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Abstract Poincaré maps supply vital descriptions of dynamical behavior in space-
craft trajectory analysis, but the puncture plot, the standard display method for
maps, typically requires significant external effort to extract topology. This investi-
gation presents adaptations of topology-based methods to compute map structures
in multi-body dynamical environments. In particular, a scalar field visualization
technique enhances the contrast between quasi-periodic and chaotic regimes. Also,
an autonomous method is outlined to extract map topology in the planar circular
restricted three-body problem. The resulting topological skeleton supplies a network
of design options through the interconnectivity of orbital structures.
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Introduction

The Poincaré map, or first-return map, is a powerful tool for analyzing a complex
dynamical system. Within the context of multi-body astrodynamics applications, the
Poincaré map supplies insight that is otherwise difficult to achieve. Researchers have
demonstrated that maps are an effective technique for describing and analyzing cap-
ture and escape dynamics of small bodies or spacecraft in the vicinity of moons in
three-body models [9, 22]. Another likely benefit in trajectory design scenarios is the
identification of low-cost trajectories. Invariant manifolds, a key element in Poincaré
map topology, frequently exist as near-optimal options for maneuvering into and out
of periodic orbits [12, 21]. Utilizing the invariant manifolds present on a Poincaré
map also allows a trajectory designer to construct flyby sequences to transition res-
onances [1] and initiate strategies to design low-cost transfers between a variety of
libration point orbital structures [7, 20]. Considering these potential applications, it
is the Poincaré map topology, or the interconnectivity of map components, that fre-
quently supplies the key pieces for effective design strategies in a dynamical system
of interest.

Although the Poincaré map provides many benefits and valuable dynamical
descriptions, the standard computational methods for generating maps possess
several drawbacks. Commonly regarded as the standard approach for displaying
Poincaré maps and the associated topology in multi-body gravity models, the punc-
ture plot is a representation of the Poincaré map as points indicating the trajectory
returns to (or punctures of) a surface of section. These returns are revealed by
numerically simulating a set of initial states for a substantial duration and detecting
the location of the crossing point on a particular surface of section. For an ade-
quate description of the dynamical behavior on the map, the puncture plot approach
requires the solution to numerous initial value problems (i.e., numerical simulations).
The resulting point-set visualization of the Poincaré map conveys the general distinc-
tion between quasi-periodic regions and chaos; however, visualizing the topological
construct that is present in the puncture plot is only attained through significant post-
processing analysis. Even locating the periodic orbits in a given map may entail
an iterative user-input process without the guarantee of determining structures of
relevance to a particular design.

Methodologies employing topology for analyzing scalar fields, vector fields, and
dynamical systems are a prevalent research topic in the scientific visualization com-
munity. Many vector field visualization methods exploit flow topology to assist in
computing important flow structures, and the concepts employed by these meth-
ods are also applicable to Poincaré maps. One such example is a software package
developed by Yip that combines geometric and graph theory criteria to automatically
recognize topological structures in maps defined by analytical expressions [23]. Also,
Sanderson et al. describe an approach to connect points in a puncture plot that reside
on the same quasi-periodic tori to assist in the approximation of periodic orbits on
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the Poincaré map [14]. Finally, Tricoche et al. present a robust and computationally
efficient algorithm for extracting topological structure from Poincaré sections in area-
preserving Hamiltonian systems with periodic domains involving examples in the
Chirikov-Taylor Map (or Standard Map) as well as maps that model plasma confine-
ment in the Tokamak fusion reactor [19]. The study by Tricoche et al. demonstrates
that a Poincaré map computation over a relatively sparse grid is sufficient infor-
mation to extract topological features in a Poincaré section without significant user
input [19].

The current investigation attempts to counter the shortcomings of the standard
puncture plot approach in generating Poincaré maps for multi-body analysis by
adapting topology-based methods. The concepts and algorithm from Tricoche et al.
[19] are continued with a focus on astrodynamics applications,revamping the algo-
rithmic details to accommodate the sensitive dynamics that frequently exist in
multi-body gravitational models. Specifically, an autonomous Poincaré map topology
extraction approach is detailed to assist trajectory analysis and design in the planar
circular restricted three-body problem (CR3BP). The contrast between dynamical
behaviors associated with a Poincaré section is amplified with a scalar field visu-
alization. The resulting topological skeleton supplies a network of design options
through the interconnectivity of various orbital structures. Then, applying this auto-
mated topology extraction method inside a visual environment opens an extension of
the analysis to interactive design scenarios.

Background

In a time-invariant, Hamiltonian system with two degrees of freedom such as the
planar CR3BP, topological structures on Poincaré maps are confined to prescribed
itineraries. Let Σ represent a hyperplane that is transverse to the dynamical flow of
a near-integrable Hamiltonian system with two degrees of freedom (x, y). The term
“near-integrable” refers to a system lacking a full set of integrals of the motion[11]. If
the state vector x0 = [x, y, ẋ, ẏ]T (with ȧ denoting the time derivative da

dt
) is located

on Σ as indicated in Fig. 1a, then the Poincaré map, or the first-return map, is defined
as the mapping

P(x0) := x0 �−→ P�(x0), (1)

where P�(x0) represents the first crossing of Σ by the trajectory instantiated by
the state x0 through the traversal of a dynamical flow field. Multiple iterates of the
Poincaré map are then computed by compounding the first return map, i.e.,

Pp(x0) = P�(P�(. . .P�(x0))), (2)

where the map is evaluated for p returns to Σ . Both the initial state and first return
to Σ appear as punctures of the green hyperplane in Fig. 1a.
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Fig. 1 Available topological structure associated with a Poincaré map in a near-integrable dynamical
system[8, 11, 19]

General Behavior

The expected behavior on a Poincaré map for a near-integrable system is classified
into three arch-types–periodicity, quasi-periodicity, and chaos[8, 11, 17]. Visible in
Fig. 1a, a periodic state, x∗, returns to the same state through the Poincaré map, i.e.,

Pp(x∗) = x∗, (3)

where p represents the number of returns required for a p-periodic trajectory to
complete an orbit. Such periodic states on the surface of section are named fixed
points since these points remain fixed when observing the Poincaré map. Fixed points
are classified by linear stability analysis as either a center-type orbit with nearby
rotational behavior or a saddle-type orbit with hyperbolic attraction and repulsion [8,
11].

The topology available on a Poincaré map emanates from the fixed points that
may exist in a region of interest. A plausible schematic topological skeleton of a
Poincaré map with saddle-type and center-type behaviors is displayed in Fig. 1b.
Quasi-periodic structures exist as closed curves on the Poincaré section that encir-
cle the centers [8, 11]. From Kolmogoroff-Arnold-Moser (KAM) theory, a bounding
trajectory, or KAM curve on the map (Fig. 1b), signifies the transition from quasi-
periodic behavior to chaotic behavior [11]. Stable and unstable manifolds emerge
from the saddle points indicating dynamical flow into and out of saddle-type periodic
orbits, respectively [8, 11]. A pivotal element of map topology, especially for low
maneuver-cost trajectory design problems, is the connection between saddle points
via the unstable-to-stable manifold transition. The stable and unstable manifolds gen-
erally intersect an infinite number of due to the chaotic tangles (the driving force of
chaos) as seen in Fig. 1b, thereby making manifold tracking difficult [11, 19].

