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Abstract. Current methods for extracting models of white matter
architecture from diffusion tensor MRI are generally based on fiber trac-
tography. For some purposes a compelling alternative may be found in an-
alyzing the first and second derivatives of diffusion anisotropy. Anisotropy
creases are ridges and valleys of locally extremal anisotropy, where the
gradient of anisotropy is orthogonal to one or more eigenvectors of its Hes-
sian. We propose that anisotropy creases provide a basis for extracting a
skeleton of white matter pathways, in that ridges of anisotropy coincide
with interiors of fiber tracts, and valleys of anisotropy coincide with the
interfaces between adjacent but distinctly oriented tracts. We describe a
crease extraction algorithm that generates high-quality polygonal models
of crease surfaces, then demonstrate the method on a measured diffusion
tensor dataset, and visualize the result in combination with tractography
to confirm its anatomic relevance.

1 Introduction

Diffusion tensor magnetic resonance imaging (DTI) is a popular means of assess-
ing white matter in the central nervous system. Coherent organization of axons
leads to diffusion anisotropy, and insofar as a tensor model accurately represents
the form and direction of anisotropy, DTI can detect white matter architec-
ture [1]. Fiber tractography has become the dominant method of DTI analysis,
wherein the course of axons in fiber tracts is modeled by computing paths along
the direction of greatest diffusivity (the diffusion tensor principal eigenvector),
allowing connectivity between different brain regions to be mapped and quan-
tified [2,3]. Clustering collects individual tracts into coherent structures that
can model the shape and direction of fiber pathways [4]. Other white matter
analysis methods do not use connectivity information from tractography, e.g.
region-of-interest studies of fractional anisotropy (FA) [5,6].

We introduce anisotropy creases as a technique for extracting a skeleton of
white matter directly from the intrinsic structure of FA. Scalar image process-
ing defines creases as features at which the gradient is orthogonal to one or
more eigenvectors of the Hessian [7]. Given the ubiquity of FA as a quantitative
variable in the diffusion tensor literature, we have started by detecting creases
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in FA. We propose that the ridge surfaces and ridge lines of FA coincide with
the interiors of white matter fiber tracts, and that valley surfaces of anisotropy
delineate the interfaces between fiber tracts that are adjacent but orthogonally
oriented (such as between the corpus callosum and the cingulum bundles).

Anisotropy creases may have utility in a variety of contexts. Explicitly mod-
eling the interfaces between adjacent but orthogonal fiber tracts may helpfully
constrain non-rigid registration of tensor fields for group studies, as slight mis-
registration of these configurations could lead to comparison of tensor values
within entirely separate pathways. The ability to extract white matter skeletons
directly from tensor invariants, without the algorithmic complexity or param-
eter tuning of fiber tracking and clustering, could increase sensitivity in shape
analysis studies. Finally, major crease features could play a role analogous to
that of the cortical surface in functional imaging, namely a reference manifold
onto which variables of interest are projected and analyzed [8].

2 Related Work

Creases have been an object of study for many years in different disciplines.
In the context of geomorphology, de Saint-Venant [9] defines creases as the loci
where the slope is minimal along the isocontours of the relief, which Haralick
later reformulates in terms of the Hessian of the height function [10]. Maxwell
gives a topological and global definition of ridges and valleys as watersheds and
watercourses: slope lines that connect saddle points to local maxima or min-
ima [11]. Others study creases in terms of differential geometry [12]. Eberly et
al. motivate the idea that creases should be defined locally and be invariant with
respect to a variety of transforms (rigid transforms, uniform scaling, and mono-
tonic mappings of intensity) [7]. They also generalize the height-based definition
of de Saint-Venant to d-dimensional manifolds embedded in n-dimensional image
space, and observe that this definition produces good results for a medical imag-
ing problem [7]. Other previous work focuses on extracting polygonal models of
crease geometry; this is reviewed in Section 3.3.

