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Abstract A powerful approach for managing scene com-
plexity is to sample the scene with a set of images. However,
conventional images from nearby viewpoints have a high
level of redundancy, which reduces scene sampling effi-
ciency. We present non-redundant rendering, which detects
and avoids redundant samples as the image is computed. We
show that non-redundant rendering leads to improved scene
sampling quality according to several view-independent and
view-dependent metrics, compared to conventional scene
discretization using redundant images and compared to
depth peeling. Non-redundant images have a higher degree
of fragmentation and, therefore, conventional approaches
for scene reconstruction from samples are ineffective. We
present a novel reconstruction approach that is well suited
to scene discretization by non-redundant rendering. Finally,
we apply non-redundant rendering and scene reconstruction
techniques to soft shadow rendering where we show that
our approach has an accuracy advantage over conventional
images and over depth peeling.
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1 Introduction

Graphics applications where interactivity is an essential con-
cern cannot handle the scene geometry at its full complexity.
Examples include remote visualization of a large scene on
a thin client (e.g., a smartphone), and rendering expensive
effects such as soft shadows, reflections, or ambient occlu-
sion. Despite decades of research, geometry simplification
remains largely an open research problem. Remaining chal-
lenges include meeting a polygon budget while bounding the
simplification error, supporting dynamic scenes, and provid-
ing a smooth transition between geometry levels of detail.

Approximating geometry through sampling has the poten-
tial to overcome these challenges by providing a fine grain
control of the approximation error and by providing real-time
performance suitable for dynamic scenes. An image with per
pixel depth is a powerful method for approximating scene
geometry. Such a depth image can be rendered quickly with
the help of graphics hardware, and the cost of processing the
scene is amortized over a large number of samples.

However, a conventional depth image does not capture
enough scene samples to adequately support graphics appli-
cations. For example, in the case of remote visualization, any
viewpoint translation at the client exposes parts of the scene
that were not captured by the depth image, which leads to
highly objectionable artifacts which we call occlusion errors.
In the case of soft shadows, a conventional shadow map does
not capture all surfaces visible from an area light source, and
penumbra regions cannot be shaded correctly.

The problem with a conventional image is that it has a
single viewpoint. A straightforward solution to the single
viewpoint limitation is to rely on multiple images. However,
multiple images are highly redundant. One prior solution to
the redundancy problem is to eliminate the redundant sam-
ples a posteriori, i.e., once the images were rendered. Another
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solution is depth peeling, where the scene is rendered mul-
tiple times from the same viewpoint, each time z-buffering
beyond the previous layer. The problem with depth peeling
is that it renders the scene from the same viewpoint, which
limits sampling quality. For example, when the viewpoint
belongs to the plane of a wall in a scene, the wall will not be
sampled no matter how many layers are peeled away.

We introduce non-redundant rendering, a novel approach
for sampling a 3D scene with multiple images while avoid-
ing redundancy. Non-redundant rendering is based on a very
simple idea: a sample is kept only if it has not already been
acquired. As the second and subsequent images are rendered,
a candidate sample is kept only if it is not redundant with
samples already acquired by the previous images. Unlike for
the prior art approach of discarding redundancy a posteri-
ori, which does not replace a redundant sample with a new
sample, in the case of non-redundant rendering, redundancy
is avoided a priori, so the redundant sample does not pre-
vent gathering a new, non-redundant sample. The result is
higher sampling efficiency. Compared to the prior approach
of depth peeling, non-redundant rendering samples the scene
from multiple viewpoints, resulting in better sampling qual-
ity.

We demonstrate the higher sampling efficiency of non-
redundant rendering compared to conventional sampling
with multiple images, and compared to depth peeling. When
a scene is discretized with three conventional depth images,
the second and third images have redundancy rates of 70 and
80 %, respectively. When non-redundant images are used, the
62 and 76 % of the samples of the second and third images
are samples not captured by the conventional depth images.
Out of these disoccluded samples, 89 and 69 % are useful
since they are visible from an intermediate viewpoint. When
the scene is discretized with three-layer depth peeling, the
second and third layers disocclude fewer samples (47 and
52 %) and fewer of them are useful (73 and 71 %), compared
to the non-redundant discretization.

Most applications of scene discretization require re-
constructing the scene from the sample-based representation.
For example, the remote visualization application requires
rendering the scene from novel viewpoints at the client from
the samples transmitted from the server. In soft-shadow ren-
dering, one has to compute approximate shadow maps from
the scene discretization, for each of the light samples. Scene
reconstruction from samples has been studied extensively
in the context of point-based rendering or in the context of
modeling from acquired point clouds. Non-redundant render-
ing poses the challenge of a higher degree of fragmentation.
Replacing the redundant samples with new samples creates
additional depth discontinuities which are challenging for
prior reconstruction approaches, which underestimate geom-
etry at surface edges. We present a reconstruction method that
can handle the fragmentation of non-redundant images. The
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method provides a better geometry approximation at surface
edges, while the reconstruction inside the surface is water-
tight and with no overdraw.

We demonstrate our non-redundant rendering and scene
reconstruction methods in the context of soft shadow ren-
dering. In Fig. 1, an area light source is sampled at 16 x 16
resolution, a shadow map is rendered for each light sample,
and the shadow maps are used to compute the soft shadows.
For the conventional and the non-redundant scene discretiza-
tions, the shadow maps are computed from four depth images
placed at the corners of the light source. For depth peeling, the
shadow maps are computed from four layers rendered from
the center of the light. Our scene discretization produces a
better approximation of the light sample shadow maps, result-
ing in a smaller average shadow intensity error. We refer the
reader to the accompanying video.

2 Prior work

The idea of using an image as a simplified representation
of scene geometry is used in billboard rendering [8]. The
construction of a billboard is inexpensive and the billboard
provides a good approximation when seen from a distance.
Moreover, a billboard can be intersected inexpensively with a
single ray, which supports higher order rendering effects such
as specular reflections. However, modeling fidelity decreases
when the observer moves closer to the billboard.

