
 1

Producing High-Quality Visualizations of Large-Scale Simulations

Voicu Popescu, Chris Hoffmann, CS
Sami Kilic, Mete Sozen, CE

Scott Meador, ITaP
Purdue University

Abstract
This paper describes the work of a team of researchers in
computer graphics, geometric computing, and civil engineering to
produce a visualization of the September 2001 attack on the
Pentagon. The immediate motivation for the project was to
understand the behavior of the building under the impact. The
longer term motivation was to establish a path for producing high-
quality visualizations of large scale simulations.

The first challenge was managing the enormous complexity of the
scene to fit within the limits of state-of-the art simulation software
systems and supercomputing resources. The second challenge was
to integrate the simulation results into a high-quality visualization.
To meet this challenge, we implemented a custom importer that
simplifies and loads the massive simulation data in a commercial
animation system. The surrounding scene is modeled using
image-based techniques and is also imported in the animation
system where the visualization is produced.

A specific issue for us was to federate the simulation and the
animation systems, both commercial systems not under our
control and following internally different conceptualizations of
geometry and animation. This had to be done such that scalability
was achieved. The reusable link created between the two systems
allows communicating the results to non-specialists and the public
at large, as well as facilitating communication in teams with
members having diverse technical backgrounds.

CR Categories and Subject Descriptors: I.3.3 [Computer
Graphics]: Applications, Three-dimensional Graphics and
Realism, Graphics Utilities. I.6. [Simulation and Modeling]:
Applications, Model Validation and Analysis, Output Analysis.

1. INTRODUCTION

1.1 Problem description
Since Ken Wilson’s articulation of simulation as third paradigm
of science in the mid-1980s [14], co-equal with experimental and
theoretical science, simulations have become essential tools in
many fields of science and engineering. Scientific simulations are
used to crash-test an automobile before it is built, to study the
interaction between a hip implant and the femur, to evaluate and
renovate medieval bridges, to assess the effectiveness of
electronic circuit packaging by running circuit-board drop tests, or
to build virtual wind tunnels.

In particular, finite-element analysis (FEA) plays a fundamental
role in engineering because of its ability to integrate multiple
physical phenomena, such as fluid flow, fluid/solid interaction,
and material behavior. FEA systems compute a variety of physical
parameters over the time span of the simulation, such as position,
velocity, acceleration, stress, and pressure. The visual presentation
of the results is either handed off to generic post-processors or
else is studied in specific contexts in the field of scientific
visualization.

Three dimensional computer graphics has advanced
tremendously, driven mostly by the popularity of its applications
in entertainment. Consumer-level priced personal computers with
add-in graphics cards can produce high-quality images of complex
3D scenes at interactive rates or can run sophisticated animation
software systems to produce, off-line, video sequences that very
closely approach photorealism. Because of the specifics of the
applications that commissioned their development, animation
systems are mainly concerned with minimizing the production
effort and maximizing the entertainment value of animations.
They focus on the rendering quality, on the expressivity of the
animated characters and are less concerned with closely following
the laws of physics.

Our team had the goal of producing a visualization of the
September 2001 attack on the Pentagon that is both physically and
visually accurate (Figure 1, Figure 3 and accompanying video).
The obvious solution is to take advantage of the strengths of both
simulation and animation systems. The project had two distinct
parts. During the first part we designed, tested and then ran at full
scale the FEA simulation of the aircraft impacting the building
structure. For this part we used LS-DYNA [5], a commercial FEA
system often used for crashworthiness simulations. In the second
phase the efforts were focused on producing a high-quality
visualization of the massive data resulting from the simulation. In
order to do so we created a scalable link between the FEA system
and a commercial animation system (3ds max [19]). The link can
be directly reused to create animations with physical fidelity

Computer Science Department, Purdue University
250 N University Street
West-Lafayette, IN, 47907-2066
{popescu | cmh}@cs.purdue.edu, {skilic | sozen}@purdue.edu,
wsmeador@tech.purdue.edu

Figure 1 Animation frame. The top floors are not shown to
reveal the simulated aircraft / concrete columns impact.

 2

regardless of the scientific or engineering domain.

1.2 Motivation
A high-quality visualization of the results of a simulation first
requires that the objects whose interaction is simulated be
rendered using state-of-the-art rendering techniques. The second
requirement is that the simulation be placed in the context of the
immediate surrounding scene. For this the scene has to be
modeled and rendered along with the simulation results.

