
1

Non-Pinhole Approximations for Interactive Rendering

Figure 1. Non-pinhole depth image of teapot and reflections rendered with it (left), and conventional depth image and reflection rendered with

it (right). The non-pinhole depth image captures the lid and bottom of the teapot and produces quality reflections.

Figure 2. Non-Pinhole relief texture maps and frames rendered with them (left) and conventional relief texture mapping (right).

Figure 3. Non-pinhole z-buffer

illustrated with color (left), ambient

occlusion effect rendered using it

(middle), and ambient occlusion

effect rendered using output image

z-buffer (right). The non-pinhole z-

buffer captures hidden parts of the

dragon for a more complete and

stable ground shadow.

ABSTRACT

Depth images have been used to approximate scene geometry in a
variety of interactive 3-D graphics applications. In previous work,
images were constructed using orthographic or perspective
projection which limits approximation quality to what is visible
along a single view direction or from a single viewpoint. This
paper shows that images constructed with non-pinhole cameras
improve approximation quality at little additional cost provided
that the non-pinhole camera offers fast projection. For such a
camera, the fundamental operation of ray depth-image
intersection proceeds efficiently by searching along the one-
dimensional projection of the ray onto the image. In the context of
two-camera configurations, our work extends epipolar geometry
constraints to non-pinholes. We demonstrate the advantages of
non-pinhole depth images in the context of reflections,
refractions, relief texture mapping, and ambient occlusion.

KEYWORDS: non-pinhole camera, single-pole occlusion camera,
graph camera, depth image, impostor, epipolar constraints,
reflection, refraction, relief texture mapping, ambient occlusion,
interactive 3-D graphics.

INDEX TERMS: I.3.3. [Computer Graphics]—Three-Dimensional
Graphics and Realism.

1 INTRODUCTION

In the quest for higher-quality and higher-performance rendering
researchers have resorted to approximating scene geometry with
more efficient representations. The three main desirable properties
of such an alternative representation are high-fidelity
approximation, efficient construction, and efficient rendering. The
representation should capture the geometry it replaces sufficiently
well such that the resulting images be virtually indistinguishable
from the images obtained when rendering with the original
geometry. To support dynamic scenes, the representation has to be
created on the fly, which requires fast construction.

Lastly, the alternative representation must deliver the desired
performance boost to the application. We distinguish between
applications where the representation can be rendered directly
with the conventional feed-forward approach of projection
followed by rasterization, such as for example when a distant tree
is rendered using a billboard, and applications where the
representation has to be rendered by intersection with one ray at a
time, such as is needed for example in the case of reflections,
refractions, relief texture mapping, and ambient occlusion. In this
paper we focus on the second type of applications. For such
applications a fast computation of the intersection between a ray
and the alternative geometry representation is a central concern.

Images enhanced with per pixel depth have two of these desired
properties. A depth image is constructed efficiently by rendering
the geometry it replaces with the help of graphics hardware. Fast

2

ray / depth image intersection is enabled by the fact that
projection of a ray onto the depth image is a segment, which
reduces the dimensionality of the intersection search space from
two to one. Modern graphics hardware allows stepping along the
ray projection, per pixel, at interactive rates. However, depth
images are acquired from a single viewpoint—with a planar
pinhole camera, or along a single view direction—with an
orthographic camera, which limits their geometry modeling
power. Such a depth image misses surfaces that become visible
when the geometry approximation is rendered by the application,
which lowers the quality of the result.

We propose constructing depth images using non-pinhole
cameras. Such non-pinhole depth images offer a high-fidelity
approximation of scene geometry while construction and
rendering costs remain low. Once all rays need not pass through
one point, the rays of a non-pinhole camera can be designed to
sample all surfaces exposed by the application. To ensure
construction and rendering efficiency, the non-pinhole camera is
designed to provide a fast projection operation. This enables
constructing the non-pinhole depth image in feed-forward fashion
by projection followed by rasterization. The closed-form,
unambiguous projection of the non-pinhole camera is leveraged a
second time, during rendering, to compute the projection of the
ray onto the non-pinhole image. As in the case of planar pinhole
cameras, the ray / non-pinhole camera depth image intersection is
found by walking on the one-dimensional projection of the ray.
Unlike for planar pinhole cameras, ray projection is not a straight
line, though this does not raise intersection costs significantly.

The advantages of non-pinhole depth images are demonstrated
in the contexts of reflection, refraction, relief texture mapping,
and ambient occlusion (also see accompanying video). In Figure 1
the non-pinhole depth image captures all teapot surfaces exposed
in the reflections, whereas a conventional depth image produces
incomplete reflections. The intersection between a reflected ray
and the non-pinhole depth image is found by searching along the
curved projection of the ray (Figure 4). Refractions are supported
similarly by intersecting the non-pinhole depth image with
refracted rays (Figure 5). Non-pinhole cameras greatly enhance
the modeling power of relief texture mapping (Figure 2). A
single-layer non-pinhole relief texture captures the entire top and
sides of a barrel or an entire car to produce quality frames with
rich detail. By contrast a single-layer conventional relief texture
misses a considerable part of the barrel. A multilayered relief
texture is also impractical in this case since a prohibitively large

number of layers are needed to sample the side of the barrel well.
A promising technique for rendering with ambient occlusion at

interactive rates is to use the output image z-buffer to approximate
the exposure of output image samples to the environment [BS08].
However, the amount of occlusion for visible samples also
depends on samples that are not visible in the output image. This
makes the ambient occlusion effect unstable, with dark regions
appearing and disappearing as geometry subsets appear and
disappear in the output image. We propose using a non-pinhole z-
buffer which captures most samples needed to estimate the
occlusion of output image samples, producing a more complete
and more stable ambient occlusion effect (Figure 3).