A depth image [12] greatly increases modeling fidelity by
modulating the depth of the base plane with thousands of
values. Constructing a depth image has the same low cost of
constructing a billboard. Intersecting a depth image with a
single ray is more expensive than in the case of a billboard,
but it is still much faster than intersecting the original scene
geometry: a depth image is intersected efficiently with a ray
by tracing the ray’s projection onto the image.

However, a single depth image might not capture all the
geometry needed by the application. For example, in the case
of remote visualization, using a single depth image at the
client creates disocclusion errors for the slightest viewpoint
translation. In the case of specular reflection rendering, a
reflected ray might intersect the scene geometry at a point
that is not visible in the depth image.

The simplest idea for eliminating disocclusion errors
is to use additional depth images [9]; however, multi-
ple depth images are redundant. The higher the number
of depth images, the higher is the redundancy. Any new
depth image brings fewer and fewer new samples. Lay-
ered representations such as the LDI (layered depth image)
[18] and LDI trees [4] provide scene sampling at multi-
ple scales which supports scene geometry approximations
with multiple levels of detail. LDIs are constructed by first
rendering multiple depth images and then by combining
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Fig. 1 Soft shadows rendered using the original geometry and using three scene discretizations. Our non-redundant scene discretization produces

the most accurate shadows

the depth images to remove the redundant samples. LDIs
can be used in rendering indirect illumination and soft
shadows [10,19]. One disadvantage is the two-step con-
struction that renders a set of conventional images first
and then removes the redundancy among the images in

the set. A second disadvantage is that the LDI construc-
tion only removes redundant samples and does not replace
them with new samples. Finally, sample connectivity is
difficult to infer for LDIs, which complicates reconstruc-
tion.
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Incremental textured depth meshes [20] is a technique for
discretizing a complex scene that focuses on determining a
good set of viewpoints from where to sample. This issue is
complementary to the issue of improving the sampling capa-
bility of an individual depth image, given a viewpoint, which
is the focus of our work. Textured depth meshes offer the pos-
sibility of rendering with a predetermined geometry budget,
or with a predetermined fidelity target. In other words, our
non-redundant sampling approach can be used in conjunc-
tion with the viewpoint optimization proposed in the earlier
work. Furthermore, in the textured depth meshes approach,
redundancy is detected after the fact. Like for LDIs, the
redundant samples are removed, but they are not replaced
with non-redundant ones. Our method precludes the compu-
tation of redundant samples, which do not get a chance to
occlude a potentially useful, non-redundant sample. Finally,
we demonstrate our sampling capability in the context of soft
shadow rendering, and not just in the context of walk-through
acceleration.

Graphic artists have known for a long time that relax-
ing the single viewpoint constraint can be used to achieve
effects that strengthen artistic expression. The idea is used in
multiperspective rendering where the image is generalized
to integrate samples from multiple viewpoints. Examples
include multiple center of projection images [15], street
panoramas [1,16,17], general linear camera images [22],
and occlusion camera images [13]. All these multiperspec-
tive images have better sampling capability than conventional
images, but constructing multiperspective images that cap-
ture sufficient samples in the case of a complex scene remains
challenging.

Depth peeling [7,11] samples a scene non-redundantly
in multiple passes, with each pass going beyond the layer
acquired by the previous pass. Like in the case of LDIs,
depth peeling generates an image with deep pixels that store
a variable number of samples. Depth peeling is useful when
rendering transparency, and also when rendering complex
opaque geometry, such as trees [11]. The method is fast as it
simply requires consulting the z-buffer of the previous pass
to avoid redundancy. Dual depth peeling [6] leverages the
GPU’s min-max depth buffer to capture both the nearest and
the farthest layers in each pass, improving peeling efficiency.
Multilayer depth peeling [2,3] relies on Multiple Render Tar-
gets (MRTs) to further improve the efficiency of each pass. A
fundamental shortcoming of depth peeling is that each pass
samples the scene from the same viewpoint, which has two
disadvantages. First, surfaces that are seen at an acute angle
from the viewpoint will be sampled poorly no matter how
many layers are peeled away. Second, peeling layers away
X-rays the scene, and many of the samples acquired might
not be visible from any viewpoint in the neighborhood of the
reference viewpoint. In other words, the samples recovered
by depth peeling might not be useful to the application.

@ Springer

Our non-redundant rendering method combines the sam-
pling advantages of multiple viewpoints with the depth
peeling advantage of avoiding sample redundancy on the
fly, as the images are rendered. As shown in this paper,
non-redundant rendering leads to better sampling quality
compared to traditional multiple image or depth peeling sam-
pling.

Scene discretization techniques, like the one proposed by
our work, and geometry simplification techniques share the
goal of computing a lightweight scene representation that
can be used to accelerate graphics applications. The goal is
pursued from opposite directions: scene discretization adds
samples until the set of samples is satisfactory, and geometry
simplification reduces the number of geometric primitives
until a geometry budget is met. Some geometric simplifica-
tion approaches evaluate the approximation error in image
space [5], and the solutions developed for finding the set of
viewpoints from where to evaluate the error can be used in
the context of finding the set of viewpoints from where to
discretize the scene.

Our paper is also related to the body of work on visibil-
ity computation. For example, the guided visibility sampling
approach [21] chooses the rays along which visibility is
probed based on the results of earlier probes, which is simi-
lar in spirit to our approach of extending the ray beyond the
currently encountered sample should that sample be already
acquired by the previous images. However, in our case vis-
ibility rays are grouped in images which enables probing
visibility in feed-forward fashion with a small per-ray amor-
tized cost. Moreover, for complex scenes the potentially
visible set computed by visibility methods could be very
large, requiring simplification in an additional step.

3 Non-redundant rendering

Non-redundant rendering is an approach for sampling a scene
from different viewpoints using non-redundant images. We
define redundancy in one of two ways, and then we describe
the non-redundant rendering algorithm.