A separate line of previous work studies feature detection in DTI by means
other than tractography. Pajevic et al. use B-splines to generate continuous tensor
fields that are differentiated to highlight anisotropy boundaries [13]. O’Donnell et
al. use structure tensors to detect general boundaries in tensor values [14]. In both
cases, results are visually evaluated by confirming a high edge strength near struc-
tural boundaries, but the techniques do not analyze the familiar FA measure, nor
is the feature geometry explicitly extracted. Recent work by Smith et al. is most
similar to our approach in that they perform voxel-based morphometry with a
white matter skeleton calculated from ridges in a mean FA map (though “ridges”
are not mentioned per se) [8]. By using an established mathematical definition of
crease features, our technique extracts true codimension-one crease surfaces from
continuous tensor fields of individual DTI scans, rather than a voxel-based ridge
mask from the inherently smooth mean FA image from a set of registered scans.
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3 Methods

3.1 Convolution and Differentiation

We start with a first-principles approach to measuring derivatives of FA in a
tensor field. We use separable convolution between C2 cubic splines and the ten-
sor coefficient discrete samples to reconstruct a smooth tensor field [15,13]. By
linearity, analytic derivatives of the reconstructed field are measured by convolv-
ing the sampled data with derivatives of the reconstruction kernel [16]. FA can
be defined in terms of principal invariants Ji, which can in turn be expressed
in terms of the tensor coefficients [5]. Differentiating these relations produces
formulae for the gradient of FA in terms of the gradients of tensor coefficients:
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Formulae for the second derivative (the Hessian) are longer but straight-forward
to derive. Because FA is a non-linear function of the tensor, pre-computing FA
on a discrete grid and then differentiating is not equivalent to this approach.

3.2 Crease Feature Definition

Crease features are defined in terms of the gradient g = ∇f and Hessian H of
a scalar field f [7]. Section 3.1 described how to measure the derivatives of FA
at any point in a tensor field. Let λ1 ≥ λ2 ≥ λ3 be the eigenvalues of H, and
{e1, e2, e3} be the corresponding eigenvectors. Ridges and valleys are defined by:

Surface Line
Ridge g · e3 = 0, λ3 < 0 g · e2 = g · e3 = 0, λ3, λ2 < 0
Valley g · e1 = 0, λ1 > 0 g · e1 = g · e2 = 0, λ1, λ2 > 0

One way to inspect ridge surfaces (for example) in a volume is to densely sample
|g ·e3| on a two-dimensional cutting plane and look for the dark lines indicating
the ridge surface intersection with the plane. Figure 1 shows an example of FA
ridge surfaces in a two-dimensional coronal slice of a human brain DTI scan1.
For context, Figure 1(a) shows the standard RGB colormap of e1 at the original
image resolution. Figures 1(b) and 1(c) illustrate how smooth features arise from
convolution-based measurements of FA and ∇FA. Figure 1(d) uses contrast-
enhancement to show the dark smooth lines indicating the ridge surfaces. The
cubic spline used in this and all other results was 4mm between inflection points.
1 DTI data was estimated from 30 DWIs at b = 700s/mm2 and 5 non-DWI T2s, from

a 1.5 T Philips scanner, with resolution 0.94 × 0.94 × 2.5mm.
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(a) RGB(e1) (b) FA (c) g = |∇(FA)| (d) |g · e3|1/3

Fig. 1. Two-Dimensional Demonstration of Ridge Surface Evaluation

3.3 Crease Surface Extraction

We extract crease surfaces by per-voxel triangulation of the zero-isocontour of
g · ei (g · e3 for ridges, g · e1 for valleys) using Marching Cubes [17], taking care
in evaluating g ·ei at voxel corners. Eigenvectors lack intrinsic sign, so g ·ei can
suddenly change sign, far from a crease, simply due to the numerical properties
of eigenvector computation. The literature offers ways to overcome this. Morse
suggests determining correspondences between sets of eigenvectors rather than
individual ones, to handle eigenvector permutations associated with eigenvalue
equality [18]. Furst et al. use similar ideas in Marching Cores to extract crease
manifolds in image scale-space [19]. For Marching Ridges, Furst and Pizer choose
eigenvector signs to agree with the principal eigenvector of the average of outer
products of the eigenvectors under consideration [20].

Our experience suggests that Hessian eigenvectors of non-linear scalar at-
tributes of tensors (such as FA) tend to vary more rapidly than those of a
similarly sampled scalar field. Accordingly, we explicitly determine eigenvector
orientation consistency by traversing voxel edges to monitor eigenvector rotation.
Samples are adaptively generated along voxel edges to satisfy an upper-bound
on the angle between unsigned eigenvectors at successive samples. This deter-
mines whether the smooth transport of ei(v0) from vertex v0 to vertex v1 agrees
in sign with the eigenvector ei(v1) computed at v1. The per-edge eigenvector
sign information determines a per-voxel sign consistency prior to evaluating the
Marching Cubes case. Inter-voxel sign inconsistencies lead to triangulations with
inconsistent vertex windings. Thus, as a final pass, we traverse the surface mesh
to fix vertex windings, which allows graphics hardware to appropriately render
the crease surfaces with two-sided lighting [21].