For integrable and near-integrable Hamiltonian systems with two-degrees of free-
dom, considering the flow along a standard torus (or two-torus) provides an abstract
interpretation of the dynamical behavior. Dynamical motion on a torus is described
by the uncoupled evolution along two circles tracing out a trajectory on the outer
surface [17]. The first circle, defined by the angle θ1, indicates the cross-sectional
evolution along the shorter poloidal dimension whereas the second circle, prescribed
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by the angle θ2, represents motion along the toroidal dimension. The evolutionary
history of the poloidal and toroidal angles can be plotted on a square with periodic
boundary conditions such as the example appearing in Fig. 2a. The motion along the
torus is then characterized by the ratio of the evolutionary frequencies of these two
angles, namely,

w = ω1

ω2
, (4)

where ω1 and ω2 are the poloidal and toroidal frequencies, respectively. The quan-
tity w is titled the winding number and represents a classification for a particular
trajectory. The slope of the angular history chart in Fig. 2a is simply the recipro-
cal of w as defined in Eq. 4 [11, 17]. Winding numbers with exact integer ratios
correspond to periodic orbits. When employing an integer number of rotations, the
winding number, w, is defined as the number of poloidal rotations (q) versus the
number of toroidal rotations (p), or w = q

p
. Two sample periodic orbits with winding

numbers w = 1
1 and w = 3

2 are displayed in Fig. 2a as green and blue trajectories,
respectively. The w = 1

1 orbit (green) completes a poloidal rotation for every toroidal
rotation whereas the w = 3

2 orbit (blue) requires 2 toroidal rotations to complete 3
poloidal rotations, indicated by the different slope in Fig. 2a. In contrast to periodic

Fig. 2 Dynamical behavior of motion along a torus for a w = 1
1 orbit (green), a w = 3

2 orbit (blue), and
a w = π

1 quasi-periodic trajectory (red) [11, 17]
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orbits, quasi-periodic trajectories possess irrational winding numbers. Thus, a quasi-
periodic orbit such as the w = π

1 example (red in Fig. 2a) will never trace exactly the
same path along the torus but will visit a dense portion of the torus as the trajectory
evolves [17]. Near-integrable systems may also include chaos, creating structures that
no longer map directly to a torus-type structure [11]. The winding number is, there-
fore, undefined for chaotic trajectories, but the saddle-type orbits that typically reside
within the chaos still possess a valid winding number [11].

Topology Extraction with Puncture Plots

In the planar CR3BP, the standard puncture plot approach renders a Poincaré map
as a general depiction and supplies insight into the associated topology. As a sample
pair of Poincaré sections, Poincaré maps are computed for the hyperplane Σ : y = 0
in different systems and displayed as puncture plots in Fig. 3. Domains of interest in
the Jupiter-Europa and Earth-Moon systems are selected arbitrarily as

DJE = {(x, ẋ)|x ∈ [−1.5, −1.0], ẋ ∈ [−0.5, 0.5]}, (5)

DEM = {(x, ẋ)|x ∈ [−0.4, 1.1], ẋ ∈ [−2.5, 2.5]}, (6)

respectively, where the range in x and ẋ are expressed in nondimensional coor-
dinates. The gravitational parameters (μ) associated with the planar CR3BP are
set as μJE = 2.52801770464 × 10−5 in the Jupiter-Europa system and μEM =
1.21505714306 × 10−2 in the Earth-Moon system. A full state on Σ is then deter-
mined by selecting a Jacobi constant (C) value for analysis. For the puncture plots
in Fig. 3, initial states are selected randomly throughout the domain and numeri-
cally simulated for 200 returns to the surface of section. Each initial state is assigned
a unique color, and all subsequent returns from the same initial state are plotted
as points with that designated color. Note, the white space bounded by the zero-
velocity curves on the section represent the forbidden regions where trajectories are
not allowed to evolve due to the Jacobi integral. Quasi-periodic regions are readily
visible through the ordered groupings of returns from like-orbits. Trajectories that

Fig. 3 Sample Poincaré maps for the hyperplane � : y = 0 in the planar CR3BP for different systems
and domains visualized with the puncture plot method
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reside in chaotic regions appear with unpredictable behavior, and thus, populate a
majority of the space where quasi-periodic behavior is not present. Thus, the saddle-
type fixed points and the correlated stable and unstable manifolds are difficult to
ascertain from the puncture plots in Fig. 3 without additional analysis.

Extracting topology from a puncture plot representation of a Poincaré map
involves several steps. Isolation of the topology is initiated by visually locating fixed
points in the domain of interest, forming a set of initial guesses for a numerical cor-
rections process. The center-type orbits are easily identified since these fixed points
reside in the middle of quasi-periodic regions such as the closed curves in Fig. 3. On
the other hand, the hyperbolic saddle points hide in the chaotic sea, i.e., visual acqui-
sition of saddle-type positions is difficult. Alternatively, a designer can locate fixed
points that reside on a given Poincaré section by computing families of periodic orbits
a priori and selecting the orbits that exist at the corresponding Jacobi constant value;
however, it is impractical to generate orbit families for all the fixed points that appear
on a section. Another key component to topology extraction is the computation of
the stable and unstable manifolds associated with the saddle-type fixed points. It is
standard practice in the puncture plot approach for displaying invariant manifolds
on a Poincaré map to generate a set of fixed-points surrounding the periodic orbit
and propagate the map for the appropriate perturbations from those states [9, 21].
Unfortunately, this approach produces gaps in the manifold representation due to the
divergent behavior of nearby manifold trajectories [1, 20, 21]. This drawback can be
mitigated by using a large number of fixed points distributed along the orbit (> 105

states) with an expensive number of mapping simulations. Overall, Poincaré map
topology visualization with the puncture plot method typically requires a significant
user effort beyond the initial numerical simulation.

Enhanced Visualization with Orbit Convolution

Although the puncture plot technique offers topological acuity within a system of
interest, the orbit convolution method is employed for a scalar field depiction of the
dynamics associated with a particular Poincaré map [19]. In a manner similar to the
Line Integral Convolution method for vector field visualization (Cabral and Leedom
[2]), the domain of interest for a Poincaré map is overlaid with a colored noise image,
σ(x), such that a random color (σ in RGB color coordinates from [0, 0, 0] to [1, 1, 1])
exists at each pixel (or grid node) in an N × M image. The Poincaré map is then
computed for each node in the image for n returns to the relevant surface of section.
The resulting color image for a given initial state, I(x), is then the average color
mapping corresponding to the given number of iterations of the Poincaré map, i.e.