3.1 Redundancy definition

Consider a scene S modeled with triangles, and two depth
images Iy and I; that render S from viewpoints Vy and V.
Given a sample s in /7, we want to examine the question
whether s is redundant with the samples acquired by 1. We
define multiple types of redundancy.

Strict redundancy Sample s is strictly redundant with [y iff
there is a sample s in Iy where s1 and so acquire the same
point on the same scene triangle. Such redundancy (almost)
never happens since atriangle is (almost) never sampled at the
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Fig. 2 TIllustration of various redundancy scenarios for a sample based
on possible reprojection locations

same point. We do not use strict redundancy in non-redundant
rendering.

Visibility redundancy Sample s is visibility redundant with
1 iff 51 is visible from the viewpoint Vy of /. This definition
of redundancy makes abstraction of the resolution of Ip. In
other words, if Iy had infinite resolution, Iy would have a
sample s¢ that is strictly redundant with sy.

Pixel redundancy Sample s is pixel redundant with Iy iff 51
projects onto Iy at a pixel where Iy captures a sample sg of
the same triangle as s1. This definition of redundancy does
not require that /o has exactly the same sample, but just that
it has a sample of the same triangle acquired from within the
same pixel.

Figure 2 shows image Ip. The vertical crosses indicate
possible Iy reprojections of s; to illustrate multiple redun-
dancy scenarios. In scenarios a, b, and ¢ in Fig. 2 left, it is
assumed that s1 samples triangle Ty in I;. If 51 reprojects at
a, 51 is strictly redundant with I since s; reprojects exactly
at the center of a pixel of Iy. If 51 reprojects at b, s is both
visibility and pixel redundant with Iy, because s is visible
from the viewpoint Vp of Iy, and because b is at a pixel where
Iy samples the same triangle Ty that s; samples in /7. If s
reprojects at ¢, s1 is visibility redundant with /o because there
is a direct line of sight from Vj to s1. However, 57 is not pixel
redundant with Iy because I captures a different triangle 7
at the pixel that contains c. For scenario d in Fig. 2 right, it
is assumed that s; samples 77 in 7. In this scenario, s is
not visibility redundant, since s is occluded by 75 from Vj
(i.e., in Ip). However, s is pixel redundant with Iy because
Iy captures the same triangle 77 at the pixel that contains
d. In scenario e, s1 samples 77 in /] and s is not visibility
and not pixel redundant with /y. In scenario f, where it is
assumed that s; samples 7> in 1, s1 is visibility redundant
but not pixel redundant with Iy.

3.2 Non-redundant rendering algorithm
Given a scene S modeled with triangles and given a set of n

views defined by planar pinhole cameras P PC;, we render
n non-redundant depth images /; with Algorithm 1.

Algorithm 1 Non-redundantRendering

Input: scene S, PPC; (i =0ton — 1).

Output: non-redundant depth images /; i =0ton — 1).
1: for each image /; (i =0ton — 1) do

2:  initialize the z-buffer of I; to far

3 for each triangle ¢ in S do

4 project t with PPC; tot

5 for all pixels p covered by ¢’ do

6: compute sample s of 7 at p

7 if s fails the z-buffer test then

8: continue

9: for all previous images /; (j <i) do
10: if s is redundant with /; then
11: mark s as redundant

12: break;

13: if s is not redundant then write s in /;

Algorithm 2 VisibilityRedundancyTest(s, P PC;, V;, S)

Input: sample s, view P PC; of image where s is generated, viewpoint
V; of image I; where redundancy is tested, and scene S.
Output: visibility redundancy of s with /;

1: Unproject s to 3D point a using P PC;
2: Raytrace b == VjaN§
3: return (b == a)

Algorithm 3 PixelRedundancyTest(s, t, PPC;, Ij, PPC})

Input: sample s, id ¢ of triangle sampled by s in the image /; where s
is generated, view P PC; of Ii, image I; where redundancy is tested,
and view PPCj of I;.

Output: pixel redundancy of s with /;

1: Reproject s to pixel r in /; using P PC; and P PC;

2: let , be the id of the triangle sampled by /; at r

3: return(t ==1,)

The images are rendered one at the time. Each image is
rendered by taking a pass over the scene geometry. Each tri-
angle is projected and rasterized conventionally to generate
samples. A sample is kept only if it passes the conventional z-
buffer test, and if it is not redundant with any of the previously
rendered images. The first image (i.e., Ip) is a conventional
image since there are no previous images against which
to check for redundancy. The following images will avoid
redundant samples. The redundancy check is implemented
in one of two ways to check either for visibility redundancy
(Algorithm 2) or for pixel redundancy (Algorithm 3).

Figure 3 illustrates non-redundant rendering on a simple
scene and compares it to sampling using multiple conven-
tional depth images and to depth peeling. Non-redundant
rendering uses two images Ip and 1. Iy is a conventional
image that stores the first sample visible along each ray. Iy
captures the front faces of blocks A and D, as shown in the
first row of Fig. 4. I is rendered differentially and it captures
the front faces of blocks B and C, as shown in the third row
of Fig. 4. For all cases, the images are rendered with back-
face culling, which correctly avoids capturing the back faces
of the blocks. For conventional sampling, I is the same as
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I Area not sampled

Area sampled by I1 not by Io

Fig. 3 2D illustration of a scene with four blocks A—-D sampled with
two images [ and /] using conventional sampling (/eft), non-redundant
rendering (middle) and depth peeling (right). Non-redundant rendering

before, but 71 only captures B and not C, also see second row
of Fig. 4. C happens to be hidden from both Iy and /7, but itis
visible from an intermediate viewpoint, causing disocclusion
errors in /.. Depth peeling acquires block B in the second
layer (right in Fig. 3 and fourth row in Fig. 4), but block
C is missed since C is doubly hidden in I, by both A and
B, so the two layers are not enough. As shown in the right
column of Fig. 4, sampling the scene with non-redundant
rendering captures enough samples for a reconstruction of
the intermediate image that is comparable to the ground truth
image obtained by rendering redundancy definition of sample
redundancy, but similar results are obtained using visibility
redundancy.