The continuous tensor field measurements allow the voxel grid of the crease
surface triangulation to be independent of the underlying data resolution. The
results in Section 4 use a triangulation resolution two to three times that of the
data. The strength of the crease surface is assessed with the appropriate Hessian
eigenvalue (−λ3 for ridges, λ1 for valleys) so that geometry is extracted only for
significant features.

4 Results

Figure 2 shows ridge detection results on the same cutting plane used in Figure 1.
Ridge strength is mapped in Figure 2(a), the coherent organization of which is
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(a) max(−λ3, 0) (b) Ridge surfaces (c) ((g · e2)2 + (g · e3)2)1/6

Fig. 2. Two-Dimensional Ridge Surface and Ridge Line Results
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(a) RGB Map with Fibers (b) Ridge Surfaces

(c) Valley Surfaces (d) Valleys with Fibers

Fig. 3. Anisotropy Creases Near the Corpus Callosum

suggestive of white matter pathways. A combination of ridge strength masking,
contrast enhancement, and RGB directional encoding created Figure 2(b) from
Figure 1(d), to highlight the lines through major white matter pathways. Fig-
ure 2(c) maps a quantity that is zero on ridge lines of FA, intersecting the plane
in points. Multiple lines lie within the corpus callosum, but there are two clear
dots within the cingulum bundles, and one in the fornix, consistent with the
shape and orientation of these tracts relative to this coronal plane.

The renderings in Figure 3 (from a posterior viewpoint) show a cropped region
around the same coronal slice of previous figures. In Figure 3(a) fibers are seeded
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(a) RGB Map with Fibers (b) Ridge Surfaces

(c) Valley Surfaces (d) Ridges and Valleys with Fibers

Fig. 4. Anisotropy Creases in the Brainstem

from the RGB encoded plane. Figure 3(b) shows how the ridge surfaces (using the
same RGB encoding) follow major fiber paths, especially the corpus callosum
(CC), internal capsule (IC), corona radiata (CR), and fornix (FX) [22]. The
(white) anisotropy valley surfaces in Figure 3(c) delineate interfaces between the
CC and cingulum bundles (CB), superior fronto-occipital fasciculus (SFO) and
IC, and IC and superior longitudinal fasciculus (SLF). Figure 3(d) also illustrates
how anisotropy valleys lie between adjacent paths of differing orientation.

Figure 4 illustrates anisotropy crease analysis in the brainstem (lateral ante-
rior superior viewpoint), starting with (in Figure 4(a)) a plane seeding fibers for
anatomical context. Here, a viewpoint-aligned cutting plane partially cuts into
the middle cerebellar peduncle (MCP) to reveal the corticospinal tract (CST)
and pontine crossing tract (PCT), anterior to the medial lemniscus (ML) and su-
perior cerebellar peduncle (SCP). These pathways appear as distinct anisotropy
ridge surfaces in Figure 4(b), and their interfaces are delineated by the valley
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surfaces in Figure 4(c), especially the enclosure of CST between MCP and PCT.
Figure 4(d) combines the crease surfaces with faint fibers to illustrate how the
alternating layers of ridges and creases combine to form a fiber path skeleton.

5 Discussion and Future Work

Anisotropy creases model white matter structure from DTI using continuously
measured anisotropy derivatives and explicitly triangulated surface geometry.
The invariance properties of their mathematical definition help give anisotropy
creases the attractive property of being parameter free (aside from the choice of
convolution kernels), in contrast to most tractography and clustering algorithms.

Future work will include extraction of FA ridge lines, and their comparison
to individual fiber tracts. An interesting question left unanswered is why strong
valley surfaces of FA reliably indicate adjacent orthogonal tracts, considering
that FA is simply a scalar invariant, with no knowledge of nearby eigenvectors.
Finally, to extract true image cores, crease detection must work across measure-
ment scales [19], which we have not yet implemented. Prior anatomical knowl-
edge may usefully constrain, however, the necessary scale range. For example,
extracting fiber interfaces as anisotropy valleys may require only a single image
scale, considering that the interfaces are not apt to have much physical thickness,
thus the measurement scale is determined by the acquisition resolution.

We hope to use anisotropy creases with non-rigid tensor registration, first
analyzing existing methods according to how well anisotropy creases are aligned,
and then perhaps enhancing registration to use the creases as fiducials.
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