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h i g h l i g h t s

• A vertically tapped particle column has dynamics approximated by that of a ball.
• The dynamics can be further approximated by iterating a planar diffeomorphism.
• Simulations show the approximations are good predictors of the column dynamics.
• The efficacy of the approximations is also supported by advanced visualizations.
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a b s t r a c t

A low-dimensional center-of-mass dynamical model is devised as a simplified means of approximately
predicting some important aspects of the motion of a vertical column comprised of a large number of
particles subjected to gravity and periodic vertical tapping. Thismodel is investigated first as a continuous
dynamical system using analytical, simulation and visualization techniques. Then, by employing an
approach analogous to that used to approximate the dynamics of a bouncing ball on an oscillating flat
plate, it is modeled as a discrete dynamical system and analyzed to determine bifurcations and transitions
to chaotic motion along with other properties. The predictions of the analysis are then compared –
primarily qualitatively – with visualization and simulation results of the reduced continuous model, and
ultimately with simulations of the complete system dynamics.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Continuing our work in [1], we delve even more deeply into
the dynamics of a vertically tapped column of particles; this time
exploring how certain ‘‘averaged’’ approximations can yield useful
information about the dynamics of the complete system such as
the identification of a key dimensionless bifurcation parameter
related to the acceleration of the tap that signals period-doubling
cascades and transitions to chaos. The underlying idea or theme in
using such approximate models is that the loss in accuracy may be
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more than compensated for by enhanced amenability to detailed
mathematical analysis. In particular, we focus on the dynamics of
the center of mass of the particle configuration as it evolves under
the action of gravity and the periodic tapping force applied via the
floor (bottom) of the configuration, which can be approximated by
a two-degree-of-freedom system that is essentially ‘equivalent’ to
a single ball driven by the oscillatory motion of the floor (as borne
out by qualitative comparisons with simulations of the complete
system). Naturally, one cannot expect that themotion of the center
of mass is capable of illuminating many of the more subtle aspects
of the dynamics of the complete system; however, it is plausible
that transitions to chaotic regimes can be rather well predicted
by the reduced system. The reason for this is that chaotic motions
of individual particles would typically not cancel one another in
the averaging that defines the position of the center of mass, and
the dynamics of the center of mass cannot possibly be chaotic
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unless the same is true for at least one of the particles in the
complete system. What we found to be most surprising is that
the reduced (center of mass) dynamics appears to be a reasonably
good bellwether for other types of changes in the qualitative
dynamics such as period-doubling bifurcations and is rather useful
for characterizing other dynamical phenomena for the complete
system such as the existence of periodic orbits of arbitrarily large
period as well as (what appear to be) strange attractors.

We begin in Section 2 with a continuous one-dimensional
dynamical model for the vertical column of particles (assuming a
modifiedWalton–Braun type interaction law with different spring
constants for loading and unloading [2,3] and an impulse-like
oscillatory motion for the floor). The governing equations for the
motion of the column of particles are then expressed as a system
of second-order ordinary differential equations (ODEs) in the usual
Newtonian way (and the initial equilibrium configuration of the
particle stack is derived) and this is recast as a system of first-
order equations in the standard manner. In these systems, the
role of inelasticity (which causes dissipation in the dynamics) is
highlighted andquantified by a parameter that is directly related to
the coefficient of restitution, which is themore familiarmeasure of
energy loss in the particle–particle and particle–floor interactions.
It is interesting and instructive to compare our modeling and
analysis with such related investigations as [4–19].

In Section 3, we use the equations of motion of the complete
system to determine the reduced governing equations for the
dynamics of the center of mass. Taking full advantage of Newton’s
third law of motion, we show that these reduced equations make
it possible to uniquely determine the dynamics of the mass center
by a single second-order ODE if the motion of the particle nearest
the floor is known. Whence, the assumption of a reasonable
relationship between the motion of the particle nearest the floor
and the center of mass (which becomes more accurate as the
number of particles increases) enables us to approximate the
motion of the center of mass by a second-order ODE that is
equivalent to a single ball bouncing on the oscillating floor—albeit
a ball with mass equal to the total mass of particles in the full
system that is acteduponby a suitablymodified gravitational force.
It should be noted here that the apparent relationship between
the bouncing ball and oscillating granular column dynamics was
observed about a decade ago, empirically justified, investigated
in some detail and more or less confirmed via simulation by
Luding et al. [20,21] and Brennen et al. [22]. An inescapable and
quite interesting inference that one perforce draws from this
equivalence is that the dynamics of the center of mass is at least
as rich and varied as that of a ball bouncing on a vibrating plate (as
delineated in such studies as [23–26]).

Next, in Section 4, we further simplify our reduced continuous
model for the evolution of the center of mass using two discrete
dynamical system approximations that rather accurately portray
certain key features of the motion of the reduced center of mass
model. The first discrete dynamical systems model is developed
along the lines formulated by Holmes [24], and also turns out
to be basically equivalent to the standard map [24,27–29]. We
performan in-depth analysis of dynamics of thismodel that reveals
that there is an acceleration-(or energy-) like non-dimensional
parameter that governs transitions from regularmotions to period-
doubling bifurcations and ultimately to chaotic dynamics; it is the
same parameter that has been shown to play a pivotal role in
bifurcations of bouncing-ball dynamics and (via simulation and
experiments) the motion of the complete stack of particles.

Section 5 is devoted to wide-ranging simulations of the
dynamics of a tapped column of a large number of particles
(computing the trajectories of the individual particles) and the
corresponding motion of the center of mass of the configurations.
These simulations – performed using a very effective granular
dynamics based code that has been refined and upgraded over
several years (cf. [1,7,15,30,31]) – are focused on observing how
the complete system and center of mass reductions respond to
changes in several important parameters, both physical and non-
dimensional, with an eye toward comparisons with predictions
from the analytical investigation in the preceding sections. It is
found that there is rather good agreement between the analytical
and computational results.

In addition to establishing agreement between the analytical
and simulation aspects of our investigation, in Section 6we include
comparisons of the reduced center of mass motion results with
conclusions obtained using dynamical visualization techniques
such as those described in [32–35]. In particular, appropriate
phase space visualization methods are used on the continuous
second-order ODEmodel selected to approximate the dynamics of
the center of mass of the configuration. These methods typically
involve the identification of several types of coherent phase
space structures that have been found to correspond to various
dynamical regimes and transitions among them. Comparisons at
several levels for numerous parameter values reveal remarkably
good qualitative agreement among the analysis, simulation and
visualization approaches, thereby confirming the effectiveness of
this tripartite strategy for dynamical investigations.

Finally, in Section 7, we conclude with a succinct summary
of the results obtained and their importance in this and related
investigations. Moreover, we briefly outline our plans for future
studies inspired by our work here—directed mainly at useful
alternative reduced models and extensions to higher dimensions
and generalization of the systems considered.

2. Newtonian model

First, we derive the equations of motion for a vertically tapped
column of particles using Newtonian and Hamiltonian principles
assuming that the particle–particle and particle–floor interaction
forces are of a modified simplified Walton–Braun (W–B) type
(cf. [5,6,12,16,36]). A simplified type of W–B model is employed
to avoid the extra calculations associated with the initiation of
interactions in progress at any given time. It should be noted
that the modification does not alter the particle (mass center)
dynamics, because both models yield precisely the same velocities
before and after contact (related to the coefficient of restitution).