Abandoning the pinhole constraint presents the opportunity to
design the camera model such as to obtain the depth image best
suited for the application and dataset at hand. In this work we
construct depth images by adapting two recently introduced non-
pinhole camera models: the single-pole occlusion camera (SPOC)
[MPS05], and the graph camera [PRA09]. The SPOC reaches
around an object’s silhouette to gather samples not visible from
the reference viewpoint but close to the silhouette. Such ―barely‖
occluded samples are needed when the depth image is sampled
from nearby viewpoints. The SPOC is well suited for
approximating single objects, and it was used in the examples in
Figures 1, 2, 4, and 5. The graph camera is a non-pinhole camera
constructed starting from a planar pinhole camera through a series
of frustum bending, splitting, and merging operations. The result
is literally a graph of planar pinhole cameras. The graph camera
circumvents occluders to sample an entire 3-D scene in a single-
layer image. In Figure 6 the graph camera depth image models the
entire reflected scene.

In summary, the contributions of our paper are as follows:
- We extend epipolar like constraints to non-pinholes. This

fundamental contribution opens up the class of non-pinhole
geometry approximations to interactive rendering applications.

- We provide a generic algorithm for intersecting a non-pinhole
depth image with a ray, and we specialize the algorithm for two
non-pinhole cameras, the SPOC and the graph camera.

- We demonstrate the advantages of non-pinhole depth images
in the context of reflections, refractions, relief texture mapping,
and ambient occlusion.

2 PRIOR WORK

We review prior research on image-based geometry
approximation, on acceleration of rendering effects using depth
images, and on non-pinhole cameras models.

Figure 4. Visualization of rays in 3-D (left) and of their curved

projection on the non-pinhole depth image (right) used in Figure 1.

Figure 5. Refractions rendered with a non-pinhole depth image of the

teapot similar to the one shown in Figure 1.

Figure 6. Graph camera depth image (top) capturing an entire 3-D

maze (bottom left) and reflection rendered using it (bottom right).

3

2.1 Image-based geometry approximation

Maciel and Shirley [MS95] coined the term impostor which is
now widely used to denote an image-based simplified
representation of geometry for the purpose of rendering
efficiency. The simplest impostor is a billboard, a quad texture
mapped with the image of the original geometry, with transparent
background pixels. Billboards are constructed efficiently,
intersecting a billboard with a ray is trivial, and billboards provide
good approximations of geometry seen orthogonally from a
distance. When the billboard is close to the viewer the drastic
approximation of geometry is unacceptable. Billboard clouds
[DDS*03] use several quads to improve modeling quality. The
quads and the assignment to original geometry are optimized for
modeling fidelity. The number of quads is small and a billboard
cloud can be intersected with a ray one quad at a time. However,
the optimization makes construction of the billboard cloud a
lengthy process that precludes dynamic scenes. Moreover, the
approximation quality is still insufficient for close-up viewing.

Depth images [MB95] greatly improve the modeling power of
billboards. Constructing a depth image is just as inexpensive as
constructing a billboard, but the cost of intersection with a ray is
not constant anymore, but rather linear in the depth image width.
Searching for the intersection in the entire image is avoided by
leveraging epipolar-like constraints: the intersection is known to
belong to the image plane projection of the ray. Since the depth
image is constructed with an orthographic or a perspective
projection, the depth image only captures samples visible along
the reference direction or from the reference viewpoint. When
surfaces not captured by the depth image are exposed by the
application, objectionable disocclusion artifacts occur.

The simplest method for alleviating disocclusion errors is the
use of additional depth images [MMB97], which is expensive and
only palliative. A breakthrough came with the introduction of
layered representations such as the multi-layered z-buffer [MO95]
and the layered depth image (LDI) [Sha98], which allow for more
than one sample along a ray and control disocclusion errors
effectively. However, expensive construction restricts layered
representations to static scenes. Moreover, the lack of a connected
representation makes ray intersection difficult, precluding
rendering effects such as those addressed by this paper.

As graphics hardware has evolved, it became possible to
intersect depth images with individual rays, and research focus
shifted to rendering effects involving higher order rays.

2.2 Rendering effects accelerated using depth images

Reflection and refraction have been studied extensively in
interactive rendering, yet no complete solution exists. We assign
reflection and refraction rendering techniques to four groups: ray
tracing [Whi80], image-based rendering [LH96, GGS*96,
DYB98], projection [OR98], and reflected/refracted scene
approximation. We only discuss group 4, since it is most relevant.