The work presented here does not optimize viewpoint
placement, but rather improves scene sampling for a given set
of viewpoints. The views from where to sample the scene are
provided as input to Algorithm 1. These views could be, for
example, defined at the two endpoints of a viewpoint transla-
tion segment, at the three corners of a viewpoint translation
triangle, or at the four corners of the rectangle of an area light
source, in the case of soft shadow rendering, as explained in
Sect.5.

4 Reconstruction

Most applications of scene discretization need a method
for reconstructing the scene from the samples captured. For
example, in remote visualization, the client has to recon-
struct the current frame from the samples transmitted from
the server. In shadow rendering, visibility has to be evaluated
by intersecting light rays with the sampled geometry.

There are two main reconstruction approaches: with
explicit connectivity, i.e., the mesh approach, and with-
out explicit connectivity, i.e., point-based approach. The
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captures all blocks, including block C, which is missed by the other two
approaches, but which is visible in an intermediate image I,

mesh approach uses the connectivity information implicitly
defined by the regular structure of a depth image: four neigh-
boring samples are connected using two triangles, unless they
are separated by a depth discontinuity. As GPUs have grown
more powerful, rendering two triangles per depth image
pixel can be done efficiently. Multiple point-based render-
ing approaches have been developed that bypass the need of
sample connectivity. The challenge for these methods is esti-
mating the output image footprint of the sample accurately
enough to avoid holes between neighboring samples, while
avoiding excessive overdraw.

In the case of non-redundant rendering, avoiding redun-
dancy comes at a cost of a more fragmented image. A
non-redundantly rendered image has more discontinuities
than a conventional image as a surface has to be discontin-
ued to avoid sampling the surface more than once. In other
words, the redundant parts of a conventional image are extri-
cated and replaced with parts of different surfaces, and each
transition creates a discontinuity.

The fragmented nature of non-redundantly rendered
images makes both reconstruction approaches more chal-
lenging. The mesh approach underestimates the recon-
structed surface by leaving a one pixel gap in between
samples separated by a discontinuity. An isolated sample,
that is a sample that is not connected to any of its eight
immediate neighbors, is discarded and does not contribute
to the reconstructed surface. When discontinuities abound,
like in the case of non-redundant rendering, this approxima-
tion error is severe. The point-based approach provides only
coarse approximations of the footprint of isolated samples, a
problem that is exacerbated in non-redundant rendering.

We have developed a hybrid reconstruction method that
achieves a watertight reconstruction of a surface with-
out overdraw, and that is suitable for highly fragmented
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Algorithm 4 HybridReconstruction

Fig. 4 Scene with four blocks from Fig. 3 sampled with two images
using multiple approaches, and image reconstructed from the samples
captured by the two images

sample-based representations like the one produced by non-
redundant rendering. Like the point-based approach, the
hybrid reconstruction assigns a surface patch to an indi-
vidual sample. Like the mesh approach, the surface patches
tile perfectly by sharing vertices. Our hybrid reconstruction
approach proceeds according to Algorithm 4.

The hybrid reconstruction is illustrated in Fig. 5. Animage
I of 5 x 4 resolution samples two ellipses. The point samples
captured at the centers of the pixels of I are shown with black
dots. The conventional mesh reconstruction, shown with dot-
ted lines, only creates four triangles for the big ellipse, which
under-approximates geometry. Much of the big ellipse is
discarded, and the small ellipse does not appear in the recon-

Image Io
Input: non-redundant image /, output image viewpoint e.
Output: 3-D triangle mesh M that corresponds to the scene reconstruc-
. tion according to /.
% 1: Render non-redundant image H with the same view and same res-
§ olution as 7, but offset half a pixel in both directions
5 2: for each pixel p in [ storing a 3D sample point s with normal n do
5 - E‘ 3 for each corner ¢ of p that is missing from H do
v A — 4 Define ray r from e through ¢
5: Define plane p through s with normal n
6 Approximate c as intersection of » with p
Image I1 Reconstructed image Ir 7 Generate triangles cocyc2, cac3cp and add them to M
®
')
£
=
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g
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g
9} Wz
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]
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éo Fig. 5 Hybrid reconstruction algorithm
H
] !
& —— . .. .
a - j‘ struction at all as it is only sampled by an isolated sample
which is discarded by the conventional reconstruction. The
point samples captured at the centers of the pixels of the off-

set image H are shown in green. These samples correspond
to the corners of the pixels in /. The hybrid reconstruction
algorithm converts each sample in / to a quadrilateral mod-
eled with two triangles. Sample s¢ has four valid corners in
H,ie., cy, c1, c2, and c¢3. A valid corner is a corner that is
not separated from the center sample by a depth disconti-
nuity. Sample 51 uses the exact same corner samples cg and
c1 that are used by sample 5o, which makes the reconstruc-
tion mesh of a continuous surface watertight, and with no
overdraw. Sample s; is missing its a corner in H, which is
approximated using the normal of s,. The corners ag and
a; generated for samples s3 and s4 have the same image
coordinates but they are different 3D points resulting from
the intersection of the same corner ray with different planes
as given by the different normals at s3 and s4. Sample s5
is completely isolated, with no valid corner in H; how-
ever, the sample is not discarded and it contributes to the
reconstruction with a quad defined by the four approximated
corners.
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The resulting reconstruction provides a good approxima-
tion of scene geometry: the reconstruction of a continuous
surface is watertight and non-redundant, and isolated samples
contribute to the reconstruction. Conventional and hybrid
reconstruction have comparable cost since both methods pro-
duce two triangles per sample. The only difference is that
hybrid reconstruction needs an additional rendering pass for
the offset image that is used to approximate the pixel cor-
ners. Like the conventional mesh reconstruction approach,
our reconstruction under-approximates geometry when a sur-
face partially covers a pixel but it does not cover the pixel
center, such as for pixel p in Fig. 5. Our reconstruction
over-approximates geometry when a surface partially cov-
ers a pixel, including the pixel center, like in the case of
the pixels of s3, s4, and s5. The conventional mesh recon-
struction method never over-approximates geometry, so our
method has the advantage of error cancellation in appli-
cations such as soft shadows, as discussed in the results
section.