Such a visualization makes the results and conclusions of the
simulation directly accessible to others than the specialists that
designed the simulation, without sacrificing scientific accuracy.
This will make scientific simulations powerful tools that will
routinely be used in a variety of fields including national security,
emergency management, forensic science, and media.

A good visualization ultimately leads to improvements of the
simulation itself. High-quality images quickly reveal
discrepancies with experimental data observed over the years or
recorded specifically for fine tuning the current simulation.

1.3 Process overview
Figure 2 gives an overview of the process that converted the
heterogeneous data documenting the event into the desired
visualization.

The first step in creating the simulation was to generate the
element meshes suitable for FEA. To keep the scene complexity
within manageable limits, only the most relevant components of
the aircraft and of the building were meshed. Then, the material
model parameters were tuned during test simulations to achieve
correct load deflection behavior. The FEA code was run on the
full resolution meshes to simulate the first 250 milliseconds of the
impact over 50 states.

The visualization part of the project began with modeling the
Pentagon building from architectural blueprints using a CAD tool.
The geometric model of the building and the surroundings were
enhanced with textures projected from high-resolution satellite
and aerial imagery using a custom tool. The 3ds max aircraft
model used for visualizing the approach was readily available.
The 3.5 GB of state data describing the mesh deformations was
simplified, converted and imported into the animation system
through a custom plugin. The imported meshes were aligned with
the surrounding scene and enhanced with rendering material
properties. Finally the integrated scene was rendered from the
desired camera paths.

Prior work is discussed next. The remainder of the paper is
organized as follows. Section 3 describes the simulation; section 4
describes modeling the part of the scene not involved in the
simulation; section 5 covers importing the simulation data into the
animation system. Results are presented for each section
separately. All the timing data was obtained on Pentium 4 Xeon, 2
GHz, 2 GB workstations. Discussion and directions for future
work conclude the paper.

2. PRIOR WORK
Baker et al. [1] describe the simulation of a bomb blast and its
impact on a neighboring building. The scenario investigated
matches the 1996 attack on the Khobar towers. Two
computational codes were used. The blast propagation was
computed using CTH [3] at the Army’s research lab in Vicksburg
[6]. Results of the CTH calculation are used as initial pressure
loadings on the buildings and Dyna3D [4] is then used to model
the structural response of the building to the blast. The results
were visualized in the Dyna3D postprocessor and VTK
(visualization toolkit [7]) using standard visualization techniques
such as slicing and isosurfacing. The researchers report the
difficulty of visualizing the large data sets; the solutions employed
are reducing resolution, decimation and extraction of regions of
interest. Enhancing the quality of the visualization using
photographs is mentioned as future work.

A considerable body of literature in nuclear engineering is
dedicated to simulating the crash of an aircraft into a concrete
structure. Provisions for aircraft impact on reinforced concrete
structures are incorporated into the Civil Engineering codes used
for the design of nuclear containment structures. A full-scale test
was conducted by Sugano et al. [2] to measure the impact force
exerted by fighter aircraft (F-4D) on a reinforced concrete target
slab. The study provided important information on the
deformation and disintegration of the aircraft. A simplified
computational model was also developed in order to capture the
global response of the impact. This study provided us the
experimental evidence that the airframe and the skin of the aircraft
alone are not likely to cause the major damage on reinforced
concrete targets.

To place the simulation in context we had to model and render the
surroundings of the Pentagon. Research in image-based rendering
(IBR) has produced several successful approaches for rendering Figure 2 Process overview.

Figure 3 Visualization of the jet fuel.

 3

complex large-scale natural scenes. The QuicktimeVR [9] system
models the scene by acquiring a set of overlapping same-center-
of-projection photographs that are stitched together to form
panoramas. During rendering the desired view is confined to the
centers of the panoramas. In our case it was important to allow for
unrestrained camera motion so we dismissed the approach.

Image-based rendering by warping (IBRW) [10] relies on images
enhanced with per-pixel depth. The depth and color samples are
3D warped (reprojected) to create novel views. Airborne LIDAR
sensors can provide the depth data at appropriate resolution and
precision. In the case of our project no depth maps of the
Pentagon scene were available and we could not use IBRW. In
light field rendering the scene is modeled with a database
containing all rays potentially needed during rendering. The
method does not scale well: the number of images that need to be
acquired and the ray database grow to impractical sizes for large-
scale scenes.