Environment mapping [BN76] approximates the reflected scene
with cube map and it is currently the preferred approach for
interactive applications due to its efficiency, robustness, and good
results when scene geometry is far from the reflector/refractor.
Environment mapping performs poorly close to the
reflector/refractor. Improved results are obtained by
approximating the scene with a sphere [Bjo04], but few
environments are spherical so the fidelity is still quite limited. The
scene approximation can be improved using depth images
[SALP05, PMDS06]. Quality reflections are produced for simple
objects or for select viewpoints, but the insufficient coverage is a
limitation for non-trivial scenes or wide viewpoint translations.

Compared to reflection, refraction rays require additional work
since most rays interact with the refractor at least twice—once

entering and once leaving the object. Several techniques have
been developed for computing the second refraction at interactive
rates, including pre-computed distance fields [CW05], GPU ray
tracing [RAH07], and image-space approximations [Wym05].

Another rendering effect that requires intersecting depth images
with individual rays is relief texture mapping [POC05]. True
geometric detail is added to a coarse model by texturing each
triangle with a height map. A conventional relief texture samples
surface detail orthographically, along the direction of the normal
of the underlying coarse model, which limits the technique to
height field surfaces. Even so, sampling degrades when the
geometric detail becomes aligned with the normal of the
underlying surface. The technique has been extended to non-
height field surface detail by resorting to a relief texture with
multiple layers, each sampled orthographically [PO06]. The
extension works well when complex detail can be captured in a
few layers, as it is the case for a chain link fence for example. A
strength of the extended method is the ability to capture double-
sided detail. However, capturing geometric detail perpendicular to
the underlying surface remains challenging as a large number of
layers is needed. Our work extends relief texture mapping in an
orthogonal direction and multilayered non-pinhole relief textures
could be developed to collect the advantages of both techniques.

Ambient occlusion techniques add realism to local illumination
models by approximating the amount of light a surface point
receives based on how much of the environment is hidden from
the point by nearby geometry. The computational cost is high
since a ray has to be cast from each point in all directions. First
implementations precomputed ambient occlusion in model space
off-line [ZIK98], which precludes dynamic scenes. Initial efforts
of enrolling the GPU in accelerating ambient occlusion resorted to
a large number (i.e. 128-1024) of spherical shadow maps of the
scene [PG04]. Our non-pinhole z-buffer ambient occlusion
method builds upon an image-space technique introduced by
Bavoil and Sainz [BS08]. Their technique approximates the
amount of ambient occlusion at an output pixel using the output
image z-buffer. They noticed that in order to sample occlusion at
a pixel for an entire half plane it is sufficient to traverse one z-
buffer segment. The result is a fast ambient occlusion method that
supports dynamic scenes. However, the technique computes
ambient occlusion as if the geometry seen by the output image
were the only geometry in the scene, which can cause missing and
unstable ambient occlusion artifacts.

2.2 Non-pinhole cameras

Non-pinholes have been studied relatively little in computer
graphics. The light field [LH96] and the lumigraph [GGS*96] can
be seen as the color samples acquired by a 2D array of planar
pinhole cameras. Their strengths lie in the acquisition of small-
scale complex real-world scenes. Although possible in principle,
using light fields as geometry approximations is precluded by
their large memory footprint and construction time. Multiple-
center of projection cameras [RB98] sample the scene with a
vertical slit along a user chosen path and thus avoid redundancy
and offer sampling flexibility. However, construction requires
rendering the scene for each position along the path. Camera
models developed for multi-perspective rendering simulate
camera motion through a 3-D scene but do not support novel
views or dynamic scenes [Woo97, YM04].

Occlusion cameras address disocclusion errors. Given a
reference view and a 3-D scene, an occlusion camera builds a
single-layer image that stores not only samples visible from the
reference viewpoint, but also samples visible from nearby points.
In addition to the single-pole occlusion camera (SPOC) discussed
earlier, other occlusion cameras include the depth discontinuity
occlusion camera (DDOC) [PA06] and the epipolar occlusion

4

camera (EOC) [RP08]. Whereas the SPOC specifies the 3-D
distortion of the reference view rays analytically, the DDOC
specifies the distortion through a map. The added flexibility
comes at the cost of increased construction times. The EOC
captures all samples visible as the viewpoint translates between
two given points. The EOC effectively generalizes the viewpoint
of a planar pinhole camera to a viewsegment. However, the EOC
only supports translation along a single direction.

3 NON-PINHOLE CAMERA DEPTH IMAGES

After removing the pinhole restriction, there is great flexibility in
devising a camera model that best suits a given application and a
dataset. Therefore we first discuss construction and ray
intersection for non-pinhole depth images in general.

3.1 Construction

Given a non-pinhole camera with a fast projection operation that
maps a 3-D point (x, y, z) to (u, v, z) where (u, v) are image
coordinates and z is a measure of depth linear in image space, a
non-pinhole depth image is constructed efficiently by projecting
the vertices of the geometry it is called to approximate and by
rasterizing the projected triangles conventionally. The
unconventional projection occurs in a vertex program which
implements the non-pinhole camera model. Since lines do not
necessarily project to lines anymore and since rasterization
parameters do not vary linearly (before the perspective divide)
anymore, the triangles must be sufficiently small to provide an
adequate approximation. Complex objects are frequently modeled
with small triangles, so additional tessellation is usually not
needed. Meshes with large triangles can be subdivided on-the-fly
by taking advantage of primitive-level GPU programmability.