I(x) = 1

n

n∑

p=0

σ(Pp(x)). (7)

Here, p is an increasing sequence of map iterates such that Pp(x) is contained in
the domain of interest (i.e., there is a corresponding pixel in the input image). The
resulting image identifies pixels (i.e., initial states) that reside on the same periodic
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or quasi-periodic orbit as a single color since the map corresponding to these states
will visit the same set of colors on the noise image. Chaotic trajectories intersect
σ(x) at seemingly random locations due to the unpredictable motion. The orbit con-
volution procedure reflects the chaotic behavior as a average color value that tends
towards the expectation value of the colored noise–gray (or [0.5, 0.5, 0.5] in RGB
color coordinates) [19].

Modifications to the original orbit convolution procedure are required to adapt this
approach to maps in multi-body regimes. Computing a large number of map iterations
for a dense grid of initial states produces sufficient quality in a final visualization
but at a high computational expense. A reduction in computational cost is achieved
by replacing a large total number of orbit intersections, n, with extra convolution
passes, thereby reducing the total number of numerical integrations. Let K represent
the number of convolution passes applied to I (x). If a convolution pass (Eq. 7) is
expressed in terms of an operator W , successive convolution passes generate the
resulting image

I(x) = WK(x), (8)

where the result of one convolution pass (K − 1) is used as the input to the subse-
quent pass (K), beginning with a noise image in the first pass (K = 1). Essentially,
the extended convolution is independent of the numerical propagation and, thus,
trajectories are pre-computed and retained in memory for use in each subsequent con-
volution pass. A high-pass image filter is also employed after each convolution pass
to preserve the contrast between available structures[19]. If the orbit convolution
image is utilized as a rough background skeleton for the topology of the Poincaré
map, the computational cost can be further mitigated by using a lower-accuracy
simulation (numerical simulation with a higher error tolerance). In multi-body
dynamical models, some initial states residing in an arbitrarily chosen sampling
domain may reside within regions of non-real dynamical behavior (e.g., the forbidden
regions in the CR3BP). It is also possible for a spacecraft trajectory to depart the pri-
mary system (i.e., the domain of interest) or for numerical sensitivities to impede the
simulation of a particular initial state. Thus, a sufficient number of hyperplane inter-
sections (n) cannot be reliably computed for some pixels. When such an event occurs,
the corresponding pixels in orbit convolution images are marked as white pixels.

When applied to planar CR3BP examples, the orbit convolution method cre-
ates images with an evident distinction between quasi-periodicity and chaos. The
orbit convolution scalar field for a 512 × 512 grid representing the domain
DJE in the Jupiter-Europa system is illustrated in Fig. 4 with n = 100
returns and different degrees of convolution passes. The white areas in Fig. 4
embody the forbidden regions in the dynamical flow for DJE . The resulting
image in Fig. 4a demonstrates the result of applying the color blending iden-
tified in Eq. 7 (i.e., a solitary convolution pass). Two additional convolution
passes with high-pass filtering are applied to the same set of data for enhanced
clarity (Fig. 4b). The resulting image efficacy is dramatically improved by uti-
lizing multiple convolution passes even though the number of map iterates is
unchanged. The gray regions in Fig. 4b represent the state locations in DJE that
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Fig. 4 Orbit convolution visualization technique applied to a Poincaré section in the Jupiter-Europa
system with parameters n = 100 iterates and K convolution passes

exhibit chaotic behavior as the map is propagated forward. Quasi-periodic tra-
jectories appear in regions possessing the same non-gray color. Since the color
values are randomly generated from the noise image, two distinct and separate orbital
structures may display very similar colors. Fortunately, it is easy to disassociate
like-colored structures as the color pattern in a given island chain remains consistent.

Orbit convolution reveals additional Poincaré map behavior in an example formu-
lated in the Earth-Moon system. A visualization of the domain DEM is portrayed in
Fig. 5 as a 1024×512 grid withK = 3 convolution passes. The resulting image again
conveys chaotic regions in gray and regions of ordered behavior with a non-gray
color. In contrast to the Jupiter-Europa example, large areas of the domain of interest
in Fig. 5 do not yield a sufficient number of map iterates in practical time, leading to

Fig. 5 Orbit convolution visualization technique applied to a Poincaré section in the Earth-Moon system
with parameters n = 100 iterates and K = 3 convolution passes
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a large number of white pixels between viable regions; however, these white-tagged
trajectories are still a part of the chaos, and in fact, display the tendency to depart the
Earth-Moon vicinity (i.e., the evolution of the simulated path does not return to the
domain of interest).

Autonomous Topology Extraction

Employing an algorithm for autonomous topology extraction generates the pertinent
topological features of a Poincaré map (i.e., periodic orbits and applicable invariant
manifolds) with minimal user input. The details of automated topology extraction
from a Poincaré map for a domain of interest are established by Tricoche et al. [19],
but adaptations to multi-body dynamical environments are the current focus of this
investigation. The procedure for extracting topology relies on the user for an initial
definition of the Poincaré section and the domain of interest. The resulting orbital
structure, though, is generated through an automated orbit-detection technique that
is designed to utilize parallel processing while minimizing the overall performance
bottlenecks.

Numerical Propagation Scheme Selection

Minimizing map iteration compute times is achieved by assigning the appropri-
ate numerical propagation technique to a suitable task. The most time-consuming
numerical procedure for developing the Poincaré map is evaluating the Poincaré map
itself through simulation and root-solving. Runge-Kutta methods with adaptive error
control are preferable over predictor-corrector methods when computing a Poincaré
map since Runge-Kutta methods automatically generate an interpolating polynomial
between subsequent steps, rendering root-finding as a simple step [13]. The current
investigation implements a Dormand-Prince fifth-order method for computing maps
and the fixed point detection procedure. Assuming that the bottleneck for computa-
tion time is executing a map iteration, elements of the automated topology extraction
process are tailored to minimize the total number of required mappings as well as
enhance the speed of each Poincaré map computation where possible. In some phases
of topology extraction, it is more desirable to form a general depiction of the behavior
quickly rather than extreme accuracy; in these general behavior computations, includ-
ing the orbit convolution procedure or the initial grid sampling, the error tolerances
on the Dormand-Prince method are elevated to 1× 10−8 for enhanced speed. Where
more precision is needed (e.g., refining a fixed point or computing a manifold), an
error tolerance of 1 × 10−12 supplies the required accuracy.