An approach frequently used for modeling large urban scenes
combines images with coarse geometry into a hybrid
representation. A representative example is the Façade system
[11] which maps photographs onto buildings modeled with simple
primitive shapes. The system was used to model and realistically
render a university campus environment. The relatively simple
geometry of the Pentagon building and the availability of
photographs of the area motivated us to choose a hybrid geometry
/ images approach as described in section 4.

3. LARGE SCALE SIMULATION
FEA codes are among the most flexible and competent tools for
simulating physical phenomena. A simulation is described by
providing a geometric description, a set of constitutive models
that capture non-linear material behavior, initial conditions, and
the interaction of various components of the model through
contact algorithms. The geometric description is in terms of
nodes (points in 3-space) and elements (beam, shell and volume)
partitioning the geometric objects. The elements have associated
material properties that describe their behavior under strain. The
simulation code integrates differential equations that express the
material characteristics and the interaction and energy exchange
between materials in contact (or in a field). Failure of elements in
the simulation is achieved by imposing a maximum strain limit in
the material model, and eroding elements that reach the limit.
These elements are not considered in the dynamic equilibrium of

the model in the following time steps.
Physically this means that the material
tears or breaks at that locale. This
approach enables the wings to cut through
the reinforced concrete columns. Erosion
of elements is a technique that is essential
for simulating penetration problems.

Based on careful consideration, our
simulation hypothesis is that the most
massive structure, causing the bulk of the
damage through its kinetic energy, has
been the liquid fuel (kerosene) in the tanks
of the aircraft. At impact, the plane was
carrying an estimated 5,200 gallons of fuel
and had a speed estimated at 480 mph.
Damage inspection revealed that the
performance of the building depended
crucially on the spirally reinforced
concrete columns of the building.

Accordingly we concentrated on modeling the columns and the
fuel. Figure 4 shows the finite element mesh (FEM) for the
spirally reinforced concrete columns. We modeled the confined
concrete core, the steel rebars, and the unconfined concrete cover
(fluff). The column hexahedral elements are 7.5 x 7.5 x 15 cm in
size. The column is anchored by the floor and ceiling supports
(red in the figure). The fuel was modeled using an Arbitrary
Lagrangian-Eulerian (ALE) formulation that integrates the
Navier-Stokes equations of fluid dynamics for the motion of the
liquid fuel. The Eulerian mesh is able to expand in order to
enclose the splashing liquid fuel. Automatic mesh motion is
achieved by following the mass-weighted average velocity of the
ALE mesh. The fuel is specified in the Eulerian mesh in terms of
per-cell fractional occupancy values. Figure 5 shows the liquid in
the initial configuration. The Eulerian mesh elements are 15 x 15
x 15 cm in size.

A 3ds max model
of the Boeing 757
was obtained from
a game company
[15] and formed
the basis for
creating the FEM
of the plane. The
meshed model
includes fuselage

stringers
reinforcing the
body of the plane
and ribs in the
wing structure, as
well as the
fuselage floor.
Those are the

structural
elements of the
plane deemed to
be most
significant. Our
custom mesh
generation tool
uses a set of hard
points in the
wings and the
body. The mesh
generation is
parametric, which
allows for

Figure 4 column
FEM.

Figure 5 Eulerian mesh cells with >25% liquid occupancy.

Figure 6 Test simulation for tuning
column / liquid interaction.

 4

conveniently generating meshes at various resolutions.

In order to calibrate the columns used in the simulation, a
reinforced concrete column was analyzed under impact loading.
Figure 6 (top) shows the calibration column subjected to high-
speed impact with liquid. The liquid mass was idealized as a block
(shown in red color). Figure 6 (bottom) illustrates the damaged
state of the column after impact. Erosion of elements in the
column allowed us to model penetration of the fluid and the
splitting of the column into two pieces after impact. Different
failure strain limits were used for the unconfined fluff cover and
the confined concrete inner core. The steel rebars were also
assigned failure strain limits in order to model the rupture
behavior of the reinforcement.