To be precise, we consider a vertical configuration ofN particles
pi, 1 ≤ i ≤ N , stacked one above the other starting with p1, under
the action of gravity – with constant gravitational acceleration
g – and interacting inelastically (according to the modified W–B
model) with neighboring particles and the rigid bottom. The
bottom (floor) of the stack, denoted as y0 and initially at zero,
moves so as to simulate a periodic nearly impulsive force applied
vertically to the floor. The floor and particle centers are located,
respectively, at the points

0 ≤ y0(t) < y1 < · · · < yN (1)

in I := {y : 0 ≤ y}, and we assume that the particles have masses
and radiim1, r1, . . . ,mN , rN , respectively.

We assume that y0(t) is a periodic function of period T > 0
represented as

y0(t) :=


a sinωt, 0 ≤ t ≤ π/ω
0, π/ω ≤ t ≤ T (2)

for 0 ≤ t ≤ T , where π/ω ≪ T , and the amplitude a is
small and positive. The derivative of y0 with respect to t , ẏ0, is the
discontinuous function

ẏ0(t) :=


aω cosωt, 0 ≤ t ≤ π/ω
0, π/ω ≤ t ≤ T .

(3)
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In our analysis of the dynamics in the sequel, we shall find it
necessary to smoothen the abovemotion (by rounding the corners)
so that y0 can be considered to be a C2 function and a fortiori ẏ0
can be treated as a C1 function. This can be accomplished with
arbitrarily close C0 approximations, so the overall dynamics of the
original and smoothed systems are essentially the same.

The particles and bottom are assumed to interact (inelastically)
according to a simplified version of the W–B law, so that
the equations of motion obtained from Newton’s laws are the
following systemofN second-order ordinary differential equations
(ODEs):

miÿi = Fi, (1 ≤ i ≤ N) (4)

where the forces on the particles are

Fi := −mig + f i−1
i + f i+1

i (5)

for 1 ≤ i ≤ N , where f i−1
i is the force exerted by pi−1 (or the floor

when i = 1) on pi and f i+1
i is the force exerted by pi+1 on pi when

1 ≤ i ≤ N − 1. These interaction forces are assumed to have the
form (cf. [1])

f 01 := K 0
1


1 − ε0,1σ (ẏ1 − ẏ0(t))


[r1 − (y1 − y0(t))]

× χ (r1 − (y1 − y0(t))) F (|y1 − y0(t)| , ẏ1 − ẏ0(t)) ,

f i+1
i := −K i+1

i


1 − εi,i+1σ (∆ẏi)


[ri + ri+1 − ∆yi]

× χ (ri + ri+1 − ∆yi) F (|∆yi| , ∆ẏi) , (6)

f N+1
N := 0,

for 1 ≤ i ≤ N − 1, with

f i−1
i = −f ii−1 (7)

for 2 ≤ i ≤ N . Here

∆yi := yi+1 − yi,

∆ẏi := ẏi+1 − ẏi, (8)

for 1 ≤ i ≤ N − 1, K 0
1 and K i+1

i are positive constants, the
interaction coefficients 0 ≤ εi,i+1 < 1 for all 0 ≤ i ≤ N − 1, σ
and χ denotes the signum and step function defined, respectively,
by

σ(τ) :=


−1, τ < 0
0, τ = 0
1, τ > 0

and χ(τ) :=


0, τ ≤ 0
1, τ > 0 (9)

and F : (0, ∞) → [1, ∞) is a continuous penalty function
added to make sure that the material properties of the system
cannot be violated. In particular, particles shouldnot be able to pass
through one another nor through the floor of the stack. In order to
adhere reasonably closely to the linear springmodel,we define this
function as

F(τ , ν) := 1 + χ (−ν) χ (τ∗ − τ)


1 +

1
√

τ
−

1
√

τ∗


, (10)

where τ∗ := min{ri : 1 ≤ i ≤ N}/100. The penalty function is
only activated when the particles (or a particle and the floor) are
approaching and extremely deformed so as not to unduly affect
the actual physical interactions being modeled. We found that this
penalty function works quite well for the type of mild taps on
which we are concentrating, but more energetic taps require a
stronger penalty function in which τ−1/2 is replaced by τ−α with
α ≥ 1 (see e.g. [37]).

With the definitions above, the system (4) may now be rewrit-
ten as

ÿi = Yi :=
1
mi

Fi = −g +
1
mi


f i−1
i + f i+1

i


, (1 ≤ i ≤ N) (11)
which can be recast in vector form for y := (y1, . . . , yN) as

ÿ = Y (y, ẏ, t; µ) , (12)

where Y := (Y1, . . . , YN) = (−g + m−1
1 (f 01 + f 21 ), . . . ,−g +

m−1
N−1(f

N−2
N−1 + f NN−1), −g + m−1

N f N−1
N ), and µ is a parameter (vec-

tor) incorporating a, ω, T , all the particle masses and radii, and all
of the interaction parameters K i+1

i and δi,i+1. As is usual for such
second-order systems, it is often convenient to recast it as the fol-
lowing system of 2N first-order ODEs:

ẏi = zi,
żi = Yi, (13)

for 1 ≤ i ≤ N . This can also be represented in vector form as

ẋ = X (x, t; µ) , (14)

where x := (y1, ẏ1, . . . , yN , ẏN).
For the above forces the inelasticity of the particle–particle and

particle–bottom interactions ismanifested by a loss of energy upon
impact that is represented by a spring constant of K i+1

i


1 + εi,i+1


when the objects are approaching one another or the bottom and
a spring constant of K i+1

i


1 − εi,i+1


in separation, so the energy

stored in unloading is smaller than that in loading by a factor of
1 − εi,i+1

 
1 + εi,i+1

−1. Hence, εi,i+1 = 0 represents a perfectly
elastic interaction. We also note that although the discontinuities
in (12) or (14) are somewhat inconvenient from a theoretical
standpoint, they can easily be handled by a standard numerical
scheme, such as a Runge–Kutta solver, and the forces can also
be C0-approximated to any degree of accuracy by smooth (=C∞)
functions.

The initial conditions for (14) consistent with tapping are given
in vector form as

x (0) = (y1(0), 0, y2(0), . . . , 0, yN(0), 0), (15)

which represents a stacked configuration of particles initially at
rest. Herewehave to determine the values of the yk(0) by requiring
that the stack of particles is initially at rest and in equilibrium.
As the particles are assumed to be non-rigid we shall have to
determine these values in a way that guarantees that y0(0) <

y1(0) < y2(0) < · · · < yN(0), which we shall demonstrate in
the sequel.