Poincaré Section Definition and Initial Sampling

Implementation of the autonomous extraction strategy initially requires isolation of
a hyperplane and a sampling grid to represent the domain of interest. The surface of
section, Σ , is essential to all phases of the process and must be declared as a first step
to initiate the process. In this investigation, the hyperplane Σ : y = 0 is employed
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exclusively, but other hyperplanes are permissible and may be more suitable for other
applications. The sampling grid can possess a rather low resolution (e.g., 16 × 16 or
20×20); note, however, that the number of resulting orbital structures is increased as
the sampling resolution increases since the Poincaré map possesses a fractal nature
[19]. Orbit convolution imagery offers valuable insight into selecting a domain of
interest since the contrast between possible structures is already highlighted. Thus,
topology extraction can be focused on key regions identified by orbit convolution.
Poincaré maps possess fractal properties, meaning more information appears as a
region of interest is narrowed [11]. Therefore, a specified maximum on the number
of toroidal periods (pmax) confines the search for topological structures to a practi-
cal level [19]. At each node of the user-specified sampling grid, the Poincaré map
is numerically simulated in parallel utilizing error tolerances that favor a general
description of dynamical behavior over high accuracy (i.e., computational speed is
increased by employing 1 × 10−8 versus 1 × 10−12). The numerical simulation is
executed for a relatively long duration such that the total number of map iterates, n,
is sufficiently large for an accurate representation of the space (n ∈ [100, 200] is
usually sufficient in the current work).

Node Trajectory Classification

A general sense of dynamical behavior is achieved by designating a corresponding
scalar quantity at each grid node. Essentially, the classification phase determines the
scalar metric as the available toroidal periods for a particular location. Classifying
the behavior at each grid node allows the algorithm to operate over a smaller subset
of toroidal periods rather than the entire range [1, pmax]. The subsequent steps in
the automated topology extraction algorithm are comprised of operations on grid
cells that collect the available toroidal periods at each grid node to run mapping
computations. Reducing the operational range on the toroidal period translates to
enhanced efficiency since p values that are not associated with a cell are skipped.

In an area-preserving (2D) Hamiltonian system, a good choice for a classify-
ing parameter is the winding number since this parameter suggests a fundamental
dynamical behavior and a toroidal period [11, 19]. Since the planar CR3BP is a
time-invariant Hamiltonian system, periodic and quasi-periodic regions on the sur-
face of section are confined to a two-torus and, hence, are fully described by a single
winding number [7, 8, 11, 17]. Numerically evaluating this winding number requires
a transformation from state space to a more appropriate set of coordinates (e.g.,
action-angle variables)–an excessively complex procedure for a algorithm seeking
an efficient execution. As an alternative, Lichtenberg and Liebermann demonstrate
that multiple winding numbers exist for Hamiltonian systems of higher dimension
(N ≥ 3) [11]. Although the planar CR3BP is a 2D Hamiltonian system, Cartesian
position and velocity coordinates expressed in terms of a rotating reference frame
are typically employed as the variables for dynamical modeling. Thus, a collection
of winding numbers is produced utilizing only the state space coordinates to isolate
plausible toroidal periods for an individual node on the grid. The computation of this
collection of winding numbers is accomplished congruently with the numerical sim-
ulation via the tracking of particular angles as they rotate about the origin (i.e., the
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barycenter in the planar CR3BP). An angle of rotation, θab, for Cartesian coordinates
a and b is measured as the cumulative rotation that the 2D vector rab(t) = [at , bt ]T
traces during the numerical simulation process with the current time step indicated
by t ; this rotation angle is then defined as the signed angle

θab =
tn∑

t=0

arccos

(
rab(t + �t) · rab(t)

‖rab(t + �t)‖‖rab(t)‖
)

, (9)

where tn reflects the total simulation time to achieve n map iterates and �t represents
the current step size in the differential equation solver. By convention, a value such
that θab > 0 identifies counter-clockwise rotations about the origin. The suitable
state space coordinate combinations include x, ẋ, and ẏ, yet naturally exclude the
defining coordinate of the hyperplane (y). The set of available winding numbers is
then W = (

wxẋ, wxẏ, wẋẏ

)
, where the individual ratios are computed as

wxẋ = 2πn

θxẋ

, wxẏ = 2πn

θxẏ

, wẋẏ = 2πn

θẋẏ

. (10)

Fortunately, these rotation angles are tracked concurrently during the initial map
simulation and without noticeable penalty to computational efficiency. The approx-
imation of the winding numbers converge to the true value as n → ∞ [19], but the
initial sampling reaches a suitable approximation for the winding numbers within the
prescribed range for n.

Classification via winding number is conveyed through the combination of punc-
ture plots and scalar field visualizations. As an example, the computed set W is
displayed as colored scalar fields mapped to a puncture plot originating from a
randomly seeded set of initial states within the domain DEM (Fig. 6). Examining
Fig. 6a, most trajectories (periodic, quasi-periodic, and chaotic) hold a winding num-
ber with the value wxẋ = −1

1 (indicated by the greenish color), even though the
orbital behavior varies significantly throughout the domain. The prevalence of the
same characteristic number throughout the Poincaré section in Fig. 6a is clear evi-
dence that more than one winding number is necessary to classify which toroidal
periods are representative of an arbitrary initial state. The wxẏ number, appearing in
Fig. 6b, supplies a strong contrast between quasi-periodic behavior (residing at the
white and yellow extrema of the indicated color map) and chaotic behavior which
transitions through the purple range near wxẏ = 0. The final winding number, wẋẏ

as displayed in Fig. 6c, completes the classification of a grid node. The appearance
of wẋẏ in Fig. 6c is similar to the winding number wxẋ (Fig. 6a), but ratios within
the wẋẏ field are set apart from the wxẋ field, meaning additional information is
acquired. Although the winding number associated with chaotic initial states is unde-
fined, motion along chaotic trajectories is influenced by nearby saddle-type fixed
points. As a result, the winding numbers corresponding to chaotic initial states com-
puted through rotation-tracking yield a classification of nearby behavior even though
a “true” winding number does not exist.

Generating the classification of toroidal periods per grid node requires a conver-
sion from the set W to a set of plausible integers that indicate the representative
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Fig. 6 Classification of the space using winding numbers; the Earth-Moon system domain DEM

computed for a set of randomly seeded initial states (n = 200)
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number of Poincaré map iterates. The winding number is often represented as a
continued fraction, or

w = a0 + 1/(a1 + 1/(a2 + 1/(a3 + . . . , (11)

where the coefficients, aj , are selected to approximate w to a specified precision [16,
19]. Computing the excited toroidal periods at a grid node from W involves convert-
ing each winding number to the nearest integer ratio. A continued fraction algorithm
(such as the methodology by Shoemake [16] and Thrill [18]) is employed to compute
the best rational approximation for each winding number at every grid node. This
algorithm identifies the best integer ratio approximation where the highest allowable
denominator is equal to pmax . The denominator in each winding number integer ratio
represents a possible toroidal period for a fixed point within a nearby grid cell. As
asample scenario for computing toroidal periods, consider a 24 × 16 sampling grid
mapped to the domain DEM with pmax = 12. The resulting grid, as well as the set
of plausible toroidal periods from the continued fraction algorithm, are displayed in
Fig. 7. The continued fraction algorithm yields 3 integer values at each grid node that
classify the potential toroidal periods at nearby fixed points. An example set of poten-
tial toroidal periods is indicated in Fig. 7 as the red highlighted set [1 11 1]; the 3
values indicated in the highlighted set ([1 11 1]) correspond to the denominator of
each approximate integer ratio as the continued fraction algorithm is applied to the
winding number set W . Thus, the values 1, 11, and 1 represent the toroidal number
of rotations for the winding numbers wxẋ , wxẏ , and wẋẏ , respectively. The influence
of nearby fixed points is illustrated by observing grid cells that encircle a period-1
(or p = 1) center-type fixed point (appearing within the yellow cells in Fig. 7). Each

