε f . These conditions can be supplied and tuned by the user on the fly to
increase performance while discarding insignificant geometric structures and maintaining the quality of the search.

If all the previous conditions are met, the ray advances according to an iterative technique describe below. Note
that the fixed step mentioned in the second level can be large enough to overlook a crossing, in which the first point
meeting the criteria will be already passed the crease point location. This situation is properly dealt with by our
iterative method, which is able to backtrack in order to find the missed crossing. Nevertheless, the step should be
chosen small enough to not miss completely the range of interesting crease eigenvalue and the zero crossing.

s1 s2 s3

g · e3

u

+

−

Figure 1: Different cases for the zero crossings of the function g.e3 along a ray.

3.1.4. Iterative numerical search
Once a valid region has been reached the iterative part of the algorithm takes place. It combines the Newton-

Raphson method with bisection and zero crossing tests. The bisection method is applied once a zero crossing has
been identified in a certain close proximity. Due to the complexity of the function g · ei, the ray keeps track of the
last point beyond which backtracking cannot be applied. This point typically indicates regions that were thoroughly
covered. This helps ensure that the numerical search does not overshoot due to irregular gradient values in the test
function g · ei. It also prevents situations of infinite looping due to the gradient pointing away from the crossing
point. This is common since most of the crossings happen at sharp edges (high gradient) where the gradient could be
pointing away. An example of such case is shown in the last ridge crossing in Figure 1, S3. We hold a second marker
along the ray which indicates the furthest point along the ray that has been visited. This marker is used to prevent the
ray from revisiting portions that were already visited during the backtracking once the crossing is found.
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The maximum step size taken along the ray during the iterative part of the algorithm must preserve the consistency
of the eigenvector’s orientation across sampling locations. To do so, we measure the angular difference between
consecutive eigenvectors. If that angle a certain threshold, the step size is reduced since no meaningful zero crossing
test can be applied. This idea is similar to an orientation tracking approach proposed recently [3]. The minimum step
should be limited by the shortest distance that might contain an inversion of the function g · e3 that is barely touching
the zero value. This can be seen in the second ridge crossing along the ray shown in figure 1, S2.

3.2. Scale Analysis

The previous discussion did not specifically address the notion of scale. Yet, creases and scale-space are indisso-
ciable concepts as shown by Lindeberg [26], a fact that has been mostly ignored in the visualization literature so far.
A notable exception is the very recent work by Kindlmann et al. [7] who extract ridges in a scale space continuum.
Our scale space processing is based on the reconstruction framework that they proposed, which we combine with a
different extraction strategy that is more suitable to the performance constraints of our method.

Practically we first compute in pre-processing the gradient and Hessian of the considered function for a range of
scales. We do so at a resolution higher than the initial resolution of the scalar field to overcome the nonlinearity of
the ridges and achieve smoother results despite the low-order interpolation scheme available on the GPU. A smooth
reconstruction kernel is used for upsampling [3]. In contrast to offline methods, handling on the fly gradient and
Hessian fields at the different scales simultaneously is basically impossible on the GPU. Instead, we perform an
extraction of the optimal scale in pre-processing by maximizing at each point the scale-normalized measure of crease
strength λi along the scale axis. The gradient, Hessian, and all other relevant quantities are then computed at each
domain position at that optimal scale. Note that this definition of optimal scale, while different from the one recently
used by Kindlmann et al. [7], is in fact the one initially proposed by Lindeberg for ridge extraction [26]. A potential
downside of this approach, however, is that it does not guarantee the spatial smoothness of the optimal scale, since this
value is determined independently at each position. Because trilinear filtering is used in our GPU implementation to
interpolate both gradient and Hessian at any point in the volume, we namely need the scale distribution to be spatially
smooth. This is also necessary because multiple local maxima usually exist across scales while we are only interested
in a single optimal scale per point. Practically we achieve smooth results by densely sampling the scale axis. We
select our coarsest scale so as to retain the main structures in the data. In addition, we provide the user with interactive
control over the range of scales for which creases are extracted. Our results, presented in Section 5, document the
effectiveness of this general strategy.

4. Single Pass Rendering

Our surface rendering technique is based on ray casting. After identifying the intersection points of the rays with
the creases we determine the normals and compute the compositing. To permit an opacity transfer function based on
the crease strength, we keep track of the accumulated opacity during the extraction. Early ray termination is used to
avoid the extraction overhead in occluded regions of the volume. The surface and volume rendering are performed in
two stages.

In the first stage, rays are cast through the volume and extraction is performed as outlined in the previous section.
Every ray searches for crease points until the opacity is saturated or a maximum number of intersections is found.
Depending on the complexity of the structures, the maximum number of intersections indicates the limit after which
additional surfaces will not have significant effect on the visualization result. This maximum number is chosen such
that occlusion and opacity will make any additional surfaces non-distinguishable from the preceding surfaces.

In the second stage of the rendering we access the intersection points in order along each ray. At each pixel
in image space we compute the normals and we perform the color compositing operations in front to back order.
In both stages, individual threads are assigned to rays. The surface normals at intersection points are needed for
proper lighting of the surfaces. The normals are computed in screen space using a technique similar to the z-buffer
based approach used in previous publications [27, 28]. However, we apply it to a multilayer buffer containing the
points’ position in addition to depth. For each point we find neighbors by measuring the distance to the intersection
points of neighboring rays. Least squares fitting over a 3x3 neighborhood is used to find the normal at the point
using the found neighboring points. Least squares fitting has two advantages over central differences. First, it gives
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better quality normals given a more relaxed accuracy to which intersection points are identified. Second, it is more
capable of handling points lying on the silhouette of the surface since only three non-aligned points are sufficient. We
detect discontinuities in the frame buffer by measuring distances between points acquired by neighboring rays. This
computation technique of the normals satisfies an important property namely the smoothness of the normals along the
surface since the least squares fitting combined with the screen based sampling of the surface acts as a low pass filter
in image space.