3.2 Ray intersection

Like a regular depth image, a non-pinhole depth image is defined
by an image with color and depth per pixel, and a camera model
which allows projection. The intersection of a ray (a, b) with a
non-pinhole depth image NPI is computed as follows:

1. Clip the segment (a, b) with the bounding volume of NPI to
obtain the segment (c, d), see Figure 7.

2. Interpolate (c, d) in 3-D, from near to far to create n sub-
segments. For each sub-segment (sk, sk+1):

2.1. Project sk and sk+1 to depth image at pk = (uk, vk, zk) and
pk+1 = (uk+1, vk+1, zk+1).

2.2. Lookup image depths izk, izk+1 at (uk, vk), (uk+1, vk+1).

2.3. Intersect in 2-D segments [(0, zk), (1, zk+1)] and [(0, izk),
(1, izk+1)] to obtain intersection (tj, zj).

2.4. If (tj, zj) is a valid intersection, return depth image color
icj at lerp((uk, vk), (uk+1, vk+1), tj), else continue with next sub-
segment.

The ray is interpolated in 3-D since its projection is not a
straight line, and one cannot simply rasterize the segment that
connects the endpoint projections. Each intermediate point is
projected with the non-pinhole camera to trace the curved
projection correctly. Since the depth z stored by the depth image
varies linearly in the image, the intersection can be computed
efficiently in a 2-D space (t, z), where t is the parameter locating
the intersection along segment (pk, pk+1). These generic algorithms
are specialized for the SPOC and the graph camera as follows.

4 SINGLE-POLE OCCLUSION CAMERA DEPTH IMAGES

The SPOC projection uses a conventional projection followed by
a distortion that moves the projected sample away from a pole

[MPS05]. The pole is the projection of the center of the object.
The distortion magnitude increases with depth, so deeper samples
move more, escaping the occluding front surface. For the SPOC
depth image in Figures 1 and 2 the distortion pushes the object
silhouettes back, revealing the lid and the bottom of the teapot, the
entire side of the barrel, and the side and wheels of the car. Figure
8 shows that the SPOC depth image captures about half of the
teapot, which is sufficient to intercept all reflected rays that would
intersect the original teapot geometry.

SPOC construction and intersection closely follow the
algorithms described in the previous section. The number of sub-
segments n is chosen as the Euclidian distance between the
projection of the endpoints of the clipped ray. This provides a
good approximation of the actual number of pixels covered by the
curved projection of the ray. The curved projections of a set of
coplanar rays are visualized in Figure 4.

5 GRAPH CAMERA DEPTH IMAGES

The graph camera is constructed from a planar pinhole camera
through a succession of bending, splitting, and merging operations
[PRA09]. The result is a graph of planar pinhole camera frusta.
The concept of camera ray is generalized to the set of points
projecting at a given image location, which allows for rays that
are not straight lines. The rays of the graph camera are piecewise
linear. A ray changes direction as it crosses the shared face
separating two frusta, but it remains continuous, which makes the
graph camera image continuous. The graph camera constructed
for the maze in Figure 6 is shown in Figure 9. The construction
used a breadth first traversal starting from the entrance.

Projecting a point with the graph camera uses two steps. First,
the frustum containing the given 3-D point is found. Then the
point is projected directly to the output image with a 4-D matrix
that concatenates the projections of all the cameras on the path
from the current frustum to the root. The frustum containing the
point can be found with an octree or another hierarchical space
subdivision [PRA09]. Using the projection, graph camera depth
image construction proceeds as in Section 3.1, except that a
triangle has to be processed with each frustum it intersects.

Figure 7. Ray / non-pinhole depth image intersection.

Figure 8. Visualization of samples stored by conventional (left) and

SPOC (right) depth image.

5

5.1 Ray intersection

In order to intersect a graph camera depth image with a ray it is
possible to follow the generic algorithm: interpolate the ray
uniformly in 3-D space, and project each new point onto the graph
camera image. However, since each frustum is a pinhole, the
projection of a given ray is piecewise linear (Figure 10), which
enables the following optimization. Given a ray r, for each graph
camera frustum Fi:

1. Intersect ray r with Fi to produce 3-D sub-segment (si, ei).

2. Project segment (si, ei) to graph camera image segment (pi, qi).

3. Walk on (pi, qi) to find intersection.

The algorithm computes the linear pieces of the ray directly by
intersecting the ray with all the frusta, resulting in a set of sub-
segments (si, ei). This is more efficient than the generic algorithm
which requires small 3-D steps just to model the breaking points
of the piecewise linear with high fidelity. Each frustum is a planar
pinhole camera, so each sub-segment projection remains a straight
line segment (pi, qi) in the output graph camera image. The sub-
segment is interpolated to search for the intersection step by step,
similarly to the generic algorithm.