Fig. 7 Available periods for each grid node of a sample grid (24 × 16) applied to the domain DEM with
pmax = 12. The possible periods are the denominators of the set of winding numbers, W , computed with
a continued fraction algorithm
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grid node from the yellow cells includes the value p = 1 as a member of the plausi-
ble set of periods, so the initial states that are close to the period-1 center-type fixed
points all demonstrate dynamical behavior that is similar to the nearby center. The
automated fixed point detection process examines each cell by searching for fixed
points that possess a toroidal number of rotations indicated by the set of plausible
toroidal periods available at each corner. Although each cell could examine up to 12
toroidal periods based on 4 grid nodes offering 3 possible values, it is common that
integers in the set at a single node are repeated at all of the nodes of cell, and thus,
the total number of toroidal periods examined per-cell remains much lower than the
full range [1, pmax].

Periodic Orbit Detection

The location of fixed points that likely exist within the initial sampling grid is
achieved autonomously with an application of index theory. Let 	 represent a closed
curve that encircles an isolated fixed point. Also, define the vector � as a displace-
ment vector between x, an initial state on the surface of section, and the Poincaré
map representation of that state to p iterations, or namely

� = Pp(x) − x. (12)

The Poincaré index is then defined as the summation of the signed angles of rotation
that the vector � generates over 	 [8]. Let the angle α represent the orientation of �

with respect to the x-axis through the dot product

� · x̂ = ‖�‖ cos(α), (13)

where α is computed as a function of the current map displacement (or α(�)). On the
surface of section in the planar CR3BP, the Poincaré index, k, is represented utilizing
the coordinates existing on the section through the line integral

k = 1

2π

∮

	

d

(
arctan

(
dẋ

dx

))
= 1

2π

∮

	

dα(�), (14)

with the x and ẋ coordinates on the section [8, 19]. If the Poincaré index is non-zero,
a fixed-point exists inside the closed-curve 	, and index values of k > 0 and k < 0
correspond to center-type and saddle-type fixed points, respectively [8, 17]. The cell
edges that comprise the initial sampling grid form the closed-curve on the surface
of section within the topology extraction algorithm and, thus, the Poincaré index is
evaluated for each possible toroidal period (p) obtained during the node classifica-
tion process. Along each edge in the sampling grid for a particular p value, the map
displacement vector � is computed in sufficiently small increments such that the
rotation of � (or the change in the angle α(�)) exhibits a clear and monotonic tran-
sition. The resulting change in α tracked along an edge of a grid cell then contributes
a portion of the total integral in Eq. 14. Specifically, the Poincaré index for a cell is
then the signed, counter-clockwise summation of these partial edge-rotation contri-
butions computed for all sides of the cell. Grid cells that return a non-zero index for a
specified value of p are then processed to generate an initial guess for a fixed point.
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Pruning redundant computations during the evaluation of the Poincaré index
assists in maintaining algorithmic efficiency. Evaluating the Poincaré index per-cell
implicitly generates duplicate computations since some cells share the same edge.
Thus, a per-edge computation is employed to enhance the computational speed of the
detection process. Each edge is paired with the set of possible toroidal periods that
must be evaluated. Then, a rotation angle refinement procedure is executed in par-
allel. The change in orientation of the vector � between subsequent points along an
edge may exhibit an ambiguity (i.e., the direction of rotation for a 180◦ transition in
α is unclear). The rotation of � is then computed under a maximum variation cap
to avoid ambiguous scenarios (135◦ is employed in the current work) through adap-
tive sampling along an edge. The adaptive edge subdivision continues until the angle
of rotation is resolved or a minimum distance between consecutive sample points is
achieved. Selecting this minimum distance, or dmin, is problem-dependent [19]. In
a scenario where the rotation in � is not monotonic or the rotation angle between
subsequent points is undetermined, the algorithm labels the index as unavailable and
continues to the next process. In cases where adjacent sample points along an edge
that are within the distance dmin that also indicate an instantaneous flip in � (or a
change in α of 180◦) with a small ‖�‖, a fixed point may exist in close proximity
to the edge. Where the algorithm encounters a rotation ambiguity of 180◦ ± 10◦, the
state along the edge is saved as a suitable guess for a fixed point to be employed later
in a refinement procedure.

Determining an initial guess for a fixed point is a critical step in any map topology
extraction procedure. If a guess for a fixed point is too distant from the true loca-
tion, most periodic orbit targeting procedures struggle to converge. Constructing the
initial guess within a grid cell is achieved through one of several possible methods.
An exceptionally simple approach utilizes the midpoint of a cell as the guess, but
this guess-construction strategy typically generates a poor result for sensitive prob-
lems such the planar CR3BP. As an alternative, the approach employed in this work
broadens guess generation within a cell via a sub-cell grid search where the algo-
rithm examines the map displacement (�) for the indicated number of iterates for
each sub-cell grid state. The sub-grid state with the smallest displacement is then
assigned as the initial guess. The sub-grid search involves more computations com-
pared to the midpoint guess since the Poincaré map is processed for many sub-grid
nodes; however, this thorough search approach encompasses the nonlinear effects of
the problem[19].