The mesh density balances accuracy and model size to maximize
resolution and fidelity while staying within software and hardware
limitations. At 954 K nodes, the simulation took approximately 6
hours per recorded state on an IBM Power-4 platform with 8
processors and 64 GB of memory. The integration step size was
0.1 milliseconds, and we recorded 50 states, 5 milliseconds apart.
The disk size of each state is 70 MB, for a total of 3.5 GB.

4. SURROUNDING SCENE
We decided to model the surrounding scene for two reasons. First
we wanted to visualize the trajectory of the plane immediately
before the collision. Second, we wanted to place the simulation
results in context to make it easily understood by someone who
was not closely involved with the investigation.

As described earlier, our approach was dictated by the available
data documenting the scene. From the architectural blueprints we
produced a CAD model of the building. The damage in the
collapsed area was modeled by hand to match available
photographs. The region surrounding the Pentagon was simply
modeled with a large plane. The geometric models were enhanced
with color using high-resolution satellite [16] and aerial imagery
[8].

In order to apply a photograph to a geometric model two problems
need to be solved. First one has to find the pose of the camera in a
model-defined coordinate system (camera matching). Second the
photograph pixels need to be mapped to the model triangles that
are visible to the camera (projective texture mapping [17]). The
basic functionality is available in animation systems such as 3ds
max and Maya. We decided to implement our own camera
matching / projective texture mapping tool to have more control
over the camera matching and to create a conventionally texture
mapped model. Such a model with individually texture mapped
triangles can then be easily combined with other models (namely
the approaching aircraft and the results of the simulation) and
allows using multiple reference photographs with good control
over the triangle to photograph assignment.

We find the camera pose using correspondences between the
photograph and the geometric model. Since the camera used to
take the photographs is not available we also calibrate for the
focal length. The focal length is the only intrinsic parameter of the
camera model used: the center of projection is assumed to project
in the center of the pixel grid, the pixels are assumed to be square
and the lens distortion is ignored. We use this idealized model
since the scene is flat (the height of the Pentagon building is small
compared to its horizontal dimensions) and nearly coplanar points
make the calibration for complex camera models numerically
unstable. We search for the seven unknowns using the downhill

simplex method. The starting position is obtained by rendering the
model and manually adjusting the view such that the rendered
image roughly matches the photograph. Convergence is achieved
in negligible time. For a 3000 x 2000 pixels image the camera
matching error is on average 3.5 pixels for 10 correspondences.

Once the view is known,
the camera is
transformed in a
projector and the
photograph pixels are
deposited on the surface
of the triangles to create
individual texture maps.
The algorithm proceeds
as follows (Pseudocode
1). IB stores the IDs of
the triangles that are
seen by the photograph.

A texture map is
generated for each visible triangle. The texture is aligned with the
longest edge of the projected triangle and with its corresponding
height. The lengths of the two segments in pixels give the texture
resolution. By choosing the resolution this way, the texture
subsamples the photograph in the part of the triangle near the
camera and supersamples it at the far end. Subsampling implies
losing some of the color information of the photograph. We have
experimented with setting the texture resolution to the maximum
sampling rate encountered at the near end of the triangle. The
Pentagon building model contains long triangles and the
conservative resolution produced excessively large textures.
Using the z buffer the texture is set only for the part of the triangle
actually seen in the photograph. This is important when other
images are used to complete the texture of the triangle. To
correctly handle triangles that have a thin projection, the texels
traversed by the edges are set the same way (without the triangle
membership test).

The building and ground plane
model consisting of 25 K triangles
was sprayed with a 3000 x 2000
pixels photograph. The resulting
texture mapped model produced
realistic visualizations of the
Pentagon scene. Figure 8 shows an
image rendered from a
considerably different view than

Render model from camera view CV
 in item buffer IB and z buffer ZB
For each triangle T in IB
 Project T in CV
 Find longest edge e, corr. height h
 Allocate e x h texture map TM
 Set texture coordinates for T
 For each texel t in TM
 If t outside T continue
 Project t in CV at p
 If hidden by ZB continue
 Set t to photograph pixel p
 Set edge texels

Pseudocode 1 Texture generation

Figure 7 Photograph

Figure 8 Image rendered from texture mapped model

 5

the view of the reference photograph, which is shown in Figure 7.
The total disk size of the texture files is 160 MB. The difference
when comparing to the 24 MB of the reference photograph is due
to the texels outside of the triangle, to the texels corresponding to
the hidden part of the triangle, to the thin triangles that have a
texture larger than their area and to our simple merging of
individual texture images that vertically collates 10 images to
reduce the number of files. For now we rendered the scene offline
so the large total texture size was not a concern. For real time
rendering, the texture size has to be reduced. A simple greedy
algorithm for packing the textures involving shifts and rotations is
likely to yield good results. The rotation can be propagated
upstream to the spraying to avoid the additional resampling.