6 APPLICATIONS TO INTERACTIVE RENDERING

Non-pinhole depth images accelerate reflection, refraction, relief
texture mapping, and ambient occlusion as follows.

6.1 Reflection and refraction

To render a frame of a scene with specular reflections the first
step is to update the depth images approximating reflected
geometry that is dynamic. Then each reflector is rendered by
computing a reflected ray per pixel, a step similar to environment
mapping, and by intersecting the reflected ray with the depth
images of reflected geometry. Multiple reflections of the same
object are obtained at no extra cost (Figure 11, left). Fully
dynamic scenes are supported since our method does not require
any pre-computation involving the reflector and the non-pinhole
depth images are computed efficiently. Higher-order reflections

are supported by storing per pixel normals. The normal at a first
intersection point is used to create a second order reflected ray
which intersects depth images again (Figure 11, right).

When deciding how to approximate reflected geometry the goal
is to devise the simplest approximation that captures all samples
visible in reflections. For example the black and white ground
plane in the reflections in Figure 11 is perfectly captured with a
billboard. The SPOC depth image of the teapot is captured along
the direction that connects the centers of the bunny and teapot. If
the teapot were spinning or if there were multiple reflectors
surrounding the teapot, the best solution would be to use two
depth images capturing complementary halves of the teapot.

Refractions are rendered by intersecting the emerging ray with
the depth images approximating geometry. The algorithm for
computing emerging refracted rays is orthogonal to this work. We
use an image-space approximation for computing the emerging
refracted rays [Wym05]. The key idea behind this approximation
is to use a first rendering pass to store depth and surface normals
for back-facing surfaces, which are then used by a second pass to
compute the ray emerging after a second refraction.

6.2 Relief texture mapping

Relief texture map rendering is triggered by rendering the
primitives of the coarse underlying model. To obtain correct
silhouettes we render the bounding box of each relief tile (Figure
12). For every pixel the eye ray is transformed to the coordinate
system of the current relief tile and intersection proceeds as
before. World space z is computed at the intersection for correct
z-buffering with the rest of the scene and for casting and receiving
correct shadows. Shadows could be computed by shooting a
second ray from the intersection to the light source and
intersecting it with the relief texture. We prefer to use a
conventional shadow map such that the relief surface casts and
receives shadows from other objects and from other relief tiles.

Non-pinhole relief textures capture complex objects in a single
layer. Figure 13 shows that a conventional relief texture misses
the wheels and severely under-samples the sides of the car. With
an increased complexity of the geometry modeled with the relief
texture comes the desire to modulate the appearance of individual
instances of the relief texture. The different colored cars in Figure

Figure 9. Graph camera model visualization. The frusta are shown

in red and few rays are shown in white.

Figure 10. Visualization of 3-D ray (left) and its piecewise linear

projection in a graph camera image (right).

Figure 11. Multiple (left) and 2
nd

 order (right) reflections.

Figure 12. SPOC relief texture (left) and output image with relief

bounding box visualization (right).

6

2 were obtained with a single relief texture by simply modifying
the color of the intersection if it corresponds to the car body,
identified through its yellow color.

6.3 Ambient occlusion

The horizon-based screen-space ambient occlusion algorithm
[BS08] is fast because one can estimate occlusion in a half plane
by traversing a single output image z-buffer segment. In Figure 14
left, p is an arbitrary output image pixel. Occlusion on the q side
of ep is estimated by simply traversing pq, and casting rays ri is
not needed. This is enabled by the property that at any output
pixel p any plane through the pixel ray ep will project to a line.
This property needs to be maintained when porting the algorithm
to non-pinhole z-buffers. The SPOC does not have this property.
For any pixel other than the pole there is no set of planes spanning
space with each plane projecting to a curve. The planes have a
projection with non-zero area. We have designed a graph camera
model that enhances the output image z-buffer with samples
visible from two nearby viewpoints and also exhibits the desired
property. The graph camera projection is equivalent to a series of
conventional projections. Once a plane is collapsed to a line by
the leaf projection, the line is mapped to lines by subsequent
projections and the property is maintained. Using Figure 14 left
again, pq remains a line after subsequent projections.

Figure 14 right visualizes the rays of the graph camera used to
render the non-pinhole z-buffer shown in Figure 3. The graph
camera has 3 sub-frusta: the output image frustum e up to a
vertical plane through the splitting point s, and the left and right
frusta l and r beyond. The splitting point moves on the blue curve
as the output image view revolves around the dragon. The curve
was designed off-line to move the splitting point smoothly behind
the dragon as the dragon is seen sideways, in which case a
conventional z-buffer suffices (also see accompanying video).

7 RESULTS AND DISCUSSION

7.1 Quality

Non-pinhole depth images enable quality reflections, refractions,
relief texture mapping, and ambient occlusion as attested by the

images in the paper and by the accompanying video. Figure 15
shows that our method achieves results comparable to ray tracing.
The main limitations of our approach are as follows.

Absent self-reflection. Although our method could, in principle,
support self-reflections by also intersecting the reflected rays with
a depth image of the reflector, the additional intersection is
probably a price interactive applications are not willing to pay.