We shall simplify matters by assuming from here on that all the
K ’s and all the ε’s are equal. Note that in this context, the coefficient
of restitution e, which is the standard measure of elasticity (where
0 ≤ e ≤ 1, with e = 0 and e = 1 representing the perfectly
inelastic and elastic cases, respectively), is given as [2,3]

e =


1 − ε

1 + ε
⇐⇒ ε =

1 − e2

1 + e2
. (16)

With the assumptions that all K ’s and e’s are the same, the
equations of motion take the form

ÿi = Yi := −g +
1
mi


f i−1
i + f i+1

i


, (1 ≤ i ≤ N) (17)

where

f 01 := K [1 − εσ (ẏ1 − ẏ0(t))] [r1 − (y1 − y0(t))]
× χ (r1 − (y1 − y0(t))) F (|y1 − y0(t)| , ẏ1 − ẏ0(t)) ,

f i+1
i := −K [1 − εσ (∆ẏi)] [ri + ri+1 − ∆yi]

× χ (ri + ri+1 − ∆yi) F (|∆yi| , ∆ẏi) , (18)

f N+1
N := 0.
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Whence, the Newtonian equations of motion are

ÿ1 = −g −
K
m1

{[1 − εσ (∆ẏ1)] [r1 + r2 − ∆y1]

× χ (r1 + r2 − ∆y1) F (|∆y1| , ∆ẏ1)
− [1 − εσ (ẏ1 − ẏ0(t))] [r1 − (y1 − y0(t))]
× χ (r1 − (y1 − y0(t))) F (|y1 − y0(t)| , ẏ1 − ẏ0(t))} ,

ÿi = −g −
K
mi

{[1 − εσ (∆ẏi)] [ri + ri+1 − ∆yi]

× χ (ri + ri+1 − ∆yi) F (|∆yi| , ∆ẏi)
− [1 − εσ (∆ẏi−1)] [ri−1 + ri − ∆yi−1]
× χ (ri−1 + ri − ∆yi−1) F (|∆yi−1| , ∆ẏi−1)} , (19)

ÿN = −g +
K
mN

[1 − εσ (∆ẏN−1)] [rN−1 + rN − ∆yN−1]

× χ (rN−1 + rN − ∆yN−1) F (|∆yN−1| , ∆ẏN−1) ,

with initial conditions

y1(0), . . . , yN(0) determined by assuming
initial equilibrium, and ẏ1(0) = · · · = ẏN(0) = 0. (20)

To determine the initial positions of the particle centers, we
simply set y0, ẏ0 and ẏi and ÿi (1 ≤ i ≤ N) equal to zero and assume
all |∆yi| > τ∗, which yields the linear system

−2y1(0) + y2(0) = r2 +
m1g
K

,

yk−1(0) − 2yk(0) + yk+1(0) = (rk+1 − rk−1) +
mkg
K

,

(1 < k < N − 1) (21)

yN−1(0) − yN(0) = − (rN−1 + rN) +
mNg
K

.

It is straightforward to show that (21) has the solution

y1(0)
y2(0)
y3(0)

...
yN−1(0)
yN(0)



=



−1 −1 −1 −1 · · · −1
−1 −2 −2 −2 · · · −2
−1 −2 −3 −3 · · · −3
...

...
...

... . . .
...

−1 −2 −3 · · · −(N − 1) −(N − 1)
−1 −2 −3 −4 · · · −N



×



r2 +
m1g
K

r3 − r1 +
m2g
K

r4 − r2 +
m3g
K

...

rN − rN−2 +
mN−1g

K
− (rN−1 + rN) +

mNg
K


, (22)

which satisfies the requirement that yk(0) − yk−1(0) > 0 for all
1 ≤ k ≤ N if

K >
1

10g
max


mk

rk−1 + rk
: 1 ≤ k ≤ N


, (23)
where we have defined r0 = 0 for convenience. We note here that
the maximum height hmax of the column of particles – where they
are all just touching one another – is

hmax = 2 (r1 + r2 + · · · + rN) . (24)

We shall study the solutions of (19)–(20). One slightly troubling
feature from a theoretical standpoint is the fact is that the forces
and their derivatives have discontinuities, which we should add
can be easily handled using a numerical scheme such as the
Runge–Kutta method. Theoretically, we can always adjust the
systems to be smooth (=C∞) by using appropriate approximations
of the signum, step and penalty functions. Rather good choices for
smooth approximations of σ and χ are

σ(s) ∼= σα(s) := tanhαs and

χ(s) ∼= χα(s) :=
1
2

(1 + tanhαs) ,
(25)

where α ≫ 1, while the penalty function F can be smoothed at
s = τ∗ and smoothly capped off at a very high value at s = 0.

3. Reduced center of mass model

The initial value problem (19)–(20) is difficult to analyze
or visualize even for moderate values of N since it is highly
nonlinear. On the other hand, this initial value problem (IVP)
can be handled easily – at least in principle – using numerical
techniques such as the standard 4th-order Runge–Kutta method
or better yet a sophisticated discrete element simulation code
such as that employed in [15]. However, even the best simulation
method for obtaining approximate solutions tends to become
too computationally expensive for very large values of N . For
these reasons, it would prove quite useful to have a model of
a significantly smaller dimension that is capable of capturing or
approximating important features of themotion of the full system,
yet is still far more amenable to mathematical analysis, numerical
solution and the application of dynamical visualization techniques
such as those employed in [32–35]. We shall develop such a
reduced dynamical model here—one based on the motion of the
center of mass of the particle stack.

Let us first define the coordinate of the center of mass of the
stack as

y :=
1
M

N
k=1

mkyk, (26)

where M := m1 + m2 + · · · + mN . Then it follows directly from
(19)–(20) that ȳ is the solution of the IVP

ÿ = −g +
K
M

[1 − εσ (ẏ1 − ẏ0(t))] [r1 − (y1 − y0(t))]

× χ (r1 − (y1 − y0(t))) F (|y1 − y0(t)| , ẏ1 − ẏ0(t)) (27)

y(0) =
1
M

N
k=1

mkyk(0), ẏ(0) = 0, (28)

where y1(0), . . . , yN(0) are determined by (22), and Newton’s 3rd
lawhas beenused to great advantage in obtaining the rather simple
formof the differential equation that is a ‘‘reduction’’ froma system
ofN , 2nd-order equations to a single 2nd-order equation. As y(t) ≠

y1(t) unless N = 1, (27) is not a, strictly speaking, differential
equation for y and naturally not the kind of reduced center of mass
model we seek. However, it does lead directly to the following
rather surprising result.

Lemma 1. The motion of the center of mass of the vertical array
of particles governed by the system of second-order differential
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equations (19) is completely determined by the motion, y1(t), of the
particle nearest the floor of the column.

In order to turn (27) into a precise reduced differential equation
for the motion of the center of mass, wemust know in advance the
relationship between y1 and y for all time; but this is only possible
if we first solve the whole system IVP (19)–(20). As this defeats
its own purpose, we shall find an ‘‘approximating’’ reduction by
simply making a plausible guess about the relationship. One of the
simplest reasonable assumptions is the following:

y1 ∼=
y
N

.

Consequently, we take our approximate reduced model of the IVP
(27)–(28), with z approximating ȳ, to be

z̈ = −g +
K
M


1 − εσ


ż
N

− ẏ0(t)
 

r1 −

 z
N

− y0(t)


× χ

r1 −

 z
N

− y0(t)


F

 z
N

− y0(t)
 , ż

N
− ẏ0(t)


, (29)

z(0) =
1
M

N
k=1

mkyk(0), ż(0) = 0, (30)

and simply remark that there are other plausible choices such as

y1 =
y
N

(1 + y0(t))

that might also be worth trying. At any rate, it is not unreasonable
to assume that certain features of the dynamics of (29), such
as bifurcations and transitions from regularity to chaos, can
(approximately) signal the same behaviors in the full system (19).