5. INTEGRATION
The simulation results files are directly imported in 3ds max via a
custom plugin. The 954 K nodes of the FEM define 355 K
hexahedral (solid) elements used to model the column core and
the fluff, 438 K hexahedral elements for the liquid elements, 15 K
quadrilateral (shell) elements used to define the fuselage and floor
of the aircraft, and 61 K segment (beam) elements used to define
the ribs and stringers of the aircraft. The importer subdivides the
simulation scene into objects according to materials to facilitate
assigning rendering materials.

5.1 Solid objects
Ignoring the liquid for now, the 12, 2 and 1 triangles per solid,
shell and beam elements respectively imply about 4.3 M triangles
for the solid materials in the simulation scene. This number is
reduced by eliminating internal faces, which are irrelevant during
rendering. An internal face is a face shared by two hexahedral
elements. Because elements erode, faces that are initially internal
can become visible at the fracture area. For this an object is
subdivided according to the simulation states; subobject k groups
all the elements that erode at state k. Discarding the internal faces
of each subobject is done in linear time using hashing. This
reduces the number of triangles to 1.3 M, which is easily handled
by the animation system.

However, importing the mesh deformation into the animation
system proved to be a serious bottleneck. The mesh deformations
are saved by the FEA code as node positions at every state. The
animation system supports per vertex animation but creating 50
position controllers for each of the remaining 700 K nodes takes
days and the resulting scene file is unusable. The practical limit on
the number of animation controllers is about 1 M. The number of
animation controllers is reduced in two ways. First, the importer
does not animate nodes with a total movement (sum of state to
state movement) below a user chosen threshold (typical value 1
cm). Second, the trajectories of each node are simplified
independently by eliminating (i.e. not creating) controllers for the
nearly linear parts. We have experimented with two ways of
simplifying the trajectory. In the first approach, a controller is
removed if the resulting trajectory is, at every state, within a
threshold (typical value 1 cm) of the original trajectory. This
enforces the threshold globally at the cost of an order Ns2 running
time where N is the number of nodes and s is the number of states.
Our second approach considers triples of states A, B, C and
removes the controller for B if B is closer than 1 cm from the line
AC. The next triple considered is A, C, D if B is removed and B,
C, D if not. When the threshold is considerably less than the
amount a node moves between states, the result is virtually the
same as in the case of the first approach, with the benefit of an
order Ns running time. After simplification, 1.8 M controllers

remained. We distributed the simulation scene over three files,
each covering one third of the simulation. Materials and cameras
can of course easily be shared among several files. Importing the
solid objects takes 2 hours total, out of which 1 hour is needed for
the third part of the simulation. Once the solid objects are loaded,
the animator assigns them standard 3ds max materials.

5.2 Liquid objects
The liquid data saved at every state contains the position of the
nodes of the Eulerian mesh and the fractional occupancy values at
that state. The liquid could be directly rendered from the
occupancy data using volume rendering techniques. We chose to
build a surface boundary representation first in order to take
advantage of the rendering capabilities of the animation system.
For every state the importer selects the Eulerian mesh elements
that have a liquid occupancy above a certain threshold (typical
value 25%). The internal faces are eliminated similarly to the
solid object case. Once the liquid is imported, two 3dsmax
modifiers are applied. For now the modifiers are applied manually
by the animator; in the future this step will be moved inside the
importer. The first is the "relax" modifier, which changes the
apparent tension of the surface by moving vertices toward an
average center point. By relaxing the mesh, it rounds the edges
without adding or removing faces. After relaxing the mesh, a
"smooth" modifier is added to average the object's normals, which
creates a surface that reacts well to light, reflection, and
refraction.