Combining this surface rendering strategy with volume rendering at lower opacities provides an insightful means
for the user to understand the ridge shape and structure in their embedding in the field. This can be done by adding
an additional step to be performed between the renderings of two consecutive intersection points along the ray. We
perform usual volume rendering until we meet the first intersection point if any. We also apply the volume rendering
step from an intersection point to the next or until the color becomes opaque during the second stage. Since we do
not have color information for surfaces until the normals are computed, we cannot apply compositing for the volume
rendering in the first stage. The drawback of applying volume rendering in the second stage is the inability to benefit
from possible early ray termination based on the volume rendering during the extraction.

5. Results

We tested our method on a high-end Intel Core2 Extreme QX9650 (12MB, 3.0GHz) machine where the GPU
kernels are executed on NVIDIA GeForce GTX 280 (30 multiprocessors, 1024 thread/multiprocessor, 1GB device
memory). The implementation was done in CUDA and C++. To document the performance of our method, we
present here results obtained for several datasets corresponding to different application scenarios.

The first dataset is a simple synthetic test case that allows us to document the various features of the algorithm.
The input scalar field was created by applying to a Möbius band volume a level of gaussian blurring that varies linearly
along the z-axis. This dataset is similar to the one shown in the recent paper by Kindlmann et al. [7]. The varying levels
of blur allow us to show the shortcomings of a ridge surface extraction based on a single scale. The results shown in
Figure 2 clearly underscore the importance of incorporating scale in the crease extraction. In addition they confirm
that the optimal scale approach is able to properly capture the various scales introduced in the data through blurring.
Observe that the surface element visible at the top of the right image is an artifact of the blurring in pre-processing,
not of the extraction itself.

As a second example, we consider a diffusion tensor MRI (DTI) dataset of a human brain. While medical images
have been a traditional application of ridge extraction techniques in computer vision, DTI datasets pose a significant
challenge because of their tensor nature. Indeed, the scalar invariants that are derived from these tensor fields are
highly nonlinear, which greatly complicates the extraction of the associated structures. Following recent publica-
tions [3, 4, 6, 7], we apply ridge and valley manifold extraction to the fractional anisotropy (FA) of the DTI field. As
previously shown in the literature, ridge surfaces of FA delineate the two-dimensional core structures of major bundles
in the brain white matter, while valley surfaces of FA constitute boundaries between adjacent fiber bundles with dis-
tinct orientations. Figure 4 visualizes both ridge and valley surfaces of FA alongside fiber bundles that were computed
along major anatomical structures. Recent work [7] has clearly documented the multiple scales that are present in
the structures of the ridge surfaces. We obtain similar results, though in the form of actual surface renderings of both
ridge and valley surfaces. Valley surfaces in particular tend to be more difficult to extract due to their inherently thin
geometry at the interface between different well delineated structures and the fairly coarse resolution of DTI datasets.
Figure 4, top left and right images, displays the scale information on the ridge manifolds.

Fluid flows constitute another compelling application of crease surface visualization. Indeed, so-called Lagrangian
coherent structures [29], which are known to form the salient geometric structures of transient flows by acting as
attracting or repelling material surfaces, have been shown to be effectively characterized as ridges of a scalar coherence
measure called finite-time Lyapunov exponent (FTLE). We show here the application of our method to two fluid
flow problems. The first one, the ABC flow, is a standard analytical model that is used to study turbulence, see
Figure 3.The second one is a CFD simulation of a turbulent jet into a steady medium forming typical convoluted
patterns of turbulence. The left image shows a standard volume rendering of the FTLE field while the right image
precisely displays the underlying LCS of various scales responsible for the observed patterns. Refer to Figure 3.

The frame rate of our method is primarily controlled by the amount of filtering that is applied to the crease strength
in order to focus the crease extraction to the main structures. In the particular case of the möbius band dataset where
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Figure 2: Ridge surface forming a Möbius band in scale space. Left: Ridge surface extracted at constant scale contains a number of spurious
artifacts. Right: Extraction of the ridge surface at optimal scale yields a smooth manifold. The colors represent the various scales present in the
dataset (blue: large scale, red: small scale).

a wide range of crease strengths correspond to meaningful structures, the frame rate was comparatively low. The
performance achieved for each of the datasets considered in this paper is described in the following table.

Table 1: Frame rates for the test cases shown above

series series dimensions series minimum series maximum series average

Mobius 128x256x64 0.63 2 1.25

ABC 128x128x128 0.63 5 2.5

Brain 128x256x128 1.5 6.25 2

Jet4 128x256x256 2.4 5 3.125

6. Conclusion and Future Work

We have presented a method for the interactive extraction and visualization of crease surfaces on the GPU. In
significant contrast to existing techniques, our approach is fast and produces results at several frames per second. As
such, our algorithm allows the user to precisely control parameters of the extraction based on their visual impact on the
the resulting structures. It also provides an exploratory tool through which the user can freely navigate across space
and scales. An additional benefit of this method is its natural complementarity with volume rendering, thus enabling
the creation of crease-centric volume visualizations. We have demonstrated the effectiveness of this approach on
several examples corresponding to applications in science, medicine, and engineering.
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Figure 3: Lagrangian coherent structures extracted as ridges of the FTLE field in fluid flows. Top row: ABC flow (here A =
√

3, B =
√

2, C = 1).
A: direct volume rendering of the clipped FTLE field. B: corresponding ridge surfaces. Bottom row: LCS extracted in a CFD simulation of a
turbulent jet. C: volume rendering of the LCS. D: Ridge surfaces forming unstable manifolds.
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