One of the nicest features of the reducedmodel is that it is more
amenable to visualization inasmuch as its solution can be viewed
in terms of time-varying orbits of the T -periodic, planar dynamical
system in the usual variables (ξ , η) := (z, ż)

ξ̇ = η,

η̇ = −g +
K
M


1 − εσ

 η

N
− ẏ0(t)

 
r1 −


ξ

N
− y0(t)


× χ


r1 −


ξ

N
− y0(t)


F

 ξ

N
− y0(t)

 , η

N
− ẏ0(t)


, (31)

which can also be recast in the usual fashion (by taking t to be
a third dependent variable) as an autonomous dynamical system
in R3. In fact, it follows from the periodicity that the phase space
can actually be reduced to R2

× S1, where S1 is the unit circle. It
should be remarked that if (31) is solved by a one-step numerical
method such as the standard Runge–Kutta scheme, one generally
encounters difficulties when ξ is small and −η is large. Therefore,
it is helpful to use a variable time step in such cases that is chosen
along the following lines: If 0 ≤ ξ ≤ 4r1 and η < 0, select the time
step to satisfy

∆t ≤ ξ/5 |η| ,

so as to avoid numerical difficulties and problems of physical
inconsistency such as the point representing the center of the
object penetrating the floor of the system.

Observe that the system (29)–(30) looks very much like that
associated with a bouncing ball on an oscillating table, which has
been the subject of considerable research (see e.g. [24,26,27]).
Thus it is reasonable to assume that some of the techniques
that have illuminated a wide range of dynamic behaviors for the
bouncing ball problemcanbe adapted to uncover analogous results
for (29). One of these approaches, pioneered by Holmes [24], the
reformulation of the equations as a discrete dynamical system,
shall be investigated in the next section.
4. Discrete dynamical models of reduced system

In this section we describe a couple of ways in which (29)–(30)
can be recast as a discrete dynamical system. We then analyze
these discrete formulations to determine some important features
of the continuous system from whence they deduced. Our first
discrete dynamical model is completely analogous to that of
Holmes for a single particle, thereby enabling us to directly infer
a host of dynamical properties from the results in [24]. It should be
noted that the continuous dynamical system corresponding to this
discrete model also enables us to predict that the center of mass
motion exhibits the full range of dynamics known to exist for a
single bouncing ball such as shown in [23,25,26].

4.1. Discrete model of Holmes type

In order to show how to fully exploit the Holmes’ standardmap
model, we first compare the Newtonian dynamical equations for a
single particlewith (29) assuming that the interaction forcemodels
are the same for both. In the case of a single particle of mass m,
radius r and coefficient of restitution e =

√
(1 − ε) / (1 + ε) it is

easy to see upon comparisonwith (29) that the governing equation
for the motion of the center of mass of the particle is

ÿ = −g +
K
m

[1 − εσ (ẏ − ẏ0(t))] [r − y + y0(t)]

× χ (r − y + y0(t)) F (|y − y0(t)| , ẏ − ẏ0(t)) . (32)

For purposes of comparison, we rewrite (29) as

ÿ∗ = −g∗ +
K
m∗

[1 − εσ (ẏ∗ − ẏ0(t))] [r − y∗ + y0(t)]

× χ (r − y∗ + y0(t)) F (|y∗ − y0(t)| , ẏ∗ − ẏ0(t)) , (33)

where

y∗ :=
z
N

, g∗ :=
g
N

and m∗ := MN.

Hence, the dynamics of (29), or equivalently (31), is identical
to that of a single ball of mass m∗, radius r and coefficient of
restitution e =

√
(1 − ε) / (1 + ε) bouncing on a table vibrating

according to (2) in a gravitational field with acceleration g∗ (where
it should be noted that the velocity of the table in the new
coordinate y∗ is ẏ0/N). Consequently, the myriad results on the
continuous dynamics of a single bouncing ball exemplified by
investigations such as [23,25,26], after the obvious adjustments
in form, apply to our reduced (center of mass) system. This of
course includes such phenomena as period-doubling bifurcations,
transitions to chaos and existence of strange attractors for certain
parameter ranges.

The analogy for continuous dynamics carries over also to
the discrete approximation used by Holmes to investigate the
dynamics of a bouncing ball. In fact, if we adopt the same
assumptions and follow the same procedure as Holmes [24], it is
straightforward to show that the (nondimensionalized) map

Φ : S1
× R → S1

× R,

Φ (θ, v) := ([[θ + v]], ev + γW (θ + v)) , (34)

where [[·]] denotes the congruence class mod ωT , generates a
discrete dynamical system that closely approximates the times tn
and velocities Vn of successive impacts of the ‘‘ball’’ of (33)with the
vibrating floor. Here, θ := ωt , v := 2ωV/g∗, γ := (2aω2/N)(1 +

e)/g∗ = 2aω2(1 + e)/g and W is a ωT -periodic function defined
on a period interval as

W (s) :=


cos s, 0 ≤ s ≤ π
0, π ≤ s ≤ ωT .

(35)
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Observe that W has jump discontinuities (of size 1) at all points
s = nωT and π + nωT , n ∈ Z, which can be ‘‘smoothed out’’ to
obtain to a Ck version (for any 1 ≤ k ≤ ∞) of W that agrees
with the original except on a union of closed intervals containing
the discontinuities that is of as small a measure as we wish. Such
smoothing may be useful for certain theoretical considerations (as
we shall see when it comes to transitions to chaotic dynamics), but
we shall not need them formost of our investigation since themap
(34) is smooth except on the curves θ + v = 0, π , which wrap
around the cylinder S1

× R. When the coefficient of restitution e is
positive, this map has the inverse Φ−1

: S1
× R → S1

× R defined
as

Φ−1 (θ, v) :=

θ − e−1

[v − γW (θ)], e−1
[v − γW (θ)]


, (36)

which is also smooth except for a jump discontinuity (of size
e−1γ ) in both coordinate functions on curves wrapping around the
cylinder.

It should be remarked that we are, just as did Holmes, using the
so-called high-bounce approximation, which is predicated on the
bounces of the ball being significantly higher than the amplitude
of oscillation of the floor. Since for tapping the amplitude is zero
except for the small time interval of the tap, the approximation is
actually exact formost of themotion of the ball, so we expectmore
accurate results than achieved for steady oscillation of the floor.

Our Holmesian model is clearly a slightly modified version
of the standard map (cf. [24,27–29]), and one would expect and
can actually prove that the multifarious dynamical results proved,
illustrated and discussed in [24] for the bouncing ball have analogs
for (34). We shall prove and illustrate just a few of these parallels
in the sequel, leaving the rest to the interested reader who simply
has to follow the course laid out in [24], making the necessary
adjustments along the way.