5 Application to soft shadows

When rendering soft shadows, the challenge is to esti-
mate visibility between the area light source and the
scene points sampled by the output image. Many meth-
ods discretize the light source into points and set out to
estimate visibility between all output image samples and
all light samples. Adequate soft shadows require sam-
pling area light source at high resolution (e.g., 16 x 16,
32 x 32), which translates in having to evaluate visibil-
ity along billions of light rays. Approximating the scene
geometry through discretization can accelerate the visibil-
ity computation. Instead of estimating visibility using the
original geometry, visibility is estimated with a smaller
cost using the scene approximation provided by the dis-
cretization. Non-redundant scene discretization outperforms
conventional depth image discretization, and the advantage
translates to soft shadow rendering. First, the better scene
approximation provided by non-redundant depth images
alleviates the light leaks caused by the geometry underesti-
mation of conventional depth images. Second, non-redundant
images allow estimating visibility without the unneces-
sary cost of processing the same scene samples multiple
times.

We use non-redundant scene discretization in the context
of soft shadows with the following algorithm: The scene is
discretized non-redundantly from the four corners of the area
light source (Step 1). The discretization is converted to a
triangle mesh approximation of scene geometry using the
reconstruction algorithm presented earlier (Step 2). Then,
the reconstruction triangle meshes are used to approximate
shadow mapping for each of the light samples (Step 3).
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6 Results and discussion

We have tested non-redundant rendering by sampling several
scenes and by comparing the results to sampling with multi-
ple conventional images and with depth peeling. We briefly
describe our implementation of the sampling techniques, we
define the metrics used in the comparison, we present and dis-
cuss the comparison results, and we discuss the limitations
of scene sampling by non-redundant rendering.

6.1 Non-redundant rendering
6.1.1 Implementation overview

Non-redundant rendering based on pixel redundancy is
implemented with a fragment shader that rejects a sample
that is redundant with any of the previously rendered images.
The triangle id is passed down to the fragment shader using
a geometry shader. The previous images are passed in as tex-
tures, with depth and triangle id per texel. The redundancy
check is performed according to Algorithm 3. The fragment
shader outputs pixels that in addition to color also store depth
and the triangle id to be used when rendering subsequent
images.

Regarding storage, our non-redundant images do not take
any additional space compared to a conventional image. We
use 72 bits per sample: 24 for color, 16 for depth, and 32 for
the normal at the sample. We use the normal for reconstruc-
tion as explained in Algorithm 4, but it can also be used for
relighting. A 1024 x 1024 takes 9MB, which is a reasonable
amount of storage even for today’s thinnest of clients such
as phones.

Non-redundant rendering based on visibility redundancy
is implemented with ray tracing according to Algorithm 2.
We use NVIDIA’s Optix [14] ray tracer with bounding vol-
ume hierarchy (BVH) acceleration.

Depth peeling is implemented similarly to pixel redun-
dancy non-redundant rendering, except that the same view-
point is used for all the images.

6.1.2 Sampling quality metrics

Consider a scene S modeled with triangles that is sampled
with n reference images I; with views PPC;. We quantify
sampling quality with three view-independent and one view-
dependent metric. Either pixel or visibility redundancy can
be used with each metric.
View-independent metrics

1. The number of redundant samples is defined as the num-
ber of samples in a reference image [; that are redundant
with one of the previous reference images I;, j < i.
By construction, there are no redundant samples for
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non-redundant rendering or depth peeling. This metric
measures the redundancy of conventional sampling.

2. The number of disoccluded samples is defined as the
number of samples in a reference image that are not cap-
tured by conventional reference images. For an image that
is rendered differentially from view PPC;, a disoccluded
sample is a sample that is not captured by a conventional
image rendered from PPC;. For an image that is rendered
by depth peeling, a disoccluded sample is a sample that
is not captured by any conventional image I; (i from
0 to n — 1). For a conventional image, the number of
disoccluded samples is 0. The number of disoccluded
samples measures the occlusion avoidance capability of
non-redundant rendering and of depth peeling.

3. The number of useful samples is defined as the num-
ber of disoccluded samples in a reference image that is
needed in at least one output frame with an intermediate
view. Such an output frame is rendered with a view PPC
that interpolates in between the reference views PPC;.
(i from O to n — 1). For example, when n = 2, the out-
put frames have viewpoint on the segment defined by the
viewpoints of PPCy and PPC;. When n = 3, the out-
put frames have viewpoint on the triangle defined by
the viewpoints of PPCy, PPCy, and PPC,. The metric
is implemented by rendering a large number of output
frames (i.e., 1000) from intermediate views and by check-
ing which reference image samples are needed in each
output frame. A sample is needed in an output frame
if the sample is redundant with that frame. This metric
distinguishes between two types of additional samples
contributed by non-redundant rendering and by depth
peeling. The useful additional samples are the ones that
help approximate visibility from the region defined by the
n reference viewpoints. A useful sample becomes visi-
ble from an intermediate viewpoint. In other words, the
sample is beneficial to the reconstruction of an interme-
diate image. A sample that is not useful is a sample that is
never visible, from any intermediate viewpoint, and that
unnecessarily reduces the occlusion culling efficiency of
the set of images. View-dependent metric

4. The number of output frame samples that are available
in at least one of the reference images. Whereas met-
ric (3) reports the number of samples that are useful at
least from one intermediate view, this view-dependent
metric (4) reports how many samples of a given output
frame can be found in the reference images. This met-
ric is evaluated by rendering a ground truth frame from
geometry and then by checking the redundancy of each
of the ground truth frame samples against the set of ref-
erence images. If a sample is redundant with a reference
image, then it means that the sample is available in that
reference image. A sample that is not available in any of
the reference images creates a disocclusion error. This