Coarse silhouettes. An SPOC depth image does not sample the
entire object it replaces. The sampled area ends with a jagged
edge when the SPOC rays are tangential to the replaced geometry
(Figure 8). When the jagged edge is exposed, the silhouette of the
reflection becomes coarse. One possible solution is to smooth the
edge as a pre-process, an approach that precludes dynamic scenes.
Instead we alleviate the problem at run time by alpha blending the
intersection sample with greater transparency when the SPOC ray
becomes tangential to the sampled surface.

Undersampling. Like for all sample-based methods, the quality
of the results obtained with non-pinhole depth images is
contingent upon adequate sampling. The SPOC sampling rate is
uniform and controllable. The graph camera sampling rate is not
uniform: it is higher closer to the initial frustum and is lower for
the distant frusta. The graph camera depth image used here was
constructed to capture the entrance at a higher resolution, where
reflections are of highest quality (Figure 6). Deeper into the maze
the resolution decreases leading to aliasing artifacts due to the
large output image projection of depth image pixels, a problem
similar to inadequate shadow map resolution. In Figure 16 the
teapot is in the top left corner of the maze (see Figure 6), thus
deepest in the graph camera depth image, where sampling
insufficiency is noticeable. Note however that the case presented
here is particularly challenging: a smooth highly-specular surface
reflects a contrasting checker pattern. We use a graph camera
depth image resolution of 1,920 x 1,175. A brute force solution is
to increase the resolution further. Another possibility is to break
up the maze into several parts each with its own smaller graph
camera depth image. Lastly, hybrid sample-based/geometry-based

Figure 13. Conventional relief texture (left) & output image (right).

Figure 14. Screen-space ambient occlusion algorithm (left) and

visualization of graph camera model (right) used in Figure 3.

Figure 15. Comparison of our method (left) to ray tracing (right).

Figure 16. Undersampling artifacts on floor reflection.

7

techniques that incorporate ―infinite frequency‖ edges into
textures could also be used.

Missing samples. The most visible artifacts in non-pinhole
relief texture mapping are caused by samples still missing from
the relief texture due to residual occlusions. The rear bumper of
the car shown in Figure 2 occludes some of the car body in the
relief texture, which causes the shimmering ―rubber band‖ surface
seen in the video. One solution is to modify the car model to
reduce the distance between the bumper and the body of the car
by pushing the bumper in or by thickening the bumper. Another
solution is to encode the bumper in a second relief texture layer.

7.2 Performance

The timing information reported here was collected on a 3.4GHz
2GB Intel Xeon PC with an NVIDIA 8800 Ultra 768MB card. We
used NVIDIA’s Cg 2.0 shading language with gp4 profiles. An
important performance factor is the number of steps along the
projection of the ray, which we analyzed for reflections.

We take coarse steps first and perform a fuzzy intersection of
the coarse ray segment with the non-pinhole depth map. If the two
endpoints project at unoccupied locations or if the coarse ray
segment clearly does not intersect the impostor depth map, the
coarse segment is trivially rejected. Coarse segments are refined
by performing fine steps of 1, ½, or ¼ depth image pixels. Figure
17 illustrates the number of steps for a 512x512 SPOC depth
image, a 6 pixel coarse step, and a ¼ pixel fine step. More steps
are needed when the reflected ray narrowly misses the teapot,
which causes the fuzzy test to return a false positive. The average
number of steps is 48 per output pixel, including both coarse and
fine steps. For fine steps of 1 and ½ pixels the average number of
steps is 22 and 31, respectively. These numbers do not account for
pixel processor idling due to SIMD processing constraints. Figure
18 shows reflection silhouette quality for various fine step sizes.

Performance depends on output image resolution and on the
fine step size as shown in Table 1. Performance was measured on
a typical path (see video) for the scene shown in Figure 1. Eight

sample multi-sampling anti-aliasing (8x MSAA), a 512x512
SPOC depth image, and a coarse step of 6 pixels were used. For
an output resolution of 640x480, with MSAAx8, the average
frame rate for SPOC depth images of resolution 128x128,
256x256, 512x512, and 1024x1024, is 55.8, 36.6, 26.5, and
16.1fps, respectively. For coarse steps of 3, 6, 9, and 12 texels, the
average frame rates are 18.2, 31, 37.2, and 39.8fps, respectively.
The only feature thin enough to be affected by the coarser steps is
the tip of the spout. For a sequence where the SPOC depth image
is recomputed on the fly (see video), the average frame rates are
22 and 17.3fps for no anti-aliasing and 16x MSAA, respectively.

Coarse stepping reduces the number of steps for the graph
camera depth image as well, as can be seen in Figure 19, where
the average number of steps decreases from over 155 to 27. The
reflection of the main entrance where the graph camera impostor
has highest resolution remains the hottest area on the teapot but
only a few pixels have large step numbers. The graph camera
impostor is constructed at over 100fps. The average, min, and
max frame rates for the path that follows the teapot through the
maze (see video) are 45.5, 30, and 105fps w/o antialiasing, and
26.8, 20, and 42fps with 8x MSAA, respectively.