4.1.1. Some elementary dynamical properties of Φ
In the dynamical analysis that follows, we shall assume that

0 < e < 1, which actually corresponds to the most physically
realistic case. We begin with an investigation of the fixed points of
(34) obtained by solving the equations

θ ≡ θ + v (mod ωT ),

v = ev + γW (θ + v),

which lead to the following characterization:

[[v]] = 0 H⇒ v = mωT , m ∈ Z,

W (θ) = γ −1(1 − e)v. (37)

From (37) we readily conclude the following: There is always a
degenerate family of fixed points – actually a fixed interval –

I(0) :=

θ(0), v(0)


= {(θ, 0) : π < θ < ωT }, (38)

where it is to be understood here and in the sequel that the θ-
coordinate is always given modulo ωT . Then there are isolated
pairs of nondegenerate fixed points
θ(m), v(m)


=


cos−1

[mωTγ −1(1 − e)],mωT

,

1 ≤ |m| ≤ M, (39)

for allM such that

1 ≤ M ≤ γ [ωT (1 − e)]−1
=

2aω
g∗T


1 + e
1 − e


,

which could be an empty set.
Next, we determine the (linear) stability of the fixed points. On

the interval (38), the derivative of Φ (represented as usual as a
matrix in terms of the natural basis for the coordinates θ and v)
is

Φ ′

θ(0), v(0)


=


1 1
0 e


,

so I(0) is an attracting set. For the additional fixed points (when they
exist for |m| ≥ 1), we compute that

Φ ′

θ(m), v(m)


=


1 1

γW ′

θ(m)


e + γW ′


θ(m)


=


1 1

−γ sin θ(m) e − γ sin θ(m)


,

which has eigenvalues

λ±

(m) =
1
2


(e + 1) − γ sin θ(m)

±


(e + 1) − γ sin θ(m)

2
− 4e


,

from which we readily infer the following results regarding the
nature of the fixed points and certain associated bifurcations.

Lemma 2. The fixed point

θ(m), v(m)


for |m| ≥ 1 is a sink if

mωT (1 − e) < γ <


[mωT (1 − e)]2 + (1 + e)2,

and an orientation-reversing saddle point if

γ >


[mωT (1 − e)]2 + (1 + e)2.

Moreover, γk := kωT (1 − e), are saddle–node bifurcation values
and γ̃k :=


[kωT (1 − e)]2 + (1 + e)2 are period-doubling (flip)

bifurcation values for all k ∈ N.

4.1.2. Attractors and transition to chaos for Φ

Just as in [24], one can show that for |m| ≥ 1 each fixed
point


θ(m), v(m)


gives rise to a period-doubling cascade to chaos

as the parameter γ increases across the bifurcation value γ̃m. In
the process, stable 2i-cycles give birth to and exchange stability
with 2i+1-cycles. Accordingly the map Φ has (local) attractors
comprised of stable 2k+1-cycles, for any nonnegative integer k for
some parameter interval of the form γ̃k ≤ ak < γ < bk.
Thus, we see that the map can have cyclic attractors of arbitrarily
large period (2l) for the right choices of γ and, again referring
to [24], the fact that this period-doubling cascade is an essentially
1-dimensional phenomenon, we can also infer the existence of
attracting 3-cycles and other cyclic attractors of arbitrarily large
odd periods (cf. [27,28]). In contrast to this kind chaotic behavior,
the dynamics for small enough values of γ is quite regular –
focused in an attracting spiral – as illustrated in the plot of system
iterates in Fig. 1.

For larger γ , one can see, as illustrated by the discrete orbit in
Fig. 2, what seems to be a transitional phase from regular to chaotic
motion. This transition ismanifested by the bifurcation of the fixed
point from a spiral sink to a saddle point and the more random
appearance of the iterates away from the fixed point. We note that
in Figs. 1 and 2 as well as in Figs. 3 and 5, which follow, epsilon,
ε, denotes the smooth approximation in the model as described
above.

There is also another way of showing the existence of an
attractor that appears to be strange (i.e. is chaotic and has
noninteger Hausdorff dimension). This attractor is illustrated in
Fig. 3.
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Fig. 1. Regular dynamics for restitution (coefficient) e = 0.8, γ = 0.2.

Fig. 2. Transitional dynamics for restitution (coefficient) e = 0.8, γ = 1.8.

Fig. 3. Possible strange attractor for restitution (coefficient) e = 0.8, γ = 2.5.

Lemma 3. Let ρ and γ be such that 0 < e < 1, ωT (1 − e) < γ
and h := γ (1 − e)−1

≠ mωT for any m ∈ N. Then

Λ(γ ) :=

∞
k=1

Φk (Rh) ,
where Rh := {(θ, v) : |v| ≤ h}, is a globally attracting set having a
connected component that is an attractor.

Proof. It suffices to prove that for any (θ0, v0) ∈ S1
×R, (θn, vn) :=

Φn(θ0, v0) ∈ Rh for n sufficiently large. To this end,we observe that
it follows from the definition (34) of Φ that

|vn| ≤ e |vn−1| + γ |W (θn−1 + vn−1)| ≤ e |vn−1| + γ ;

whence, we conclude by induction that

|vn| ≤ en |v0| + γ

∞
k=0

ek ≤ en |v0| + h

for all n ∈ N. Consequently, lim supn |vn| ≤ h. Moreover, since
|W (θn−1 + vn−1)| must actually be zero for some n we actually
can sharpen this result to conclude that lim supn |vn| < h, which
completes the proof. �

Note that we have refrained from stating that the attractor
described by Lemma 2 is strange, even though Fig. 3 certainly
strongly indicates that this is the case for γ sufficiently large.
The attractor shown is the horizontal Cantor-like set in the upper
left-hand corner of the coordinate rectangle, which seems to
have a noninteger Hausdorff (fractal) dimension around one. The
existence of the strange attractor can in fact be proven and its
fractal dimension approximated, but only by a long and arduous –
albeit straightforward – argument that we felt was not sufficiently
enlightening to be presented here and actually follows directly
from a more general result in [38].

We can also prove the existence of full-fledged 2-dimensional
horseshoe type chaos associatedwith transverse homoclinic orbits
for γ sufficiently large, which can be seen in the simulation of
iterates shown in Fig. 5, which exhibit the type of (seemingly)
randomsplatter pattern indicative of chaotic dynamics. Thiswill be
verified geometrically by showing that the map Φ behaves locally
like a Smale horseshoe map (cf. [24,27,28,39,40]) on a suitably
chosen homeomorph of a square contained in S1

× R, and it is
here that we shall need to consider a smoothed C1 version of (34).
We need only smoothW in (34), which can be accomplished quite
easily by defining for 0 < ε ≪ ωT the C1, ωT -periodic function

Wε(s) :=


−ε−3(2s − ε)(s + ε)2, −ε ≤ s ≤ 0
cos s, 0 ≤ s ≤ π

−ε−3(2s − 2π + ε)(s − π − ε)2,
π ≤ s ≤ π + ε

0, π + ε ≤ s ≤ ωT − ε.

(40)

Note that Wε is a C1 function with Wε = W except on (−ε, 0) ∪

(π, π + ε) and Wε → W as ε ↘ 0. Then the corresponding
smoothed version of (34) is

Φε : S1
× R → S1

× R,

Φε (θ, v) := ([[θ + v]], ev + γWε(θ + v)) . (41)

Observe that for each admissible ε the C1 version of the map has
a couple of additional fixed points for to go along with the fixed
points of the originalmap – one in each of the intervals (−ε, 0) and
(π, π + ε) – when γ is sufficiently large, but we shall ignore these
in the sequel owing to the fact that they are merely artifacts of the
C1 version being used and have no intrinsic role in the dynamics.