Table 1 View-independent sampling metrics

Model Image 0 (%) Image 1 (%) Image 2 (%)

Redundant samples for conventional sampling

BirdNest 0 70 80
Grass 0 54 69
Urban 0 82 84
Tree 0 23 35
Disoccluded and (useful) samples for non-redundant rendering
BirdNest 0(0) 62 (89) 76 (86)
Grass 0 (0) 56 (85) 75 (80)
Urban 0(0) 73 (40) 80 (23)
Tree 0(0) 84 (99) 88 (98)
Disoccluded and (useful) samples for depth peeling
BirdNest 10 (99) 46 (2) 52(71)
Grass 15 (99) 51 (4) 71 (79)
Urban 1 (100) 78 (7) 88 (8)
Tree 44(99) 63 (98) 72 (97)

view dependent metric checks whether there is an output
frame for which the reference images miss many samples
leading to substantial disocclusion errors.

6.1.3 Quality

We used the four metrics above to quantify and compare
non-redundant rendering to conventional multiple image
sampling and to depth peeling.

Table 1 gives the figures for the three view indepen-
dent metrics for the Grass (56K triangles), Urban (50K
triangles), Bird Nest (67K triangles) and Tree (113K tri-
angles) models. The useful samples are given relative to the
disoccluded samples. The models are sampled using three
images. Conventional sampling has a considerable number
of redundant samples in /mage 1 and 2. Non-redundant
rendering and depth peeling do not have any redundant sam-
ples. Depth peeling brings disoccluded samples in Image
0 because Image 0O is rendered from the center of the
triangle defined by the three viewpoints used in conven-
tional and non-redundant sampling. The center viewpoint
captures samples not visible from any of the three corner
viewpoints.

The visualization of the disoccluded and useful samples
for Bird Nest, Grass, Urban, and Tree in Fig. 6 Non-
redundant rendering disoccludes more samples and more
of the disoccluded samples are useful compared to depth
peeling. The only exception is for the Urban model where
depth peeling disoccludes slightly more samples than non-
redundant rendering; however, only a small percentage of
these samples are useful, so even in this case non-redundant
rendering captures more useful samples than depth peel-
ing. Tables 1 and 2 rely on pixel redundancy. As image
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Model Image 0

Bird
Nest
62% ,89% 76%,86%
Grass
56%, 89% 75%, 79%
Urban
80%, 24 %
Tree

0%, 0% 84%, 99% 88%, 98 %
Fig. 6 Illustration of disoccluded samples (green +yellow), useful (yellow)

resolution? increases, pixel redundancy converges to visi- samples computed using pixel redundancy to the numbers
bility redundancy. Figure 7 shows the convergence of the = computed using visibility redundancy as image resolution
number of redundant, disoccluded, and useful disoccluded increases.
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Table 2 View-dependent sampling metric

Model Conventional Non-redundant Depth peeling
sampling rendering
Avg (%) Min (%) Avg (%) Min (%) Avg (%) Min (%)
BirdNest 90 89 93 92 92 89
Grass 86 81 96 91 93 88
Urban 97 96 98 97 96 91
Tree 55 53 59 57 55 48
Redundant samples (Bird Nest)
100%
——Image 1, visibility
80% _— — redundancy
60% —|mage 1, pixel
redundancy
40% R
——Image 2, visibility
20% redundancy
~——Image 2, pixel
0% . ! ' : : " redundancy

0.5k 1k 4k 16k
image resolution

32k 512k

Disoccluded samples (Bird Nest)

80%
70% _ ——Image 1, visibility
redundancy
60% | Sm—
50% - / ~——|mage 1, pixel
40% —/ redundancy
A% 4 ——Image 2, visibility
20% redundancy
10% - )
0% : . : : : —ImdagedZ, pixel
0.5k 1k a4k 16k 32k 512k redundancy
image resolution
Useful samples (Bird Nest)
100%
— —Image 1, visibility
80% x redundancy
60% —— ——Image 1, pixel
redundancy
40%
—Image 2, visibility
20% redundancy
0% . . - : . R Im:gedZ, pixel
32k 512k redundancy

0.5k 1k ak 16k
image resolution

Fig. 7 Dependency of number of redundant, disoccluded, and useful
samples on image resolution, for both the pixel and the visibility redun-
dant metrics. The metrics converge as resolution increases (4k means
4096 x 4096)

6.2 Application to soft shadows

We have tested non-redundant scene discretization in the
context of soft shadow rendering for our test scenes. Fig-
ure 8 compares our results (column 2) to shadow map-ping

(column 1), to conventional depth image scene discretization
(column 3), and to depth peeling scene discretization (column
4).In all cases, the depth image resolutionis 1, 024 x 1, 024,
the output image resolution is 512 x 512, the area light source
is sampled at a 16 x 16 resolution, and the area light source
diagonal equals the diagonal of the bounding box of the
scene.The shadow mapping images were rendered by ren-
dering a shadow map from the original scene geometry, for
each of the light samples. For the non-redundant and the
conventional depth image approaches, the depth images are
rendered from the four corners of the area light source. The
depth images for depth peeling are rendered from the center
of the area light source. Since the three scene discretization
methods investigated are based on an approximation of the
shadow maps of each of the light samples, we use shadow
mapping as ground truth for estimating the errors brought
by the discretization methods. The figures and tables report
two quantitative measures of the soft shadow approximation
error. The visibility error is defined as the per pixel average
of the number of visibility rays that are resolved incorrectly.
Since the light is sampled at 16 x 16 resolution, the visibility
error ranges from 0O to 255. The intensity error is defined as
the average per-pixel shadow level error, with a range from 0
to 255. The visibility error is a sum of the absolute values of
individual visibility errors, whereas the intensity error is an
algebraic sum of visibility errors. An incorrect in-light deter-
mination at a pixel cancels out with an incorrect in-shadow
determination made at the same pixel. Therefore, the visibil-
ity error is always larger than the intensity error.
Non-redundant scene discretization has lower errors than
conventional depth image or depth peeling scene discretiza-
tions. The T'ree scene is the most challenging scene for all
methods, as completely removing the complex occlusions
requires more than four depth images. Our method is more
robust than the previous scene discretization approaches, as
it performs well for all scenes. Depth peeling works poorly
for scenes such as Urban, and conventional depth images
work poorly for scenes such as Bird Nest, and Grass.
Table 3 shows the dependency of the intensity (i) and vis-
ibility (v) errors on the depth image resolution, for all three
scene discretization approaches. For brevity, only the figures
for the Urban and Grass scenes are given. As expected, the
error decreases as resolution increases. Our method main-
tains its advantage at all resolutions. Table 4 shows the
dependency of the visibility and the intensity errors on the
size of the area light source. The area light source size is
given in fractions and multiples of the scene bounding box
diagonal. As expected, the errors go up as the light source
size increases, since the four depth images have to cover an
increasing range of viewpoints. As expected, the errors are
always larger for conventional depth images than for non-
redundant rendering since the set of samples captured by our
method is a superset of the samples captured by conventional
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Geometry
(Ground Truth)