Figure 9 Fuel rendered in animation system

Raytracing

Alpha transparency

Raytracing

 6

The liquid material is a 3ds max standard material with a falloff
map in the opacity channel. This map attenuates the transparency
of the object relative to the camera. It makes the object appear
transparent where its normals are pointing in the same direction as
the camera (the Fresnel effect). Optional raytrace maps are also
controlling the reflection and refraction of the liquid material.
Figure 9 shows the liquid rendered once without the raytrace maps
(5 seconds render time, top image) and then twice with the
raytrace maps (5 minutes middle image, 55 minutes bottom
image). Refraction and surface reflections improve the realism of
the second image while the less expensive technique produces
acceptable results when the liquid is integrated with the complex
scene.

As in the case of the solid objects, animating the liquid is
challenging. There are two fundamental approaches: to consider
the liquid a complex object that moves and deforms over the
simulation time or to frequently recompute the liquid object from
the occupancy data, possibly at every animation frame.

The first approach is in the spirit of animation systems where the
same geometric entity suffers a series of transformations over the
animation time span. The state of the geometric entity is known at
the simulation states; it can be computed by thresholding or
isosurfacing the occupancy data. In order to define a morph that
produces the animation frames in between the states,
correspondences need to be established. This is challenging since
the liquid can change considerably from one state to another; this
implies different number of vertices, different local topologies
(drops, liquid chunks separating and reuniting).

We have attempted to implement this approach using the Eulerian
mesh as a link between states. First, for each simulation state, the
liquid elements occupied above a given threshold are selected.
Then the Eulerian mesh is split in liquid objects (i, j) defined by
the set of elements that contain liquid from state i to j, and do not
contain liquid at states i-1 and j+1. In other words the object (i, j)
contains the liquid “alive” between states i and j. The internal
faces are removed and the object, which is a subset of the Eulerian
mesh, is animated according to the known positions of the mesh
nodes. Because the occupancy values vary considerably from one
frame to another, many small liquid objects are generated. This
leads to a large number of position controllers.

The approach of defining the liquid with independent objects
corresponding to snapshots along the simulation timeline has
proven to be more practical. Visibility controllers automatically
generated by the plugin define the appropriate life span for each
object. To smooth the transition the objects are faded in and out at
a negligible cost of 4 controllers per liquid object. Currently the
liquid is modeled with one object per state. The 50 liquid objects
total 1.5 M triangles. By interpolating the occupancy data one
could generate one snapshot for every animation step. When
playing back the 50 states over 30 seconds at 30 Hz, 900 liquid
objects need to be generated, which exceeds a practical geometry
budget. We are investigating generating the liquid objects during
rendering. This implies finding a way for applying the modifiers
and assigning the liquid material automatically, during rendering.

6. DISCUSSION AND FUTURE WORK
As one of the five member team to inspect the damaged building,
Mete Sozen is a coauthor of the Pentagon Building Performance
report [8]. The most massive impacting element was the fuel.
The fuselage of the aircraft has little strength under axial impact,
as confirmed by the simulation and validated by actual

experiments [2]. The simulation clearly shows that the structural
damage occurs only when the fuel mass hits. The simulation can
be extended to cover a longer period of time, with denser states,
involving higher resolution meshes; other possible extensions are
modeling the building and aircraft in more detail and including the
effects of the explosion, of the high temperatures and of the
combustion. The bottleneck in the simulation runs was the amount
of memory available on the various platforms used. The power of
large memory spaces has recently been combined with the
convenience of desktop computing. We are in the process of
setting up simulation runs on recently acquired Itanium PCs.

We have implemented a set of tools for integrating the simulation
results with the surrounding scene in a commercial animation
package. All tools can directly be reused for producing other
visualizations. The plugin importer and 3ds max are now
commonly used by the civil engineering researchers of our team.
Initially the use was restricted to producing illustrations of their
work; they are now using it to inspect the result of simulations.
Scientific simulation researchers and commercial-simulation-
systems developers have shown great interest in the quality of the
visualizations and we have initiated several collaborations. Except
for the liquid raytracing, the integrated scene could be explored
interactively. The VRML format for example does support
triangle meshes with per vertex animation and can be rendered
with hardware support by many browser plugin or stand alone 3D
viewers.