We will examine accelerating the ray/depth image intersection
computation further by leveraging ray coherence. We envision a
two pass approach that first renders the reflection at lower
resolution and then up-samples by interpolation in coherent
regions. The second pass actually computes intersections only at
regions where the lower resolution results are not sufficient to
reconstruct a quality intersection, such as at edge regions.

We construct non-pinhole relief texture maps with an SPOC
and the discussion of performance of ray intersection provided
above in the context of reflections still applies. For Figure 2 the
overall performance, including shadow mapping, is 14fps for the
40 cars and 18fps for the 60 barrels example. Output resolution is
640x480 and relief texture resolution is 512x512. For 20, 10, and
1 car performance is 26, 51, and 219fps, respectively. All
examples shown use tall relief which implies long ray projections.
For scenes with short relief
performance is even higher.
For example, for 160 cars
half the size (Figure 20)
performance is 46fps.

We investigated ambient
occlusion performance for
two quality occlusion
sampling settings: regular
(6 sampling directions and
6 steps per direction), and
fine (32 and 20). The blur

Figure 17. Diffuse teapot reflected in body of large teapot (left) and

visualization of number of intersection steps per pixel (right).

Figure 18. Silhouette detail with fine steps of 1, ½, and ¼ pixels.

Res. 640x480 800x600 1024x768

Fine step 1 1/2 1/4 1 1/2 1/4 1 1/2 ¼

Avg FPS 26.5 20.7 15 20.9 16.5 11.6 15.2 11.8 8

Min FPS 18 14 8 14 10 4 10 8 6

Max FPS 54 46 36 48 15 34 40 34 28

Table 1. Frame rate [fps] variation with output resolution and fine

step size [pixels] for scene in Figure 1.

Figure 19. Teapot location and reflection (top), and number of

steps visualization (bottom) w/o and w/ coarse stepping. Brighter

red indicates a large number of steps being taken.

Figure 20. Short relief example.

8

kernel width was 21 pixels and the output image resolution was
1024x1024 in both cases. Average performance for the dragon
scene (Figure 3) is 35 and 16fps for the regular and fine settings,
respectively. Figure 3 and the video use the fine sampling
setting—the regular setting produces a noisier ambient occlusion,
issue orthogonal to the use of the non-pinhole z-buffer. Rendering
the locally illuminated output image, the graph camera z-buffer,
and adding the ambient occlusion effect takes 5.9, 16, and 6ms for
the regular setting and 5.9, 16, and 40ms for the fine setting,
respectively. For the conventional algorithm rendering the locally
illuminated output image and adding the ambient occlusion effect
takes 5.9 and 5.9ms for the regular setting and 5.9 and 32ms for
the fine setting, respectively. Sampling occlusion in the graph
camera z-buffer as opposed to the conventional z-buffer brings a
25% penalty, and most performance loss is brought by having to
render the graph camera z-buffer of the 890K triangles scene.
However, in some scenes it is unnecessary to update the graph
camera z-buffer for every frame. The non-pinhole z-buffer does
see more than what is visible in the output image which greatly
extends its resiliency to output view changes. For example the z-
buffer shown in Figure 3 can be reused if the dragon is only seen
from the front, which increases performance to 21fps for the high
setting, approaching the 26fps of the conventional algorithm.
Another possible approach is to use a simplified version of the
model when computing the non-pinhole z-buffer.

8 CONCLUSIONS AND FUTURE WORK

We have shown that the desirable property of conventional depth
images of efficient ray intersection holds for non-pinhole depth
images, at the small additional cost of traversing a curved—as
opposed to a straight—ray projection. We have leveraged this
property to render specular reflections, refractions, relief texture
mapping, and ambient occlusion.

Compared to reflection rendering techniques that approximate
the projection of reflected points such as explosion maps [OR98],
our method produces multiple projections of the same object at no
extra cost and handles complex reflectors. Compared to color-
caching image-based techniques, our method supports dynamic
scenes and has reduced memory requirements. Color-caching
techniques excel at capturing the appearance of complex real-
world materials that are glossy, but not specular. Compared to
environment mapping, our method produces better results close to
the reflector, at a higher per-pixel cost stemming from the more
sophisticated scene approximation. Compared to ray tracing, our
method more easily minifies and magnifies reflections by working
in the color map at different levels of resolution, and achieves fast
ray / geometry intersection. Ray tracing has a quality advantage
since it does not approximate the reflected geometry. Compared
to conventional relief texture mapping the non-pinhole relief maps
bring greater modeling power at the cost of a costlier ray/relief
texture intersection, but without the cost of additional relief
texture layers.

In addition to the directions for future work already sketched,
we will investigate integrating our non-pinhole rendering
framework into popular digital 3-D content creation tools. Our
work argues for the benefits and practicality of exploring camera
models that abandon the pinhole constraint. Non-pinhole cameras
can be designed to provide powerful yet inexpensive
approximations for many applications in graphics and beyond.

REFERENCES

[BS08] BAVOIL L. AND SAINZ M. Image-Space Horizon-Based

Ambient Occlusion, SIGGRAPH 2008, Talk Program, 2008.