Non-Redundant
Rendering

Conventional
Sampling

Depth peeling

Birdnest

Intensity error: 3.00

Intensity error: 5.62
Visibility error: 7.72

Intensity error:3.58
Visibility error:7.40

Visibility error: 6.31

Tree

Intensity error: 9.21
Visibility error: 17.59

Intensity error: 13.76
Visibility error: 21.12

Intensity error: 10.99
Visibility error: 18.76

Fig. 8 Soft shadows rendered using the original geometry and using the three scene discretization approaches. Our non-redundant discretization

approach produces the most accurate shadows (also see Fig. 1)

Table 3 Soft shadow error dependency on discretization resolution

Depth image Non-redundant ~ Conv. sampling  Depth peeling
resolution rendering
Grass
512 i:3.20 i: 7.98 i: 4.57
v:7.21 v: 9.62 v: 8.34
1024 i: 1.71 i: 5.15 i: 2.55
v:3.70 v:6.12 v:4.41
1536 i: 1.26 i: 4.24 i: 1.84
v:2.55 v:4.94 v:3.02
Urban
512 i:3.54 i: 7.40 i: 15.85
v:4.74 v: 7.80 v: 18.52
1024 i: 1.60 i: 3.46 i: 11.36
v: 2.07 v: 3.64 v: 12.62
1536 i: 1.10 i: 2.28 i:9.97
v: 1.36 v:2.39 v: 10.77

depth images. Depth peeling has occasionally a slight advan-
tage over our method for small area light sources, but this
comes at the cost of unpredictable performance, with errors
that can be quite large. For example, in the case of the Urban
scene, the depth peeling intensity error is 11.4 for a light size
of 1, compared to 1.60 for non-redundant rendering.

@ Springer

Table 5 shows the times for each of the three main steps of
the soft shadow rendering algorithm given in Algorithm 5, for
each of three scene discretization approaches. The times were
measured on a workstation with a 3.4GHz Intel(R) Core(TM)
17-2600 CPU, with 4GB of memory, and with an NVIDIA
GeForce GTX 570 graphics card. The three approaches have
similar performance. Non-redundant rendering of the depth
images is only marginally slower than rendering conventional
depth images, and comparable to depth peeling. The slowest
step is step 3 which renders a shadow map for each light
sample from the reconstruction meshes.

The time to compute the approximation of the scene geom-
etry is the sum of the times for steps 1 and 2, which ranges
from 75ms for the Tree and 116ms for Urban. This shows
that the approximation can be computed at interactive rates,
supporting dynamic scenes where geometry and lights move,
deform, and change size. Out of the three steps, itis only Step
1 whose performance depends on the complexity of the orig-
inal scene. Step 1, which performs non-redundant sampling
with a small modification of the conventional interactive
graphics pipeline, is very efficient (i.e., a few milliseconds)
and, therefore, our method scales well with scene complexity.

For scene discretization to have an advantage over ren-
dering soft shadows using conventional shadow mapping or
ray tracing, the meshes that result from scene reconstruction
have to be less complex than the original scene geometry. In
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Table 4 Soft shadow error dependency on light size

Area light size  Non-redundant ~ Conv. sampling  Depth peeling
rendering
Grass
1/4 i: 1.53 i: 3.57 i: 2.53
v: 3.057 v:4.16 v:4.22
12 i: 1.62 i: 4.24 i: 2.54
v: 3.40 v: 4.88 v:4.31
1 i: 1.71 i: 5.15 i: 2.55
v:3.70 v: 6.12 v:4.41
2 i: 1.88 i: 5.55 i: 2.79
v:3.97 v:6.92 v: 4.68
4 i: 2.83 i: 5.95 i: 3.59
v: 4.98 v: 7.86 v: 5.40
Urban
1/4 i: 2.38 i: 4.94 i: 3.95
v:3.39 v:5.13 v: 5.89
172 i: 2.06 i: 3.81 i: 5.98
v: 2.86 v: 4.01 v: 7.50
1 i: 1.60 i: 3.46 i: 11.36
v: 2.07 v: 3.64 v: 12.62
2 i: 1.07 i: 2.67 i: 19.91
v: 1.38 v: 3.01 v:21.27
4 i: 1.95 i: 6.77 i: 29.64
v: 2.30 v: 7.35 v:31.11
Table 5 Times for soft shadow rendering steps
Scene Non redundant Conv. sampling Depth peeling
rendering
Step 1: rendering depth image (ms)
B'nest 39 2.2 4.2
Grass 4.8 2.2 5.1
Urban 4.4 2.1 3.6
Tree 7.2 5.2 8.6
Step 2: reconstruction (ms)
B'nest 55 90 44
Grass 88 117 82
Urban 112 131 98
Tree 68 94 57
Step 3: rendering soft shadows (ms)
B'nest 710 771 490
Grass 735 926 642
Urban 802 976 541
Tree 807 954 628

other words, the scene geometry has to be complex enough
for the reconstruction meshes to bring a simplification of
the scene geometry. Figure 9 shows the frame times for the

Algorithm 5 SoftShadowRendering

Input: rectangular area light source L, scene S, output image / w/o

shadows.