Fixed Point Refinement

The fixed points are computed to finer precision utilizing the automated guesses
resulting from the detection phase as input. The computation process as described by
Tricoche et al.[19] is reinforced with a multiple shooting scheme to accommodate the
sensitive dynamics associated with corrections procedures in multi-body problems.
In the present work, the differential corrections scheme employs a general multiple
shooting algorithm for constructing periodic orbits based on a user-specified arbitrary
number of patch points (or fitting points designed to match constraints) that partition
a trajectory segment[15].
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The multiple shooting algorithm employed in this work first isolates a set of design
variables that are iteratively modified to meet constraints that apply to periodic orbits.
Definition of the design-variable vector, X, requires the user to specify the number of
patch points between successive iterates, m, such that trajectory segments from the
simulation of a particular solution step (j ) are split into k = mp patch points with
k − 1 trajectory segments. The state vectors corresponding to the k patch points and
the orbital (time) period, T , are collected to form the design-variable vector as

Xj =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x
j

0
x

j

1
...

x
j

k−1
T j

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

, (15)

where the dimension of Xj is Nk + 1 with N representing the state space dimension
(N = 4 in the planar CR3BP). Note that the j superscript signifies the current iter-
ation in the differential corrections process. The initial guess vector X0 is populated
with the autonomously detected information in the previous phase (Section 3). The
approximated fixed point coordinates (x, ẋ) for a given p are converted to the initial
state x0

0 employing the hyperplane definition and the Jacobi constant. Then, the evo-
lution of x0

0 through Pp(x0
0) is simulated, setting T as the propagation time at the

final crossing of Σ . The remaining k − 1 state entries in X0 are sampled from the
propagated evolution at equal time intervals of T/k. An illustration of the segments
and patch points for a p = 1 analysis appears in Fig. 8. The blue initial guess is a

Fig. 8 Schematic diagram of the fixed point refinement procedure employing a multiple shooting
approach with k patch points given a p = 1 initial guess [15].
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continuous evolution with displacement only existing between the initial state and
the final return to the section whereas the desired periodic solution (green) is contin-
uous throughout the evolution of Pp(x∗

0). Intermediate steps in the solution process,
such as the red arcs indicating the j th step, may possess discontinuities between patch
points, which are highlighted through the numerical simulation of a patch point over
a specified time interval. The notation x

j

1(x
j

0, T /k) indicates the final state from the

propagation of x
j

0 through simulation time T/k. The goal of the solution process is

a continuous periodic solution. The superscripts on Xj components (such as x
j

0 and
T j ) are omitted from component entries henceforth for clarity.

The problem input to the multiple shooting process in autonomous Poincaré map
topology extraction is the isolation of the true fixed point location such that con-
ditions for a periodic orbit are satisfied (to an arbitrary tolerance). Such periodic
orbit conditions include constraints to enforce continuity between segments. Thus,
N(k − 1) constraints enforce continuity at the patch points, and N − 1 constraints
ensure the periodicity conditions, i.e., that the propagation of the k − 1 state for the
time period T/k matches the initial state through

x̃0(xk−1, T /k) − x̃0 = 0. (16)

Note that x̃ represents a partial state vector where the transverse component of
velocity (ẏ) is excluded. The multiple shooting algorithm employed in the fixed
point refinement procedure also restricts that the first state resides on the specified
hyperplane, Σ , via the equation representing the section or

DΣ(x0) = y0 = 0. (17)

The initial state is also constrained to possess the specified Jacobi constant value for
analysis, or CD as defined by the user, through the additional constraint equation

C(x0) − CD = 0, (18)

where C(x0) is simply the Jacobi integral in the planar CR3BP evaluated at the initial
state, or

C(x) = 2ϒ − (ẋ2 + ẏ2), (19)

and

ϒ = 1 − μ

d
+ μ

r
+ 1

2 (x
2 + y2), (20)

represents the pseudo-potential function that is strictly position dependent with d and
r indicating distances from the larger and smaller primary bodies, respectively [3,
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10]. Overall, the constraint vector, F , incorporates the patch point continuity
constraints and all additional constraints for iteration j in the form

F (Xj ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1(x0, T /k) − x1
x2(x1, T /k) − x2

...

xk−1(xk−2, T /k) − xk−1
x̃0(xk−1, T /k) − x̃0

DΣ(x0)

C(x0) − CD

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (21)

Note, the first N(k − 1) entries of F represent the continuity conditions applied to
the patch points. This formulation yields F (X∗) = 0 when the periodic solution X∗
is attained.

Essentially, the solution process is an iterative root-finding problem, seeking to
drive the constraint vector to zero by changing the design variables [13, 15]. Since
the formulation employs Nk + 1 design variables to uphold Nk + 1 constraints, the
refinement procedure utilizes the Newtonian update formula for computing the next
variable set, Xj+1, given the current solution step Xj as

Xj+1 = Xj − DF (Xj )−1F (Xj ), (22)

noting thatDF (Xj ) represents the Jacobian matrix of F (Xj )with respect toXj [13,
15]. A solution is achieved when ‖F (Xj )‖ < ε, where ε = 10−8 in the present
work. Analytical expressions are available for the Jacobian matrix via

DF (X) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

∂x1(x0,T /k)
∂x0

−I
ẋ1(x0,T /k)

k
∂x2(x1,T /k)

∂x1
−I

ẋ2(x1,T /k)
k

. . .
. . .

...

−Ĩ
∂x̃0(xk−1,T /k)

∂xk−1

˙̃x0(xk−1,T /k)

k

�

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

, (23)

with Ĩ and � representing special submatrices, and the missing entries in the DF (X)

matrix are zero elements. Entries in the last column of DF (X) are evaluated as the
state derivatives at the end of the specified numerical simulation multiplied by a
constant (1/k). For the periodicity condition in Eq. 16, the indicated special subma-
trix Ĩ is a modified identity matrix with the appropriate row removed. The special
submartrix represents the analytical derivatives

� =
[

∂DΣ(x0)
∂x0

∂C(x0)
∂x0

]
=

[
0 1 0 0 0 0

2 ∂ϒ(x0)
∂x0

2 ∂ϒ(x0)
∂y0

2 ∂ϒ(x0)
∂z0

−2ẋ0 −2ẏ0 −2ż0

]
, (24)

for the remaining constraints on the initial state. To assist with the corrections pro-
cess, the state transition matrix (STM or ∂xb(xa,t)

∂xa
evaluated from xa to xb through

time t) is propagated concurrently with any given state vector and supplies continuity
derivatives between individual fitting points [15].
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After the initial guesses are refined to periodic orbits, the resulting fixed points are
classified and filtered. The full-period STM (or monodromy matrix) is employed to
classify the orbital stability characteristics through the standard eigenvalue analysis
[8, 21]. If λ represents the monodromy matrix eigenvalue with maximum magni-
tude, then a periodic orbit with |λ| > 1 is classified as a saddle-type fixed point [8].
All other computed fixed points are classified as centers. Duplicate fixed points may
appear as a result of the extraction process, especially higher period duplicates of
the same periodic orbit; fixed points representing duplicates are filtered by retaining
only the lower-period version of a duplicated set. Many asymmetric periodic orbits
exist in the planar CR3BP, but both pairs of asymmetric orbits (via the symmetry
properties of the CR3BP) may not always be located through the detection or refine-
ment phases. The filtering process, therefore, should also include the evaluation of
symmetric counterparts to any identified orbits.