Theorem 1. Let

0 < ε < min


ωT
100

,
(2 −

√
2)(1 + e)(3π/4) + (2 +

√
2)(1 − e)ωT

2
√
2(1 + e)


. (42)

Then, if

γ > 2 [(1 + e)(3π/4) + (1 − e)ωT ] , (43)

the map Φε possesses chaotic dynamics of the horseshoe type.
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Fig. 4. Horseshoe behavior on P for γ sufficiently large.

Fig. 5. Chaotic dynamics for restitution (coefficient) e = 0.80, γ = 2.4.

Proof. We shall show that the hypotheses imply that the
restriction of Φε to the parallelogram

P := {(θ, v) : −2ε ≤ θ ≤ 3π/4, −2ε + ωT ≤ θ + v

≤ (3π/4) + ωT }

behaves like the Smale horseshoe map as illustrated in Fig. 4, so
the desired result follows from Moser [39] (cf. Holmes [24]). It
is convenient to denote the vertices of P by A := (−2ε, ωT ),
B := (3π/4, ωT − 2ε − 3π/4), C := (3π/4, ωT ) and D :=

(−2ε, ωT + 2ε + 3π/4) and the corresponding (straight line
segment) edges as AB, BC , CD and DA. We note that A′

:= Φε(A) =

(−2ε, eωT ), B′
:= Φε(B) = (−2ε, e(ωT − 2ε − 3π/4) − γ /

√
2),

C ′
:= Φε(C) = (3π/4, eωT − γ /

√
2) and D′

:= Φε(D) =

(3π/4, e(ωT +2ε+3π/4)−γ /
√
2). Observe also thatΦε(AB) and

Φε(CD) are straight line segments contained in {(θ, v) : θ = −2ε}
and {(θ, v) : θ = 3π/4}, respectively, while Φε(BC) and Φε(DA)
are smooth curves ranging from θ = −2ε to 3π/4.
As noted above, Φ (and a fortiori Φε) has a fixed point with
v = ωT and θ ∈ (0, π/2) whenever γ > (1 − e)ωT , which
is certainly the case if (43) holds. In order to obtain the desired
horseshoe behavior it is necessary for the line segments A′B′ and
D′C ′ to lie below DA and BC along θ = −2ε and θ = 3π/4,
respectively. The first of these requirements is always satisfied in
virtue of the definition of P , while the second property requires
that D′ lies below B along θ = 3π/4, which is the case if

e(ωT + 2ε + 3π/4) − γ /
√
2 < ωT − 2ε − 3π/4.

But this inequality is readily seen to be equivalent to

γ >
√
2 [(1 + e)(2ε + 3π/4) − (1 − e)ωT ] ,

which is clearly implied by (42) and (43), so we do have the
necessary positioning of A′B′ and D′C ′.

At this stage, it remains only to prove that the hypotheses
guarantee that the curve Φε(BC) lies above the edge CD for some
value of θ in the interval (0, π/2). Toward this end, it is easy to
show that Φε(BC) is just the graph of the function

v = ϕ(θ) := e(θ + ωT − 3π/4) + γWε(θ)

on the interval −2ε ≤ θ ≤ 3π/4, which obviously must achieve
its maximum for θ ∈ (0, π/2), and this by definition occurs when

e − γ sin θ = 0.

Denoting this maximizer by θM , we require that

θM + v(θM) > ωT + 3π/4,

which is equivalent to

e(θM + ωT − 3π/4) + γ

1 − (e/γ )2 > ωT + 3π/4,

and this is the same as

γ

1 − (e/γ )2 > (1 + e) (3π/4 − θM) + (1 − e)ωT .

But this inequality follows directly from (43), so the proof is
complete. �

Chaotic dynamics indicated by a seemingly random scattering
(or splatter), albeit a bit sparse, of the iterates is shown in Fig. 5.

5. Comparison with simulations

In this section, results of discrete element simulations are
presented that support the findings in the theory with regard
to periodic and chaotic behavior of the column mass center. In
particular, we consider a system of uniform spheres (diameter d
andmassm) that are subjected to discrete taps applied to the floor
in the form of half sine displacements of amplitude a/d and f .
The taps are separated by a fixed relaxation interval denoted as
τr . Various behavioral regimes (periodic to chaotic) are realized by
fixing one tap parameter (either a/d or f ) while varying the other.
We remark that the appearance of these regimes is very much
dependent on the relaxation interval τr from the viewpoint that in
the limit of τr → 0, the dynamics become chaotic.We have carried
out a series of preliminary cases in which a/d and f were fixed and
the relaxation time was varied.

The simulation method entails numerical integration (via a
velocity Verlet leap-frog method) of Newton’s equations for the
system of interacting spheres, where the quasi-static force model
follows the Walton–Braun soft sphere model [2,41]. Here, the
normal impulse acting between contacting particles is a function
of an allowed overlap α, loading through a linear spring of stiffness
K1 and unloading with stiffness K2 such that K1 < K2. The model
admits a constant restitution coefficient e :=

√
K1/K2. The value

of K1 is selected so as to ensure that α < 0.01d. This quasi-static
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Fig. 6. Trajectories of the sphere centers and the mass center (dark line) for τr =

0.4, f = 10 Hz and a/d = 0.50 over the first 10 taps. Triangles on the time axis
indicate when the tap was applied.

model is applicable because thewave speed in thematerial ismuch
larger than the duration of contacts between the spheres. Since the
objective of these simulations was simply to examine the mass
center dynamics, we limited the magnitude of the tap velocity
so that it was not necessary to incorporate a velocity-dependent
restitution coefficient. The integration time step ∆t ∼= 10−8 s is
approximately three orders of magnitude less than the usual value
as determined by the duration of loading (∆t ∼

√
m/K1 ∼= 10−5 s.

The column consisted of 20 spheres, each having amass density
ρ = 1200 kg/m3 and e = 0.9 in reasonably good agreement
with experimental measurements [42]. For all studies, a fixed
relaxation interval τr = 0.4 s was used, and T := (f /2) + τr
was used to normalize time t in the mass center trajectory plots.
The following twelve case studies were completed: a/d = 0.5,
with f = 5, 10, 15, 20, 25, 30 Hz; and f = 10 Hz, with a/d =

0.25, 0.50, 0.75, 1.0, 1.25, 1.50. Figs. 6–8 show the trajectories of
the particles for the first 10 taps (normalized by d), and the mass
center (dark lines) for f = 10 Hz and a/d = 0.50, 0.75, 1.50. The
small triangles on the abscissa represent the timewhen the tapwas
applied. For a/d = 0.50 (Fig. 6), the mass center executes periodic
motion as the time between taps (τr ) is of sufficient duration to
allow the system to relax. Consequently, each sphere in the system
has a comparable trajectory, except for that adjacent to the floor,
which experiences two bounces due to collisions with the particle
above it. For a larger amplitude a/d = 0.75 (Fig. 7), themass center
appears to undergo a period doubling motion; and at a/d = 1.50,
the mass center trajectory does not feature any periodicity. In
extended case studies, 100 taps were applied to the system during
which the mass center trajectories shown in Figs. 6–8 persisted.