Output: fractional visibility of L for each sample of /.

1: Render non-redundant depth images N RDI of S from each of the
four corners of L

2: for each NRDI; do

compute the scene reconstruction mesh M;

: for each light sample s do
Initialize approximate shadow map SM
for each M; do

Render M; from viewpoint s onto SM
for each M; do

Estimate visibility from s to o using SM

R AN W

3000

2500

2000

1500 /

1000 7
<
7=

—Geometry

s=—=NRD

Convential

s De pth Peeling

500

1091k 2081k 3124K 4225k 5132k 6292K 7250K 8389k

Fig. 9 Soft shadow frame times as a function of scene complexity

three scene discretization methods compared to rendering
the shadow maps for the light samples directly from the
original geometry. The Grass scene with varying degrees
of complexity is used. The scene discretization approaches
have similar performance and start outperforming the shadow
mapping approach beyond the 250,000 triangle scene com-
plexity level.

6.3 Limitations

One limitation noted above is the slight rendering perfor-
mance penalty brought by having to check for sample redun-
dancy. However, non-redundant rendering performance is
always comparable to depth peeling and it has the ben-
efit of additional viewpoints which translates into better
sampling quality (Sect.6.1.3). Like for depth peeling, non-
redundant rendered images have lower sample coherence
than a conventional image, as avoiding sample redundancy
implies image fragmentation. This lower coherence compli-
cates reconstruction from the samples of the non-redundant
rendered images, since sample connectivity is more difficult
to infer. Another repercussion of this lower coherence is that
non-redundant rendered images do not compress as well as
conventional images.
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Finally, even though non-redundant rendering brings more
of the samples needed from a region, there is still no guar-
antee that all samples needed are captured. Conversely, there
is no guarantee that all the new samples brought in through
non-redundant sampling are actually needed by the applica-
tion. Our experiments show that most of the new samples
are visible from at least one nearby viewpoint, hence most
of the new samples are useful. Compared to conventional
images, non-redundant rendered images are more powerful
aggressive visibility solutions as they replace samples that are
known not to be useful with samples that are likely to be use-
ful. This helps achieve adequate scene sampling with fewer
images, and better scene sampling using the same number
of images. The problem of deciding how many images are
needed and from what viewpoints such that all scene sam-
ples visible from a view region are captured is NP complete.
Therefore, applications involving dynamic scenes, where the
discretization has to be computed on the fly, will continue to
rely on approximate, greedy solutions. Non-redundant ren-
dering improves the quality of the set of samples that can be
acquired quickly.

Like any scene discretization method, non-redundant ren-
dering pays off for scenes sufficiently complex such that
the number of scene triangles is substantially larger than
the number of samples resulting from discretization. In the
work presented here, the original scene geometry is always
completely replaced by the geometry reconstructed from the
non-redundantly sampled depth images. Future work could
consider resorting to a hybrid approach that leverages the
original geometry where appropriate, e.g., simple scenes,
nearby geometry, and reserves the use of the reconstructed
geometry for complex/distant parts of the scene.

In the case of soft shadow rendering, sampling the four
corners of the light is a heuristic. Even though non-redundant
images have greater sampling capability, there is no guaran-
tee that sufficient samples are captured. For complex scenes
such as Tree, additional images would help. One could use a
trial and error approach for deciding how many images are
needed for a scene—add images until the error dips below an
application selected threshold.

The average soft-shadow rendering errors are small but the
maximum error can be large. For example, for Figs. 1 and 8,
the maximum per pixel intensity error for our approach is
106, 112, 48, and 126 for the four scenes, respectively. This
is due to the fact that visibility does not vary smoothly in
complex scenes, and for occasional pixels a large number
of visibility rays are estimated incorrectly. The maximum
errors are smaller for non-redundant rendering compared to
conventional depth images (errors of 179, 181, 74, and 126),
and to depth peeling (errors of 137, 199, 125, and 148).

@ Springer

7 Conclusions and future work

We have presented non-redundant rendering, a simple method
for improving the scene sampling efficiency of conventional
images. The main idea is to detect and avoid sample redun-
dancy as the second and subsequent images are rendered.
We have shown that non-redundant rendering compares
favorably to conventional sampling and to depth peeling
according to several view-independent and view-dependent
metrics. Compared to depth peeling, non-redundant render-
ing preserves the advantage of avoiding redundant samples,
but non-redundant rendering samples the space of rays
more uniformly, relying on more than a single viewpoint,
which translates in improved sampling quality. We have
then presented a scene reconstruction method that can han-
dle the higher degree of fragmentation characteristic to
non-redundant images. Finally, we have applied our non-
redundant rendering and scene reconstruction methods to
the context of soft shadow rendering, where we have demon-
strated quality advantages over prior-art scene discretizations
such as conventional images and depth peeling.

Performing depth peeling from several viewpoints will
improve sampling over depth peeling for a single viewpoint.
However, the approach would have two important disadvan-
tages. First, depth peeling from multiple viewpoints requires
an increased number of images. For example, three view-
points, each with three depth peeling layers, result in nine
images. For our non-redundant rendering sampling approach,
we typically use three images total. Second, whereas there
are no redundant samples between the depth peeling lay-
ers of one viewpoint, there will be redundancy between
the layers of the different viewpoints. In particular, there
will be significant redundancy between the first layers of
each viewpoint, as the first layers are conventional depth
images. In conclusion, our approach of non-redundant sam-
pling achieves simultaneously both a change of viewpoint
and avoidance of redundancy, which leads to more efficient
sampling.

Future work directions include considering graphics
architecture changes to provide better support to non-
redundant rendering, as well as incorporating non-redundant
rendering in additional applications such as visibility com-
putation, remote visualization, or reflection rendering.
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