Manifold Extraction

For the saddle-type fixed points, the stable and unstable manifolds are computed in
the final stage of the algorithm. Here, manifolds are located employing an alterna-
tive approach to the puncture plot method, one that is suited for a Poincaré section
(namely, a 1D continuation scheme offered by England et al. [6]). This technique
constructs manifolds exclusively on the Poincaré section by solving a successive
sequence of shooting problems. After initializing the method with a vector pertur-
bation, δx, from a fixed point, x∗, along the appropriate direction associated with
the eigenvector from the monodromy matrix, an upstream interval, [x∗, x∗ + δx], is
established. Assuming this interval approximates a linear segment along the mani-
fold, states along the upstream interval are mapped via Pp(x) to form downstream
states along the manifold. A shooting process is then applied to ensure successive
points downstream satisfy constraints that enforce smoothness along the downstream
manifold curve[6]. This process is then continued iteratively by shifting the working
interval to the next set of computed manifold points downstream until a stopping con-
dition is triggered: the manifold exits the domain of interest, the total length of the
generated manifold surpasses a user-specified maximum arc length, or the generated
manifold encounters another saddle point in the same island chain [6, 19].

Autonomous Topology Extraction Applied to Planar CR3BP Maps

As a sample application in a multi-body model, the automated fixed point detection
portion of the automated topology algorithm is exercised on the domain DEM in
the Earth-Moon system. The orbit convolution image for C = 2.96 (Fig. 5) on this
domain is incorporated to select the initial sampling grid as a 24 × 16 set of cells
where each cell seemingly surrounds an isolated fixed point. The initial sampling
is computed with n = 200 map iterations to compute the available periods up to
pmax = 12 per-node that appear in Fig. 7. Tracking the rotation in � outputs 11
possible fixed point locations where ambiguities nearing 180◦ exist with ‖�‖ <

1 × 10−4. Poincaré index considerations yield an additional 58 fixed point guesses
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resulting from a 20 × 20 sub-cell grid search after a non-zero index is returned.
After the corrections process is applied, 50 fixed points are located and added to a
graphical environment (appearing in Fig. 9). Note that the 50 computed fixed points
are included without the duplication and symmetry filters described in Section 3 for
a closer examination of algorithm output. These computed fixed points represent less
than 10 orbits since many of the solutions are duplicated at higher periods (e.g., the
algorithm finds a period-1, period-9, and period-10 center all at the same location
even though the true orbit is period-1). Most of the computed center points (green
dots) reside in the middle of quasi-periodic regions appearing in the orbit convolution
image, but a period-8 center island chain is also detected on the x < 0 side of the
Earth. Saddle points are also detected and displayed as red dots in Fig. 9. Some of the
saddle-type fixed points sit on visible structures in the orbit convolution image where
an extension of gray persists into the chaotic sea; these fixed points likely correlate to
an intersection of stable and unstable manifolds from low-period orbits which form
higher-period fixed points [8, 11]. Overall, the fixed points in Fig. 9 present a good
example of isolating orbital structures that exist in the chaos that is quite difficult to
detect through the visual inspection of a puncture plot.

Sample orbits resulting from the autonomous extraction procedure in the Earth-
Moon application are highlighted for further analysis. A set of center-type and
saddle-type orbits are indicated on the Poincaré section in Fig. 9 along with the cor-
responding order of returns. The selected set is also plotted in configuration space
(Fig. 10) with the same color-coding displayed in Fig. 9. State and period information
about the set of orbits is tabulated in Table 1. The sample center points, labeled C0
(black), C1 (orange), and C2 (green), surround a particular primary with perpendicu-
lar crossings of Σ ; these center orbits are also well-known with various applications
to date [4, 5, 21]. Conversely, the resulting saddle-type orbits – S0 (red), S1 (blue),
and S2 (purple) – exhibit complex behavior and may prove difficult to compute by

Fig. 9 Fixed points (green for centers and red for saddles) for the domain DEM computed with the
automated topology extraction procedure employing a 24 × 16 initial sampling grid and n = 200 initial
map iterations (pmax = 12)
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Fig. 10 Fixed points (green for centers and red for saddles) for the domain DEM computed with the
automated topology extraction procedure employing a 24 × 16 initial sampling grid and n = 200 initial
map iterations (C = 2.96, pmax = 12)
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Table 1 A sample of Earth-Moon periodic orbit initial state components on Σ resulting from the
autonomous Poincaré map topology extraction algorithm employing a 24 × 16 initial sampling grid and
n = 200 initial map iterations (C = 2.96, pmax = 12)

Orbit p Color x (NonDim) ẋ (NonDim) T (days)

C0 1 black -0.263491972891 0.0 3.069

C1 1 orange 0.294802707935 0.0 27.112

C2 1 green 0.849016264023 0.0 10.065

S0 12 red 0.384994915649 -0.006895701932 326.099

S1 12 purple 0.878157738325 0.023107692739 295.432

S2 4 blue 0.661494496067 0.051881260690 135.003

Note, the given state corresponds to the crossing indicated by the number 0 in Fig. 9

conventional procedures, e.g., bifurcations from known orbit families (see Doedel et.
al [5]). The autonomous topology extraction method, therefore, supplies new options
for design in mutli-body regimes. For example, orbit S1 behaves in a manner simi-
lar to orbit C2 with returns near C2, but a pair of close lunar approaches transition
orbit S1 from the lunar vicinity to and from an exterior orbit region surrounding the
primary bodies. The stable and unstable manifolds of orbit S1 could be employed
to seed initial guesses for capture or departure trajectories from the quasi-periodic
region around orbit C2 [7, 21]. Thus, autonomous detection and extraction of fixed
points on arbitrary sections may supply insight for orbital transfer design.

Although automated fixed point extraction offers access to some fixed points in the
domain of interest, the orbit convolution image in Fig. 9 clearly reveals that numerous
orbital structures are not captured due to various factors. One issue, in particular, is
the size of the analysis cells. The grid cells may span too much space, thereby encap-
sulating a larger variety of local behavior. Note that the Poincaré index for a closed
curve that encircles several fixed points is actually the sum of all the indexes around
isolated fixed points[17]. Thus, if a cell surrounds multiple fixed points, the resulting
Poincaré index might be zero even though fixed points exist inside the cell. Also,
analysis cells with an invalid corner (or a corner residing in the forbidden region) are
dismissed before analysis is initiated; however, many of these areas contain rich
dynamical variance such as the chaotic regions in close proximity of the Moon as
indicated in Fig. 9. Selecting a more refined grid, one that is isolated around a target
region, will likely allow additional structures to emerge. Reducing the grid size too
much, though,createsredundantanalyses,especiallyinthelargequasi-periodicregions.