The behavior of the mass center for fixed a/d and varying
frequency was analogous in that larger frequencies produced
chaotic trajectories as can be seen in Fig. 9, where a/d = 1 and
f = 15 Hz. However, some counterintuitive trends were observed,
such as in Fig. 10 (a/d = 1 and f = 20 Hz) where the trajectory
appears to be periodic. A more complete picture of the dynamics
for the case f = 10 Hz is presented in Fig. 11, which shows a
Poincarémap of themass center trajectory at t = T as a function of
a/d. Note that this Poincaré map also plays the role of a bifurcation
diagram. Here, one observes periodic, period-doubling and chaotic
dynamics for which several individual trajectories were shown in
Figs. 6–8.

It is instructive to make some comparisons of the simulation
results with our analytical investigations in Sections 3 and
4. Of course, we need to point out that the force models
described in Sections 2–4 use (in aid of simplifying the analysis)
slightly different interaction force models from those employed
in the simulations. However, one can show that the differences
Fig. 7. Trajectories of the sphere centers and the mass center (dark line) for τr =

0.4, f = 10 Hz and a/d = 0.75 over the first 10 taps. Triangles on the time axis
indicate when the tap was applied.

Fig. 8. Trajectories of the sphere centers and the mass center (dark line) for τr =

0.4, f = 10 Hz and a/d = 1.50 over the first 10 taps. Triangles on the time axis
indicate when the tap was applied.

Fig. 9. Mass center trajectory over 100 taps for a/d = 1 and f = 15 Hz.

in the dynamics for any of these interaction models should
be insignificant, so comparisons between the simulations and
analytical results are quite meaningful. The first thing that one
notices in Figs. 6–8 is that the trajectory of the particle nearest the
floor tends to be the most complicated of all the elements in the
configuration, which is not surprising since it takes the brunt of
the taps and is subjected to collisions with the remainder of the
stack. In particular, it can be seen that the motion of the lowest
particle does not conform to a key approximation – namely the one
used to obtain (29) – except perhaps on average. Presumably, if the
number of particles was considerably greater, better agreement
with the assumption regarding the relationship between the orbits
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Fig. 10. Mass center trajectory over 100 taps for a/d = 1 and f = 20 Hz.

Fig. 11. Poincaré map of mass center trajectory at t = T as a function of a/d = 1
for f = 10 Hz.

of the lowest particle and the mass center would be realized.
Nevertheless, these same simulations do tend to support the value
of the mass center dynamics as an indicator of the overall system
dynamics, especially with regard to transitions to chaos. One can
see this most clearly by noting how the qualitative dynamics of the
mass center mirrors that of just about all the individual particles.

For example, the apparent periodicity of the mass center in the
simulation pictured in Fig. 6 seems to be replicated by trajectories
of all twenty balls in the configuration. In addition, what appears
to be period doubling in the orbit of the mass center in Fig. 7
seems also to characterize the trajectories of all except for the
three or four lowest particles in the stack over the whole tapping
sequence and possibly all the balls after sufficiently many taps. On
the other hand, the simulation for the case depicted in Fig. 8, which
corresponds to the largest value of the fundamental dimensionless
parameter γ of (34), indicates that the apparent chaos of the
trajectory of the mass center reflects what seem to be chaotic
trajectories of all the balls — with balls nearest the floor (as one
might expect) manifesting the most complicated orbits.

The simulations illustrated in Figs. 6–9 all show a trend toward
more complex orbit structure and ultimately prevalent chaotic
regimes as the parameter γ increases, which agrees quite nicely
with the analysis of the approximate discrete model studied in
Section 4. This behavior is also in excellent agreement with the
experiments performed in Lumay et al. [11]. Apart from suggesting
that our discrete model (34) is a reasonably useful tool for
predicting the evolution of the full tapping system, this indicates
that the single parameter γ provides a rather useful measure of
the dynamics of the system. Moreover, our discrete model can also
be used to explain the apparent ‘‘outlier ’’ illustrated in Fig. 10, for
Lemma 2 shows that there are parameter intervals (or windows)
corresponding to arbitrarily large values of γ for which (34) has a
sink, which corresponds to a stable periodic orbit.
6. Visualization analysis

We offer in this section a refined visual analysis of the discrete
Holmes-typemodel introduced in Section 4 to complement the an-
alytical results established previously and provide further insight
into the qualitative properties of our model. The objective in pro-
viding additional modes of visualizing the dynamics is to reveal
more of the inherent topological structures present in the (θ, v)
phase portrait of the discrete dynamical system associatedwithΦ .
In short, application of a variety of visualization techniques often
enhances one’s understanding of subtle topological characteristics
(such as coherent structures) of the dynamics that can escapemore
basic renderings and even some analytical investigations. Specif-
ically, we introduce in the following an enhanced version of the
standard scatter plot technique used to visualize discrete dynam-
ical systems that yields a denser, more textured sampling of the
phase portrait. Corresponding results are subsequently presented
for a range of γ values in the definition the dynamical system Φ

andobservations aremade about the properties and structures that
these representations reveal.

In addition to enhanced discrete renderings and interpolation
methods, we briefly describe an averaging technique that often
provides topological insights to the dynamics.

6.1. Enhanced scatter plot

Themost straightforwardway to represent a discrete dynamical
system consists in plotting the successive states of the system
corresponding to a set of initial conditions. By assigning different
colors to different initial conditions, individual orbits may be
inferred from the resulting plot. Figs. 1–3 show the results
produced by this technique. A high-resolution visualization of the
dynamics usually requires the use of a larger number of initial
conditions. While this approach increases the spatial resolution of
the plot, it also tends to create a cluttered representation, unless
the system exhibits a quasi-periodicity, thus allowing the discrete
plot to densely populate the underlying manifolds of the topology
(stable, unstable, KAM tori, Cantori).

Specifically, each plot is comprised of points defined as follows.

(xji)0≤i≤M,1≤j≤N , with xji := (θ
j
i , v

j
i) and xji+1 = Φ(xji),

and the initial conditions xj0, 1 ≤ j ≤ N are distributed over some
region D ⊂ [0, ωT ] × R.

In the absence of quasi-periodicity (which is typically the
case for non-conservative systems, such as Φ when e <
1), an alternative approach consists in fitting an interpolating
curve through the successive states of the system to produce a
continuous approximation of the discrete orbit (thereby implicitly
assuming the presence of an underlying manifold). Using the
notations introduced above, one defines for each initial condition
xj0 a smooth curve sj : I ⊂ R → R2, that satisfies the interpolating
conditions

∀i ∈ [1,M], ∃t ∈ I ⊂ R, sj(t) = xji.

In the results presented below, two types of interpolation are
considered. The first one is a piecewise linear function, while the
second corresponds to a cardinal (or canonical) spline that yields a
smooth interpolating curve.

A comparison among the results produced by these different
methods is presented in Fig. 12.