The link created between simulation and animation has to be
further developed. The current bottleneck is the animation of the
deforming meshes. Paradoxically the animation system performs
better if the animation is specified by geometry replication. We
will continue to investigate this problem. The importer could be
extended to create dust, smoke and fire automatically. For
example when a concrete element erodes, it should be turned in
fine debris or dust animated according to the momentum that the
element had before eroding. The simulation driven recreation of
low visibility conditions will be valuable in virtual training. The
first effort described here relied as much as possible on the
capabilities of the animation system. These can be extended to
include classic visualization techniques. Well studied algorithms
can be employed and we do not foresee any major difficulty.

Good visualizations facilitate the comparison of the simulation
results to observed or recorded real data. Providing tools to assist
and then fully automate the comparison is one of our longer term
goals. Computer vision techniques are a possibility. This task is
greatly facilitated if the experiment scene or actual event scene are
captured by depth maps in addition to the traditional photographs.
In our case, recording the shape of the columns affected by the
impact would have been both easy and very beneficial.

7. ACKNOWLEDGEMENTS
We would like to thank Jim Bottum and Gary Bertoline for
making this project possible, William Whitson for his help with
the supercomputer runs, Hendry Lim and Mihai Mudure for
implementing texture spraying, Mary Moyars-Johnson and Emil
Venere for publicizing this work, Amit Chourasia for modeling
the Pentagon building, Jason Doty for his help with producing the
first video illustration of this project and Raj Arangarasan for his
help with an earlier implementation. This work was supported by
ITaP, Computer Science Purdue, NSF, ARO and DARPA.

 7

References
[1] M. Pauline Baker, Dave Bock, Randy Heiland. Visualization

of Damaged Structures. NCSA, University of Illinois. URL:
http://archive.ncsa.uiuc.edu/Vis/Publications/damage.html

[2] T Sugano et al. Full-scale aircraft impact test for evaluation
of impact force, Nuclear Engineering and Design, Vol. 140,
373-385, 1993.

[3] McGlaun, J. M., Thompson, S. L. and Elrick, M. G. 1990.
“CTH: A three dimensional shock wave physics code”, Int. J.
Impact Engng., Vol. 10, 351 – 360.

[4] J. O. Hallquist and D. J. Benson, Dyna3D User’s Manual
(Nonlinear Dynamic Analysis of Structures in Three
Dimensions), Report #UCID-19592-revision-3, Lawrence
Livermore National Laboratory, Livermore, California, pp.
168, 1987.

[5] LS-DYNA, URL: http://www.ls-dyna.com/

[6] http://www.hpcmo.hpc.mil/Htdocs/UGC/UGC98/papers/3b_
chal/

[7] http://public.kitware.com/VTK/

[8] “Pentagon Building Performance Report,” Assoc. Of Civil
Engr., 2003, 88 pages.

[9] S. Chen. QuicktimeVR- an image-base approach to virtual
environment navigation. In Proc. SIGG. '95, pages 29-38.

[10] L. McMillan and G. Bishop. Plenoptic modeling: An image-
based rendering system. In Proc. SIGGRAPH '95, pages 39-
46, 1995.

[11] Paul E. Debevec, Camillo J. Taylor, and Jitendra Malik.
Modeling and Rendering Architecture from Photographs. In
Proc. of SIGGRAPH '96.

[12] M. Levoy and P. Hanrahan. Light field rendering. In Proc. of
SIGGRAPH '96, pages 31-42, 1996.

[13] S. Gortler, R. Grzeszczuk, R. Szeliski, and M. Cohen. The
lumigraph. In Proc. of SIGGRAPH '96, pages 43-54, 1996.

[14] G. Bell, The future of high-performance computers in
science and engineering, CACM 32, 1091-1101, 1989.

[15] Casper, Terry, Amazing 3D Graphics, Inc., P.O Box 1821,
Payson, Arizona 85547, URL: www.amazing3d.com, 2002.

[16] SpaceImaging, URL:
http://www.spaceimaging.com/gallery/9-11/default.htm

[17] M. Segal, C. Korobkin, R. van Sidenfelt, J. Foran, and P.
Haeberli, Fast Shadows and Lighting Effects Using Texture
Mapping. Computer Graphics, 26(2), 249-252 (1992).

[18] Alias | WaveFront, URL: http://www.aliaswavefront.com

[19] Discreet, URL: http://www.discreet.com/products/3dsmax/