[Bjo04] BJORKE K. Image-based lighting. GPU Gems, Fernando

R., (Ed.). NVidia, (2004), pp. 307–322.

[BN76] BLINN J.F., NEWELL M. E. Texture and Reflection in

Computer Generated Images. CACM 19:10, pp. 542-547, 1976.

[CW05] CHAN B. AND WANG W. Geocube—GPU accelerated

real-time rendering of transparency and translucency. The Visual

Computer, vol 21, 2005, pp. 579-590.

[DYB98] DEBEVEC P., YU Y., BORSHUKOV G. Efficient view-

dependent image-based rendering with projective texture-mapping. In

EG Workshop on Rendering, 1998, pp. 105–116.

[DDS*03] DECORET X. ET AL. Billboard Clouds for Extreme

Model Simplification. ACM SIGGRAPH 2003, pp.689-696.

[GGS*96] GORTLER S., GRZESZCZUK R., SZELISKI R., AND

COHEN M. The Lumigraph. In Proc. of SIGG. 96, pp.43-54.

[LH96] LEVOY M., AND HANRAHAN P. Light Field Rendering.

Proc. of SIGGRAPH 96, pp. 31-42.

[MS95] MACIEL P., AND SHIRLEY P. Visual Navigation of Large

Environments Using Textured Clusters. I3D’95, pp. 95-102.

[MMB97] MARK W., MCMILLAN L., AND BISHOP G. Post-

Rendering 3D Warping. Symp. on Interactive 3D Graphics, pp. 7-16.

[MO95] MAX N. AND OHSAKI K. Rendering trees from

precomputed z-buffer views. In Rendering Techniques ’95:

Proceedings of the EGRW, pp. 45–54.

[MB95] MCMILLAN L. AND BISHOP G. Plenoptic modeling: An

image-based rendering system. SIGGRAPH '95, pp. 39-46.

[MPS05] MEI C., POPESCU V., AND SACKS E. The Occlusion

Camera. Eurographics 2005, pp. 335-342.

[OR98] OFEK E. AND RAPPOPORT A. Interactive reflections on

curved objects. In Proc. of SIGGRAPH ’98, ACM Press, 333-342.

[PG04] PHARR M. AND GREEN S. Ambient Occlusion. In GPU

Gems, edited by Randima Fernando, pp. 279–292, 2004.

[PO06] POLICARPO F. AND OLIVEIRA M. Relief Mapping of Non-

Height-Field Surface Details. In Proceedings of ACM Symposium on

Interactive 3-D Graphics and Games 2006, pp. 55-62.

[POC05] POLICARPO F., OLIVEIRA M., AND COMBA J. Real-Time

Relief Mapping on Arbitrary Polygonal Surfaces. In ACM Symp. on

Interactive 3-D Graphics and Games 2005, pp. 155-162.

[PRA09] POPESCU V., ROSEN P., AND ADAMO-VILLANI, N. The

Graph Camera. ACM SIGGRAPH ASIA ’09, to appear.

[PMDS06] POPESCU V., MEI C., DAUBLE J., AND SACKS E.

Reflected-Scene Impostors for Realistic Reflections at Interactive

Rates. Computer Graphics Forum, (25):3 (EG 2006), pp. 313-322.

[PA06] POPESCU, V. AND D. ALIAGA. The Depth Discontinuity

Occlusion Camera. In ACM I3D 2006, pp. 139-143.

[RB98] RADEMACHER P. AND BISHOP G. Multiple-center-of-

Projection Images. Proc. ACM SIGG. ’98, pp. 199–206.

[RAH07] ROGER D., ASSARSSON U., AND HOLZSCHUCH N.

Whitted Ray-Tracing for Dynamic Scenes Using a Ray-Space

Hierarchy on the GPU. In EGSR, 2007, pp. 99-110.

 [RP08] ROSEN P. AND POPESCU V. The Epipolar Occlusion

Camera, In ACM Symp. on Inter. 3-D Graphics 2008, pp. 115-122.

[SALP05] SZIRMAY-KALOS L. ET AL. Approximate Ray-Tracing

on the GPU with Distance Impostors. Computer Graphics Forum,

24(3), 2005. pp. 171-176.

[Sha98] SHADE J. ET AL. Layered Depth Images. In Proceedings

of SIGGRAPH 98, 231-242.

[Whi80] WHITTED T. An improved illumination model for shaded

display. Comm. of the ACM (1980), 23, 6, pp. 343-349.

[Woo97] WOOD D. ET AL. Multiperspective Panoramas for Cel

Animation. In Proc. of ACM SIGG. ’97, pp. 243-250.

[Wym05] WYMAN C. An Approximate Image-Space Approach

for Interactive Refraction. ACM ToG, vol. 24, no 3, pp. 1050-1053.

[YM04] YU J. AND MCMILLAN L. A Framework for

Multiperspective Rendering. In Proceedings of Eurographics

Symposium on Rendering (EGSR), 2004.

[ZIK98] ZHUKOV S., IONES A., AND KRONIN G. An Ambient

Light Illumination Model. In EGRW '98, pp. 45–56.