6.1.1. Orbit averaging
While the curve interpolation of discrete points offers a visual

approximation of a putative underlying manifold, it can produce
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Fig. 12. Dense visualization of discrete dynamical system Φ for γ = 0.1 (left) and γ = 0.5 (right). Top row: discrete scatter plot.Middle row: Piecewise linear interpolation
of individual orbits. Bottom row: Smooth interpolation of individual orbits using splines. The attractor at ( π

2 , 0) is clearly visible in each representation.
strong artifacts since the interpolationmethod (in our case cardinal
splines) is oblivious to the actual constraints of the system.
We have recently proposed a method specifically designed for
discrete dynamical systems that addresses this problem through a
massively parallel computation [35]. The basic idea of this method
consists in assigning a random color to each pixel of an image
that covers the considered region of the phase portrait and then
assigning to each pixel of the output image the color corresponding
to the average color of the pixels sampled by the orbit that was
initiated at that location. In effect, this method applies a low-
pass filter to the image along a subset of pixels that is restricted
to individual orbits. Hence the method produces patterns that
show the underlying manifolds and various other invariant sets
as streaks of nearly uniform color. As a result, orbit averaging
techniques usually revealmore of the orbit topology and especially
boundaries separating different types of dynamical regimes.

6.2. Visualization results

The methods described above has been applied to the discrete
dynamical systemdefined in Eq. (34) for various parameterizations
of the system. In all experiments, the following constant values are
used: a = 0.1, e = 0.8, N = 20, and T = 10. In contrast, the value
of the parameter γ varies in the interval [0.1, 4.0] and the value of
ω is adjusted accordingly. Note that the value for T was chosen to
satisfy π < ωT , thus ensuring that the relaxation interval [π, ωT ]

is non-empty and the function y is continuous.
We consider the spline interpolation method for values of γ

ranging from 0.1 to 4.0. As previously noted, variations of γ in
this interval induce a transition from regular dynamics to chaos.
Corresponding results are shown in Fig. 13. Observe that the
portion of the phase portrait visible in those images is restricted to
the interval θ ∈ [0, π] since the dynamics is linear by construction
outside of that region.
As mentioned previously, the spline interpolation approach
implicitly assumes the existence of one-dimensional manifolds
underlying the geometry of individual orbits. This strategy
significantly improves the visualization of regular dynamics, as can
be seen by comparing the images in Fig. 14 with Fig. 13.

However, as the dynamics transitions to chaos, the splinemodel
proves less suitable and tends to produce ambiguous results:
while the bottom center and right images in Fig. 14 clearly reveal
what appears as a period-doubling bifurcation, the corresponding
images in Fig. 13 aremore ambiguous. In particular, the presence of
several attractors is not readily apparent in the last image in Fig. 13.

An example of orbit averaging is shown in Fig. 15. This does
provide an enhanced understanding of the topological aspects of
the dynamics in several ways. For example, Fig. 15 indicates that
the distributions of the spiral orbits around fixed points tend to be
quite uniform. Moreover, we see that the spirals are enclosed in
strips bounded by what appear to be thickened curves indicating
coherent structures of somekind (perhaps separatrices) that divide
distinctly different types of dynamical behavior.

7. Concluding remarks and future research

Our focus in this research is the dynamics of a (one-
dimensional) vertical column of particles in the presence of gravity
and resting on a floor that is subject to periodic (impulse-like) tap-
ping, where we have assumed realistic, nonlinear particle–particle
and particle–floor interaction forces of a simplified Walton–Braun
type. The primary goal was to show that there are mathematically
tractable reductions that can serve as fairly reliable indicators of
certain aspects of the dynamics of the entire system. In particu-
lar, we investigated the motion of the center of mass of the parti-
cle configuration knowing that among other things, it should serve
well as a marker for transitions from regular to chaotic dynamics
for the entire system. We showed, starting with a classical Newto-
nian model for the motion of the column of particles, that with a
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Fig. 13. Transition to chaos in Holmes-type dynamical system Φ . The individual images correspond to γ = 0.1, 1.0, 2.0, 3.0, 3.5, and 4.0, respectively.
Fig. 14. Transition to chaos in Holmes-type dynamical system Φ . The individual images correspond to γ = 0.1, 1.0, 2.0, 3.0, 3.5, and 4.0, respectively.
very plausible assumption concerning the trajectory of the parti-
cle closest to the floor, the center of mass dynamics is essentially
equivalent to that of a single moremassive particle (ball) bouncing
on the periodically tapped floor; a significant dynamical reduction
that opened several simpler avenues of mathematical analysis.

Naturally, the approximate equivalence with the motion of
a single ball on an oscillating plate leads to direct connections
with the wealth of bouncing ball literature such as in [23–26].
Furthermore, we were able to exploit the bouncing ball analog to
obtain à la Holmes [24] an approximate two-dimensional discrete
dynamical model – similar to the standard map – of the tapped
motion of the center of mass; amodel that wewere able to analyze
in considerable detail. This analysis uncovered the existence of
period doubling routes to chaos, Smale horseshoe chaos and the
existence of interesting, apparently strange, attractors. Moreover,
wewere able to identify a key dimensionless parameter, namely γ ,
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Fig. 15. Orbital averaging for T = 10 (50 iterations). γ = 0.1, −1 ≤ v ≤ 5.

related directly to the impulse energy of the taps and coefficients
of restitution of the material interactions that serves as the central
bifurcation parameter for the dynamics.

Our overall strategy for investigating granular flows is com-
prised of three complementary components: modern dynamical
systems theory based analysis; simulation employing a sophisti-
cated molecular dynamics based code capable of dealing with the
motion of thousands of particles; and the use of advanced com-
puter assisted dynamical visualization techniques that can render
graphical images that can illustrate important features of flows
with remarkable clarity and precision. Accordingly the analysis of
the reduced dynamical system for themotion of the center of mass
of the column of particles was also tested for effectiveness by com-
parison with simulation and visualization studies. For the simu-
lations, extensive computations were done for large numbers of
particles with various properties and the corresponding center of
mass dynamics for a rather wide range of tapping processes. The
results of virtually all of these simulations, several of which are il-
lustrated in the paper, confirm the effectiveness of the center of
mass reduction in predicting the onset of chaos and also indicat-
ing other dynamical features such as the identification of the key
dimensionless bifurcation parameter. In addition, many of the re-
sults obtained from analyzing the reduced dynamical model agree
quite well with our recent stochastic and discrete element findings
on density relaxation [7,15,31].

We also compared the reduced dynamical systems analysis
with a study of the associated single ball dynamics using some of
the powerful visualization techniques that have been developed
in recent years (see e.g. [32–35]). The results of this comparison
were also quite good. In particular, the single ball visualizations
indicated a very strong correlation with the discrete dynamical
system approximation dynamics, and so all three components of
our approach seemed to be inmutual agreementwith regard to the
dynamical predictions for the tapping problem investigated, which
is a first step in what we believe should be a harmonious three-
pronged approach to investigating a much wider range of granular
flow systems.

As for related future research, Figs. 6–11, and Fig. 11 in
particular, indicate that it might be worthwhile to try to find an
alternative discrete dynamical systemmodel for the motion of the
mass center — a (planar) stroboscopic map that gives the position
and velocity at times t = T , 2T , 3T , . . .. This is something we
are now working on. Moreover, the reduction results obtained
for the one-dimensional tapping problem suggest some higher
dimensional generalizations. For example, if one taps a two- or
three-dimensional container of particles, it may be possible to
obtain some information on the overall dynamics by investigating
the motion of the center of mass of horizontal layers of the
particle configurations. And if the container has a plane or axis
of symmetry, the reduced system is apt to be just as tractable
mathematically as the one-dimensional particle configuration
investigated in this paper. We intend to look into this in the near
future.
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