Missing structure can also be attributed to the difficulty in tracking the displace-
ment vector rotation along the boundary of a cell. Two phenomena present in the
modeling formulation contribute to the discontinuities in tracking � around a closed
curve – highly sensitive dynamics that are known to exist in the CR3BP and the
definition of Σ in relation to the dynamical flow. To demonstrate these issues, the
orientation of � for p = 1 is computed throughout a sample cell from Fig. 9 in a
20 × 20 sub-grid and is displayed in Fig. 11 with 256 divisions per-edge. The color
in Fig. 11a displays the nondimensional magnitude of the map displacement vector
according to the attached colorbar. This sample cell spans the (x, ẋ) nondimensional
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Fig. 11 The orientation of the map displacement vector � evaluated with p = 1 for the cell (x ∈
[0.7, 0.77], ẋ ∈ [−0.16, 0.16]) which encircles the L1 Lyapunov orbit fixed point at C = 2.96 in the
Earth-Moon system. Regions of ambiguous rotation in � along an edge are circled in orange
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coordinates (0.7, −0.16) to (0.77, 0.16)) and encircles the period-1 fixed point rep-
resenting the Lyapunov orbit about the Lagrange point L1 (at roughly (0.728, 0.0)).
The depiction of the orientation of the various � vectors (Fig. 11) clearly conveys
that � can flip direction readily along edges. Locations along an edge for which
the rotation is not resolved utilizing a dmin = 0.32/256, or 256 divisions along the
smaller dimension, are highlighted by orange circles in Fig. 11. Some orange circles
occur where the nearby ‖�‖ values are similar (color in Fig. 11a) but the orientation
flips between nearby starting locations. Such behavior correlates with a propagation
through a singularity such as the Moon in this example. Perhaps more prevalent are
locations in this sample cell where ‖�‖ is discontinuous. Discontinuities in ‖�‖ are
examined by computing p = 1 trajectories in affected areas with the colored points
in Fig. 11a and corresponding trajectories displayed in Fig. 11b. Since the trajecto-
ries in Fig. 11b possess returns to Σ on opposite sides of the Earth, these sample
trajectories suggest that the hyperplane Σ : y = 0 is not truly transverse to the
flow everywhere within this cell. Such behavior violates a fundamental definition of
a Poincaré section, rendering some ambiguity in the computation of the � rotation.
With the multitude of unresolved rotations, this cell is forced to be tagged as one with
no Poincaré index for p = 1 by the algorithm, even though a fixed point is known
to exist within this cell. Resolving the rotation of the vector � remains an open issue
and is currently under investigation.

The fixed point extraction process is also applied to the Jupiter-Europa system
within the specified domain DJE . Examining the orbit convolution image for DJE in
Fig. 4b, a 20 × 20 grid spanning DJE appears appropriate for isolating possible
fixed points inside a single cell. The parameters n = 200 and pmax = 12 are again
employed to generate possible toroidal periods per-node. The resulting fixed points
from the automated extraction process are visualized with the orbit convolution image
in Fig. 12, where green and red dots correspond to center-type and saddle-type orbits,
respectively. As evident from Fig. 12, more fixed points are located with automated
detection in this Jupiter-Europa domain than in the Earth-Moon domain. The
enhancement in the quantity of fixed points is attributed to a reduced sensitivity in
resolving the rotation of map displacement (�) in the Jupiter-Europa example since
Poincaré section singularities (e.g., at the Earth and Moon in DEM ) are not present
in this particular domain. Clearly, saddle points exist throughout the chaotic (gray)
regions; however, fixed points that should appear as centers when examining the orbit
convolution image are mistakingly classified as saddles due to numerical difficulties
when computing the eigenvalues of the monodromy matrix[13]. Many high-period
fixed points are excited in this region, including several island chains that exist around
a period-1 center. The application of automated fixed point detection to DJE demon-
strates that there is a wealth of structure residing in the chaos that may be difficult to
recognize otherwise.

The next step in the topology extraction process is the computation of the invari-
ant manifolds emanating from the saddle points. Applying the global continuation
method for 1D manifolds, though, is quite challenging in the planar CR3BP. Mani-
folds corresponding to the Earth-Moon Lyapunov orbit about the L1 Lagrange point
are computed as an application of the global continuation scheme for 1D manifolds.
The resulting curves possess a continuous and dense (thousands of states on the map)
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Fig. 12 Fixed points for the domain DJE computed with the automated topology extraction procedure
employing a 20 × 20 initial sampling grid and n = 200 initial map iterations (pmax = 12)

representation of the stable and unstable manifolds associated with the saddle point
as is apparent in Fig. 13. The termination of the continuation process, however, is
triggered by either sharp turns of the true manifolds on the Poincaré section, e.g., near
the zero-velocity curves, or because manifolds become tangent to Σ and transition to
a new area on the Poincaré section (similar to flow behavior presented in Fig. 11b).

Fig. 13 A visual design environment displaying an orbit convolution visualization for the Earth-Moon
system combined with the stable (blue) and unstable (red) manifolds of the L1 Lyapunov orbit computed
with the manifold computation algorithm summarized by England et al. [6]
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The manifolds do not truly possess a discontinuity as the space is area-preserving [8,
11], but numerically following the manifold through a singularity in the dynamical
model (such as a primary) or a “jump” in section-space coordinates is exceptionally
difficult. Employing an effective method to incorporate these issues into a manifold
propagation algorithm warrants further study.

Concluding Remarks

Enhancing Poincaré map visualization beyond the de facto puncture plot generates
a new view of the structures that exist on a surface of section in astrodynamics
problems. The application of orbit convolution imagery demonstrates a clear con-
trast between quasi-periodic and ergodic behavior and supplies essential input for an
automated topology extraction process. Employing a set of winding numbers to clas-
sify behavior throughout a domain and a numerical application of the Poincaré index
enables the independent production of fixed points. Thus, computing periodic orbits
on a Poincaré surface of section is attainable without significant external input from
a trajectory designer.

Although this investigation introduces a framework for automated Poincaré map
topology extraction, many components of the algorithm could benefit with further
development. Defining an optimal cell size for analysis or an adaptive refinement
procedure could offer an intelligent way to focus analysis where dynamically rich
information resides. Another possible adaptation involves a new definition or mod-
ification of a hyperplane such that the Poincaré section is universally transverse to
the flow, significantly improving the detection of fixed points within analysis cells.
In addition, locating initial guesses closer to the true fixed points and a more robust
differential corrections scheme would enhance the fixed point computation process.
Finally, the manifold computation method should smooth discontinuities in mani-
folds on arbitrary hyperplanes. With such upgrades, the algorithm would provide a
more in-depth view of the topological construct available throughout any arbitrary
Poincaré section.

An automated approach for exposing the interconnectivity of orbital structures
facilitates spacecraft trajectory design with a broad range of options without exter-
nal computation. When implemented in a visual environment, a designer can employ
automated topological skeletons to select pathways that navigate the available
dynamical flow. By selecting stable and unstable manifolds corresponding to various
fixed points that are available on a Poincaré map, low-cost transfers can potentially
be traced through the stable-unstable manifold connections since all of the relevant
orbital data is automatically generated as part of the process. Such a visually interac-
tive tool could expedite the generation of tour designs as well as assist in the design
of multi-body orbital structures.
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